Synopsis

The nuclear option

Physics 4, s82
Optical clocks based on nuclear energy levels may offer unprecedented precision and a chance to find out whether fundamental constants change over time.
Credit: C. Campbell et al., Phys. Rev. Lett. (2011)

Atomic clock makers look for two important characteristics when they choose atoms to build their time pieces. First, the energy levels that generate the clock signal must be narrow and well defined. And second, the energy levels should be immune from external electromagnetic fields so that the clock rate doesn’t vary with, for example, position near Earth.

Several atomic species with these qualities exist, but researchers would like to take optical clocks to an even higher level of precision and stability. One approach would be to find nuclear energy levels with the right features for clocks. Nuclei have extremely sharp energy levels, but typically the excitation energies range from kilo-electron-volts to mega-electron-volts—far above the several- eV photon energies that are available to make optical clocks. Now, Corey Campbell, Alexander Radnaev, and Alexander Kuzmich of the Georgia Institute of Technology report in Physical Review Letters their studies of thorium nuclei that may be just right for clock building.

One likely candidate, thorium- 229, has a pair of low-lying nuclear states separated only by 7.6eV. As a first step in harnessing these levels, the authors trap and cool the triply charged form of Th- 229 into a regular array called a Wigner crystal, which allows spatial localization of each nucleus. Future work will include addressing single ions in the crystal and spectroscopic studies of the nuclear clock transition. This could not only lead to clocks of unusual precision, but it might also help answer questions about whether fundamental physical constants are changing over time. – David Voss


Subject Areas

Atomic and Molecular Physics

Related Articles

Searching for a New Force
Atomic and Molecular Physics

Searching for a New Force

A hypothetical fifth force could be detected by its effect on the optical transition frequencies of an element’s different isotopes. Read More »

Trilobite Molecules Measured
Atomic and Molecular Physics

Trilobite Molecules Measured

High-precision spectroscopy of weakly bound rubidium dimers pushes a theoretical model to its limits. Read More »

Painted Light Hastens Atom Cloud Production
Atomic and Molecular Physics

Painted Light Hastens Atom Cloud Production

Researchers have generated Bose-Einstein condensates with a repetition rate exceeding 2 Hz, a feat that could increase the bandwidth of quantum sensors. Read More »

More Articles