Synopsis

Power Falls in Sync

Physics 5, s123
According to network theory, decentralizing a power grid to accommodate more energy sources may improve the synchronization of its components.

In his book Cybernetics, mathematician Norbert Wiener asked “How is it that thousands of neurons or fireflies or crickets can suddenly fall into step with one another, all firing or flashing or chirping at the same time, without any leader or signal from the environment?” The question is at the heart of many network theories, which try to understand how a large number of interacting systems enter into collective and synchronized behavior. In Physical Review Letters, Martin Rohden and colleagues at the Max Planck Institute in Göttingen, Germany, use network theory to study the synchronization properties of electric power grids.

Robust synchronization underpins the stable operation of a grid. Every power source and every piece of equipment must run on the same 50 or 60 hertz clock. Desynchronization can mean failures and massive power blackouts.

Rohden et al. model the British grid as a system of coupled oscillators and analyze the differences between the existing grid, which is based on large centralized power plants, and alternative grids with widely distributed small-scale power sources. The key finding of their work is that distributing power generation supports self-organized synchronization—the ability to maintain phase synchrony of voltages across the grid without an external control—because it removes the sensitivity of the system to a few heavily loaded lines.

As countries steer towards a more balanced energy portfolio that includes a broad array of distributed renewable energy sources, the research suggests that decentralization may make future power grids smarter than expected. – Matteo Rini


Subject Areas

Nonlinear DynamicsEnergy Research

Related Articles

Thermodynamic Limits to Anomalous Diffusion
Nonlinear Dynamics

Thermodynamic Limits to Anomalous Diffusion

Thermodynamics sets constraints on the time window over which anomalous diffusion can occur—a finding that may be relevant to the study of diffusion-controlled cellular processes. Read More »

Windbreaks May Improve Wind Farm Power
Fluid Dynamics

Windbreaks May Improve Wind Farm Power

Simulations suggest that optimally placed barriers could boost wind farm performance by as much as 10%. Read More »

New Behaviors from an Old Forest Fire Model
Nonlinear Dynamics

New Behaviors from an Old Forest Fire Model

Self-organizing properties, unnoticed for decades, are observed in changes in the density of trees in a forest that can catch fire. Read More »

More Articles