Synopsis

Strange Beauty

Physics 5, s95
A new baryon has been discovered by the CMS collaboration at the Large Hadron Collider.
CERN

One would think that by now, apart from big game like the Higgs boson, high-energy physicists would have bagged nearly all of the beasts on the particle horizon. There are still a few trophies to be taken, among them a group of baryons, each of which comprises one strange quark, one b quark (meaning bottom or beauty), and a third quark. When the third member of the trio is an up or down quark, the particle is known as a Ξb baryon. The Tevatron at Fermilab observed particle decays consistent with some of these states, but a full accounting was not available. Now, in a paper in Physical Review Letters, the CMS team at the Large Hadron Collider at CERN report their observation of a new particle that they conclude is likely to be the Ξb*0.

New particles are nearly always found by watching what they turn into, and the CMS collaboration observed a cascade of decays from Ξb*0 to Ξb- to J/ψ to muons, pions, and other bits and pieces. Careful reconstruction based on data from proton-proton events at the LHC puts the particle mass at 5945MeV, with a statistical significance of more than 5 standard deviations.

Nailing down further properties of the Ξb*0 remains a challenge, but the observation of a new member of the b-baryon family will help physicists understand how quarks interact in composite particles and shows that there is still room on the trophy wall for particle discoveries. – David Voss


Subject Areas

Particles and Fields

Related Articles

No Need for Fractional Particles
Particles and Fields

No Need for Fractional Particles

The scattering of a charged particle off a magnetic monopole does not imply the existence of fractional particle numbers, theorists say. Read More »

Antiprotons from Beyond the Solar System
Particles and Fields

Antiprotons from Beyond the Solar System

The spectrum of cosmic-ray antiprotons has been measured for a full solar cycle, which may allow a better understanding of the sources and transport mechanisms of these high-energy particles. Read More »

Strange Swapping Behavior Defines New Particle Candidate
Particles and Fields

Strange Swapping Behavior Defines New Particle Candidate

Researchers predict the existence of a class of particles that behave differently from those already known. Read More »

More Articles