Synopsis

Blowing Bubbles on the Nanoscale

Physics 7, s81
Scientists have now developed a new controlled method to superheat liquids and induce the formation of bubbles in a nanoscale container.

Whether they form in ice-cold champagne or hot molten iron, bubbles represent a nucleation phenomenon that (in the case of the hot iron) can lead to a phase transition from a liquid to a vapor. Understanding how the bubble nucleation is affected by confinement could be useful for applications in chemistry, microfluidics, and electronics, as well as fundamental studies of phase transitions. Jene Golovchenko, at Harvard University, and collaborators now report a way to reproducibly create bubbles in liquid confined within a solid-state nanopore—the smallest container in which bubble formation has been observed.

Solid-state nanopores are tiny holes punctured into an insulating membrane. Golovchenko and his colleagues immersed a silicon-nitride membrane containing a nanopore in a sodium-chloride solution and applied a modest voltage across the membrane to drive an ionic current through the pore. The current rapidly heated the liquid in the nanopore to temperatures 200C above its normal boiling point, causing single bubbles of vapor to homogeneously nucleate at the center of the pore.

The researchers used both electronic and optical probes to monitor the bubbles’ nucleation, growth, and collapse. The bubbles were excited in streams, with each bubble lasting around 16 nanoseconds before the next formed 120 nanoseconds later, consistent with models of how heat drives bubble formation on the nanoscale. Inducing bubble nucleation in a controlled manner may be useful for applications such as building bubble “lenses” to bend light and achieve super-resolution imaging. – Katherine Kornei


Subject Areas

Fluid Dynamics

Related Articles

Active Matter that Mimics Turbulence in Space and Time
Soft Matter

Active Matter that Mimics Turbulence in Space and Time

Despite being driven by a different process, a system of self-propelling particles can evolve over time in a similar way to a turbulent fluid. Read More »

Intricate Branching in Soft Solids
Soft Matter

Intricate Branching in Soft Solids

Experiments show that when a non-Newtonian fluid is displaced by air, the input energy determines whether the fluid surface forms simple or elaborate patterns. Read More »

Fluid Flows Help Levitate Liquids
Fluid Dynamics

Fluid Flows Help Levitate Liquids

Currents induced by an evaporating drop increase the efficiency of the Leidenfrost effect for liquid substrates. Read More »

More Articles