Synopsis

Hunting Grounds for Dirac Electrons

Physics 8, s106
Theorists identify two-dimensional crystal structures that could host Dirac electrons similar to those observed in graphene.
Steve Young/NRL and Charles Kane/Univ. of Pennsylvania

Electrons in graphene—a two-dimensional (2D) form of carbon—behave a lot like massless particles. The phenomenon is at the heart of why graphene’s electrons have such a high mobility. According to theoretical calculations, similar behavior, and new effects, might be observed in 2D materials with crystal structures that share little likeness to graphene’s honeycomb lattice.

Graphene’s unusual electronic properties stem from its crystal structure, which gives rise to cone-shaped electronic energy bands that touch at points. Electrons that fill the bands near these points can be characterized by the same Dirac equation that describes photons and other relativistic particles traveling in 2D. This description isn’t perfect, however, because the bands near such “Dirac points” are distorted by the spin-orbit effect, an interaction between the spin and momentum of graphene’s electrons.

Using spatial-symmetry arguments, Steve Young of the Naval Research Laboratory in Washington DC and Charles Kane of the University of Pennsylvania, Philadelphia, identified a family of 2D crystalline semimetals with Dirac points that are immune to the spin-orbit effect. This immunity gives some tunability to the materials that isn’t available in graphene. Specifically, the authors show that breaking certain symmetries in the structures—say, by distorting the crystal lattice—can transform the metals into either a normal insulator or a topological insulator, a material whose surface electrons can travel without backscattering. In addition to fundamental interest, topological insulators might be the basis of future high-speed electronic devices or other, as yet unknown, applications.

This research is published in Physical Review Letters.

–Jessica Thomas


Subject Areas

Topological InsulatorsCondensed Matter Physics

Related Articles

Watching Crystallization Advance
Condensed Matter Physics

Watching Crystallization Advance

Experiments with colloidal particles have uncovered conditions where an intermediate layer that separates a crystallizing liquid from its solid forms. Read More »

Embedding Correlated Electrons in a Multipurpose Bath
Strongly Correlated Materials

Embedding Correlated Electrons in a Multipurpose Bath

A new framework that embeds electrons in a surrounding bath captures nonlocal correlation effects that are relevant to metals, semiconductors, and correlated insulators. Read More »

Chiral Response of Achiral Meta-Atoms
Condensed Matter Physics

Chiral Response of Achiral Meta-Atoms

Contrary to conventional wisdom, a lattice of engineered nanoparticles called meta-atoms can have a chiral optical response even when each meta-atom is not chiral. Read More »

More Articles