Synopsis

Ribbon Creases and Twists

Physics 9, s120
Experiments with paper ribbons show how one can predict the final shape of a loop when the ribbon’s ends are pulled tight.
H. Wada/Ritsumeikan University

Loops appear in many mechanical systems, from shoelaces to DNA strands. Theories can predict what will happen when a loop is pulled tight, but these models only apply to one-dimensional systems, like wires. A new study tackles the problem in two-dimensional ribbons, finding that loop tightening leads to one of three outcomes: a crease, a pop-out, or a twist. The team explains the final shapes as a competition between bending and stretching forces.

In the case of a 1D wire with a loop in the middle, pulling on the ends will make the loop radius smaller. At some point, the bending strain becomes too much, and the wire starts to twist to release some of that strain. Pulling on the wire more causes the loop to unfurl into the shape of a loose coil.

For a 2D ribbon, the geometry makes twisting difficult, as the ribbon is often forced to stretch in order to make a twist. To investigate this behavior systematically, Yoshimi Tanaka from Yokohama National University, Japan, and colleagues performed experiments in which they placed a single loop in the middle of a paper ribbon and attached the two ends to motorized pullers. The researchers varied the length and width of the ribbon, as well as the transverse offset between the pullers. For small offsets, the loops collapsed to a crease, whereas for larger offsets, the loops unraveled in a sudden jump (pop-out) or through more continuous twisting. By modeling the forces in terms of ribbon parameters, the team showed how one could predict the outcome of a ribbon tightening, which might be useful in describing the behavior of DNA.

This research is published in Physical Review Letters.

–Michael Schirber

Michael Schirber is a Corresponding Editor for Physics based in Lyon, France.


Subject Areas

MechanicsInterdisciplinary Physics

Related Articles

Massive Mirrors Feel Fluctuating Photon Forces
Astrophysics

Massive Mirrors Feel Fluctuating Photon Forces

The LIGO and Virgo experiments measure a previously unobserved quantum effect acting at the macroscopic scale. Read More »

Sustainable Plastics Inspired by Nature
Interdisciplinary Physics

Sustainable Plastics Inspired by Nature

Plant-based plastics offer a sustainable alternative to traditional petrochemical plastics. Scientists and engineers are making the shift easier by fine-tuning the structure and function of these biomaterials while also developing better processing techniques. Read More »

Follow the Crowd to Find a Smell
Interdisciplinary Physics

Follow the Crowd to Find a Smell

Simulations show that by trusting their neighbors and following their own “noses,” a swarm of fictitious organisms inspired by moths can quickly find a smell’s source in turbulent air. Read More »

More Articles