Synopsis

Cells Go with the Crowd

Physics 9, s24
A simple model suggests a way in which clusters of cells could follow concentration gradients in cases where individual cells cannot.
B. Camley/UCSD

Many biological cells can perform chemotaxis—sensing a chemical, or “chemoattractant,” and moving in the direction of increasing concentration. For example, white blood cells seek invaders, and embryonic cells follow biochemical cues during development. In some cases, only clusters of cells are capable of detecting a concentration gradient, not individual cells, but researchers don’t understand exactly how such “collective” chemotaxis works. Now a team led by Wouter-Jan Rappel of the University of California, San Diego, has developed a simple mathematical model for the process.

The model assumes that each cell has a fluctuating “polarity” that determines its direction and speed of motion. In the model equations, which are based on experimental observations, the polarity of a cell has a preference to point away from its neighbors, so that cells near the edges of a cluster want to move outward. But the equations also specify that the strength of this outward-moving tendency is proportional to the local concentration of the chemoattractant. So whichever edge experiences the highest concentration pulls the hardest and moves the cluster in that direction.

The researchers’ simulations and analytical results show that the model, which assumes no gradient sensing by single cells, produces chemotaxis for cell clusters. It also predicts the speed and direction of motion of a cluster and the effects of cluster shape, size, and orientation. The chemotactic velocity of a two-cell cluster, for example, depends on the pair’s orientation with respect to the concentration gradient, and the team proposes looking for this effect with real cells as a test of the model.

See a video from the paper that shows the simulated trajectories of 1-, 2-, 7-, and 19-cell clusters based on the authors’ model.

This research is published in Physical Review Letters.

–David Ehrenstein


Subject Areas

Biological Physics

Related Articles

Solving a Puzzle in Brain Development
Biological Physics

Solving a Puzzle in Brain Development

Scientists may have answered a longstanding question in biophysics: how the brain learns to recognize features in images before a newborn even opens its eyes. Read More »

Turbulence-Surfing Plankton Can Double Their Speed
Fluid Dynamics

Turbulence-Surfing Plankton Can Double Their Speed

Simulations indicate that plankton can gain quicker access to food by riding ascending turbulent ocean currents. Read More »

A Tiny Photonic Nose Captures Odor Fingerprints
Biological Physics

A Tiny Photonic Nose Captures Odor Fingerprints

A bio-inspired detector the size of a US penny can identify the unique odor profiles of different gases, something that could help in detecting food freshness and product counterfeits and in designing new cosmetics. Read More »

More Articles