Synopsis

Forming Granular Plugs

Physics 9, s73
Experiments on grain-water-air mixtures flowing through a tube find that frictional forces between the grains and the tube lead to the creation of a series of plugs.
Bjørnar Sandnes

Fluid-grain flows, such as mudslides and blood, are difficult to model because of complex frictional forces that act on and between the grains. New experiments explore the behavior of a three-phase flow that combines liquid, air, and grains in a narrow tube. At relatively slow flow rates, the grains pile up and form a periodic pattern of tube-blocking plugs. The researchers explain this process by accounting for the frictional forces acting in the system.

Many different forces are at work inside fluid-grain flows. The fluid exerts a viscous force that pushes grains downstream, while the grains feel friction from rubbing against each other and on the walls of the container. If a second fluid is added, then capillary forces from the fluid-fluid boundary (or meniscus) may also act on the grains.

Guillaume Dumazer from the University of Oslo, Norway, and his colleagues performed experiments on a system containing water, air, and grains (small glass beads). They placed the water-grain mixture in a long, 2-mm-diameter tube. Water was drawn from one end of the tube via a syringe, forcing an air column to be pulled in through the other end. At high water-flow rates, the viscous forces dragged the grains along, evacuating the tube completely. But at low flow rates, the air-water meniscus pushed grains into piles that clogged the tubes because of the friction from the tube walls. This plug-forming process occurred multiple times at evenly spaced locations along the tube. The team constructed a model that explained the plug pattern and predicted the minimum flow rate needed to prevent plug formation. This work may lead to a better understanding of other fluid-grain flows, like, for example, the hydraulically driven flows of ingredients found in the pharmaceutical industry.

This research is published in Physical Review Letters.

–Michael Schirber

Michael Schirber is a Corresponding Editor for Physics based in Lyon, France.


Subject Areas

Fluid Dynamics

Related Articles

Ultrafast, Self-Propelled Particles
Soft Matter

Ultrafast, Self-Propelled Particles

New “Marangoni surfers” that whizz along at 10,000 body lengths per second offer new insight into active matter propelled by surface-tension gradients. Read More »

Small Spheres Freeze When Hot
Fluid Dynamics

Small Spheres Freeze When Hot

An optofluidic effect causes a group of fluid-suspended particles to “freeze” when one of them is heated, potentially allowing greater control over these systems. Read More »

Active Matter that Mimics Turbulence in Space and Time
Soft Matter

Active Matter that Mimics Turbulence in Space and Time

Despite being driven by a different process, a system of self-propelling particles can evolve over time in a similar way to a turbulent fluid. Read More »

More Articles