Coulomb Drag in a Double Dot

Physics 9, s84
Electric current passing through a quantum dot can generate current in a nearby dot through a coordinated tunneling mechanism.
A. J. Keller et al., Phys. Rev. Lett. (2016)

Electrons moving through a conductor can induce the movement of electrons of a nearby, but isolated, conductor. This so-called Coulomb drag is well understood in 2D layered materials, but the theory for nanowires and quantum dots does not fully explain experiments. A new study of Coulomb drag in two nearby quantum dots shows that simultaneous tunneling of electrons—called cotunneling—can help explain the low-temperature behavior of the system.

Electric current flows through a quantum dot by the tunneling of electrons. When two dots are placed next to each other, the active, or lead, dot can drag current through the passive dot by a process called sequential tunneling. In this case, an electron first tunnels onto the active dot, increasing the probability of tunneling onto the passive dot. Thus the passive dot follows the active dot’s lead, but always one step behind. Sequential tunneling explains Coulomb drag observations at high temperature, but no studies have investigated cold temperatures where quantum coherence effects may play a role.

Andrew Keller from the California Institute of Technology, Pasadena, and his colleagues explored Coulomb drag at sub-Kelvin temperatures in a pair of quantum dots coupled by capacitance. The team applied a current-driving voltage across one dot and detected a drag current in the other dot, even in regimes where the driving voltage was very small. This conflicts with the sequential tunneling model, which predicts a threshold driving voltage below which the drag current should be zero. The team showed that the inclusion of cotunneling into the drag theory explains the observations. Cotunneling could be important to efforts aimed at harvesting a unidirectional current from a fluctuating voltage supply.

This research is published in Physical Review Letters.

–Michael Schirber

Michael Schirber is a Corresponding Editor for Physics based in Lyon, France.

Subject Areas

NanophysicsMaterials Science

Related Articles

How to Cut into a Material More Smoothly
Materials Science

How to Cut into a Material More Smoothly

A theory confirmed by experiments explains what has been an unpredictable cutting process. Read More »

Three-In-One X-Ray Imaging
Materials Science

Three-In-One X-Ray Imaging

Researchers have developed a technique for simultaneously monitoring the attenuation, phase shift, and dark-field scattering of an x-ray beam as it passes through a melting metal powder. Read More »

Observing Iron Under Pressure
Condensed Matter Physics

Observing Iron Under Pressure

Femtosecond-resolved x-ray diffraction images of iron’s crystals as they deform under an extreme load show that the material’s elastic-plastic transition comes after a surprisingly long elastic phase.   Read More »

More Articles