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How diversity is maintained in natural ecosystems is a long-standing question in Theoretical Ecology. By
studying a system that combines ecological dynamics, heterogeneous interactions, and spatial structure, we
uncover a new mechanism for the survival of diversity-rich ecosystems in the presence of demographic fluc-
tuations. For a single species, one finds a continuous phase transition between an extinction and a survival state,
that falls into the universality class of Directed Percolation. Here we show that the case of many species with
heterogeneous interactions is different and richer. By merging theory and simulations, we demonstrate that with
sufficiently strong demographic noise, the system exhibits behavior akin to the single-species case, undergoing
a continuous transition. Conversely, at low demographic noise, we observe unique features indicative of the
ecosystem’s complexity. The combined effects of the heterogeneity in the interaction network and migration
enable the community to thrive, even in situations where demographic noise would lead to the extinction of
isolated species. The emergence of mutualism induces the development of global bistability, accompanied by
sudden tipping points. We present a way to predict the catastrophic shift from high diversity to extinction by
probing responses to perturbations as an early warning signal.
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I. INTRODUCTION

Community ecology explores how the interactions be-
tween different species shape the diversity-rich ecosystems
that characterize the natural world. Understanding the main
mechanisms at play is a challenge that spans different scien-
tific fields and it is relevant for human health [1].

There are three salient facts that one has to take into
account in this endeavor. Many ecosystems of interest are
species-rich. The interactions between these large sets of
species, and the induced ecological dynamics, can lead to
complex dynamical behaviors such as chaos and a very large
number of possible equilibria [2–8]. Many ecosystems are
spatially extended: the ecological dynamics takes place at
some local scale, but individuals can then explore differ-
ent spatial locations through migration [9]. This can lead
to the appearance of complex ecological phenomena, such
as traveling activity fronts, pattern formation, and persis-
tent chaotic dynamics [10–18]. Ecosystems are subject to
noise, particularly environmental and demographic noise (due
to stochasticity in births and deaths). Both noises induce
fluctuations that are a key factor in determining abundance
distributions, and their time-dependence [19–29]. Under-
standing the interplay between these three properties of
ecosystems is essential for answering many central questions
in community ecology.
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In this work, we consider spatially extended species-rich
ecosystems subject to demographic noise. We will consider
populations that are large but spatially structured, so that
demographic fluctuations globally average out, but they have
an important effect on the local dynamics. This is the case, for
example, in semiarid ecosystems: the total number of plants
is such that global fluctuations are negligible, but at the local
level stochasticity can play a fundamental role [26]. Our aim
is to understand how in these cases interactions and spatial
migration can allow for large diversity and finite abundances
despite the adversarial role of demographic noise. In fact, in an
isolated community, demographic noise leads to extinctions,
irreversibly reducing the ecosystem’s diversity until there are
no species left [27].

Previous works, following the classical theory of Island
Biogeography by MacArthur and Wilson [30], proposed as
a rescuing mechanism the immigration from a static reser-
voir (or “mainland,” when thinking of an island-mainland
system) [2,4,27,31,32]. Nevertheless, this approach simply
shifts the question from how diversity is maintained on the
island to its maintenance on the mainland. Here we use a
different approach. We consider ecosystems as a network
of ecological communities (a metacommunity) coupled by
passive dispersal. In this case, the immigration rates are not
externally imposed, but they are the result of the internal
dynamics. If a species goes locally extinct in one of the com-
munities, immigrants from the neighboring ones can reinvade,
providing an “insurance” (or “storage”) effect [33,34]. This
makes the possibility of a global extinction much more un-
likely, and it can allow the ecosystem to self-sustain at finite
abundances and diversity. The stabilization of high-diversity
states by spatial structure is a very general phenomenon: it can
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arise in the presence of spatial heterogeneity of environmental
conditions [9,33–36] or when abundances in different spa-
tial locations exhibit unsynchronized fluctuations [14–16,37].
Providing a theory for this mechanism for species-rich ecosys-
tems subject to demographic noise, and assessing the role of
interactions, is the main contribution of this work.

The situation is well understood in the case of a few
species, in which, depending on the competition between
migration and death-birth rates, the system is found to be
either in a survival or in an extinct state. A transition separates
the two regimes [11,13,38,39]. This phase transition falls in
the universality class of Directed Percolation, a second-order
out-of-equilibrium transition studied in statistical physics and
widely used to describe spreading phenomena, from forest
fires to epidemics [40].

In a many-species metacommunity with constant com-
petitive interactions, it was recently shown that a similar
second-order phase transition takes place and that it also
belongs to the Directed Percolation universality class [16].
Because the transition is continuous with vanishing abun-
dances, interactions, which are quadratic in the abundances,
are subleading at the critical point. As a consequence, the
main mechanism at play in this case is still the competition
between migration and death-birth rates. We shall show that
the scenario for heterogeneous interactions is different and
goes beyond the directed percolation paradigm. The transition
can become discontinuous. The ecosystem can exhibit global
bistability and tipping points between drastically different
alternative states. Upon small changes in the environmen-
tal condition, the system can therefore undergo catastrophic
shifts from a state with large diversity and finite abundances
to one in which all species are extinct. As in many other dy-
namical systems, from coral reefs to arid ecosystems and from
Earth’s climate to financial markets [41–44], it is important to
find early warning signals of these kinds of transitions in order
to prevent them. We have identified a specific probe, which
is based on the response of the ecosystem to perturbations,
and that can be monitored in experiments. Our analytical
framework shows that interactions play a key role both in
the overall scenario and in promoting a self-sustained survival
state, in agreement with results obtained for constant mutual-
istic interactions [45]. Remarkably, in our case, heterogeneous
interactions of the pool of species are not necessarily mutual-
istic on average. It is the ecological dynamics that shapes the
ecosystem in a self-sustained phase characterized by emergent
mutualistic behavior among the nonextinct species.

In our work, we make use of several methods devel-
oped in statistical physics that are particularly well suited for
species-rich ecosystems, which are complex systems formed
by many interacting degrees of freedom undergoing stochastic
dynamics. To model the heterogeneity in the interactions, we
sample the coupling coefficients from a random ensemble.
We have thus to deal with “disordered” ecosystems, which
can be analyzed by transferring methods from spin-glass the-
ory [46]. This disorder approach, which dates back to May’s
seminal paper [47], has recently inspired a growing body
of work [3–6,23,48–51] and also received positive experi-
mental confirmations [31,52]. Previous works have explored
within this framework the effect of heterogeneous interac-
tions [3–6,47], demographic fluctuations [5,23], and spatial

FIG. 1. A metacommunity of seven species living on three
patches. Each individual interacts with the local community to which
it belongs possibly migrating to neighboring patches with diffusion
coefficient D.

structure [12–17], but the analysis we present here is, to our
knowledge, the first analytical study in which the three ingre-
dients are combined.

The model we focus on is a disordered Generalized Lotka
Volterra (GLV) system of metacommunity subject to demo-
graphic noise. For one community, the disordered GLV has
been shown to have a rich phase diagram, and to display
several dynamical regimes: single equilibrium, multistability,
and chaos [3–6,31]. We expect this complex behavior also in
the case of spatially structured ecosystems [12]. In this work,
we focus on the moderate-heterogeneity regime in which there
is a single stable equilibrium. This allows us to disentangle
the multistability due to the fragmentation of the basins of
attraction of the ecological dynamics at strong heterogene-
ity from the bistability of the feedback mechanism between
abundance and immigration. Our analysis is performed using
a mean-field approximation on the spatial fluctuations, which
is equivalent to considering that the community network is a
fully connected graph.

Note that because of their generality, Lotka-Volterra equa-
tions have been applied to a variety of fields besides their
original ecological interpretation, from immunology to eco-
nomics and game theory [53–56]. Our results could therefore
find applications beyond ecology, notably for the study of
global bistability and economic crashes.

II. THE MODEL

We consider a metacommunity of S species living on a
network of L discrete spatial locations, or patches. A graphical
representation of the system is given in Fig. 1 in the case
of a fully connected network of three patches. Each species
is characterized by its abundance in each patch, which is
modeled by a continuous variable, Ni,u, representing the total
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number of individuals divided by the typical size of the local
population, Ñtyp. The abundance of species i in patch u evolves
according to the stochastic differential equation:

Ṅi,u = r

k
Ni,u

⎛
⎝k − Ni,u −

∑
j

αu
i jNj,u

⎞
⎠

+ D

c

∑
v∈∂u

(Ni,v − Ni,u) + ηu
i (t )

√
Ni,u , (1)

which corresponds to Lotka-Volterra dynamics, with constant
growth rate r and carrying capacity k that are set to 1 through-
out. The notation ∂u indicates the set of patch neighbors of
u (from and to which species in the patch u can migrate).
The growth of each species is influenced by the abundance
of all the others through the interaction coefficients αu

i j : if
αu

i j is positive, species j inhibits the growth of species i in
patch u and vice versa. Positive αu

i j and αu
ji correspond to

two species competing for resources, whereas αu
i j and αu

ji both
negative correspond to mutualistic behavior. Predation leads
to opposite signs.

To model the heterogeneity in the interactions of species-
rich ecosystems, we follow [2,57] and consider the disordered
LV model. As already discussed in the Introduction, the
disorder approach has attracted recently a lot of atten-
tion [3–6,23,48,49] and also received positive experimental
confirmations [31,52]. In this framework, the interaction co-
efficients are random variables, with mean μ/S and variance
σ 2/S. They are independent in each patch except for αu

i j and
αu

ji, which have a correlation coefficient γ . In the following,
we will first focus on the symmetric interactions case (γ = 1),
and then show that a small asymmetry does not qualitatively
change the results. As the interactions between species can de-
pend on the environmental conditions (temperature, humidity,
resources availability, etc.) which differ in space, we consider
interaction matrices fluctuating from one patch to another, i.e.,
they are not identical in different patches, but corresponding
elements αu

i j and αv
i j have a correlation coefficient ρ [14,15].

We will restrict the choice of μ and σ to values for which
an isolated Lotka-Volterra community only displays a single
uninvadable equilibrium (the single equilibrium phase studied
in Ref. [57]). Without spatial heterogeneity, the transition
point is not modified by the introduction of a spatial struc-
ture [12], and spatial heterogeneity decreases the effective
complexity of the interaction network [35], favoring the single
equilibrium phase. Therefore, we also expect the metacommu-
nity to be in the single equilibrium phase for all the allowed
values of μ and σ . The effect of migration between patches in
the strong heterogeneity regime with nonsymmetric interac-
tions, in which a single community with fixed immigration
exhibits chaotic dynamics [3–6,31], was studied in [14,15]
in the absence of demographic noise. It leads to complex
dynamical behavior with long-lived persistent fluctuations.
Combining strong heterogeneity, demographic noise, and spa-
tial migration is a challenge left for future studies.

In the model defined by Eq. (1), individuals can migrate
on the patches network through diffusion, with a constant
diffusion coefficient D/c, where c is the connectivity (or num-
ber of connections per site) of the network. We assume the
network to be translationally invariant, therefore each site has

FIG. 2. Directed percolation on an array of seven sites. Each row
represents a different time step, green arrows indicate birth, gray
arrows death, and orange arrows survival.

the same connectivity. Migration is possible and equiprobable
from patch u to any of its c nearest neighbors v ∈ ∂u.

Each species is subject to a white demographic noise ηu
i ,

accounting for the stochasticity in birth and death events in
a continuum setting [5,23]. We follow Ito’s convention, ac-
cording to which fluctuations in birth and death at time t + dt
depend on the abundance at the previous time step. The noise
is uncorrelated and of constant amplitude across species and
patches: 〈

ηu
i (t )ηv

j (t ′)
〉 = 2T δi jδuvδ(t − t ′). (2)

The autocorrelation of the demographic noise defines the
noise strength T , which depends on the birth and death rates
and on the typical size of the local population; T scales as
T ∝ 1/Ñtyp [5,23]: the larger the local populations, the more
negligible are demographic fluctuations. In the γ = 1 case,
T can be interpreted as an effective temperature, as we shall
show later.

Some further insights into the effect of the demographic
noise can be obtained considering it in the absence of all the
other terms. In this case, an exact solution to the associated
Fokker-Planck equation is available, showing that starting
from any initial condition the population goes to 0 abundance
with some finite rate [58,59]. Therefore, also in the contin-
uous model, extinction is possible over finite times, and not
only asymptotically, as would be the case, for example, with
environmental noise.

The dynamics of species in the presence of birth and death
has important connections with the celebrated directed per-
colation problem studied in out-of-equilibrium physics and
statistical field theory [40]. Directed percolation is a model
of particles that hop on a network and are subjected to births
and deaths; a graphical illustration of the process can be found
in Fig. 2 for a one-dimensional network. Directed percolation
was originally introduced to model spreading phenomena,
from forest fires to epidemics [40]. In our case, the sites of
the network represent spatial locations, or patches, on which
(or from which) species can migrate; the particles indicate
which sites are colonized by species. At each time step the
particles can produce an offspring in a neighboring site, die,
or just survive. In our case, this corresponds to colonization
or extinction. Depending on the competition between death
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FIG. 3. Phase diagram for Directed Percolation in the mean-field
approximation: in green the active phase, in which at long times
there is a finite density of particles, in white the inactive phase, in
which all particles eventually die. D0(T ) indicates the transition line
(see Sec. III and Appendix F for details).

and birth rates, the activity can spread to the entire system
and lead to a finite density of particles (active, self-sustaining
state) or die out (absorbing, inactive state). Between these two
phases, there is a continuous phase transition, characterized
by universal critical behavior [40,60]. We show in Fig. 3 the
phase diagram in the mean-field approximation (discussed in
the next section). A direct link between DP and GLV is ob-
tained by coarse-graining [40,60]. In this way, the discrete DP
occupation variable becomes a continuous quantity that rep-
resents the mean occupation, the competition between birth
and death rates gives rise to a logistic growth, hopping is
replaced by diffusion, and the stochastic fluctuations generate
the demographic noise. This leads to a set of independent
GLV Eqs. (1) in the absence of interactions, one for each
species. Each equation corresponds to an independent directed
percolation process.

The directed percolation transition can therefore be inter-
preted as a transition between a self-sustained phase where
migration enables a finite abundance of species to persist, to
a regime, characteristic of small (or zero) dispersal, where
species go extinct due to demographic noise. The aim of
this work is to develop a theory for these phenomena for
species-rich ecosystems in the presence of heterogeneous
interactions. Upon increasing the number of species in the
pool and considering heterogeneous interactions, the set of
directed percolation processes is no longer independent, and
the complexity of the model increases considerably. In fact,
the system becomes equivalent to the collection of an infinite
number of directed percolation processes, coupled by ran-
dom interactions—an interesting and open statistical physics
problem.

III. METHODS

A. DMFT and coupled Directed Percolation processes

In this work, we aim to study systems in which both the
number of species and the number of patches are very large.
To obtain analytical results, we follow the statistical physics
“way” and take the limit of an infinite number of species and
an infinite number of patches. In this double limit (whose
order is irrelevant) the macroscopic properties of the system
do not depend on the particular realization of the demographic

noise and of the interactions: the macroscopic properties are
self-averaging in the jargon of disordered systems [46].

The large-S limit allows for an analytical treatment, as
the dynamics of the S interacting degrees of freedom can be
replaced by the effective dynamics for a single representative
species, through Dynamical Mean Field Theory (DMFT) [61].
The interaction effect with other species is captured by a
noise term, which can be seen as an environmental noise
(or a thermal bath) statistically defined in a self-consistent
way. The DMFT procedure is analogous to the one used to
derive Langevin’s equation from Newtonian dynamics [62],
with the difference that here the degrees of freedom that
are integrated out, giving rise to the noise, are equivalent to
the degree of freedom under consideration, thus allowing a
self-consistent closure of the equations of motion. DMFT is
a very powerful technique that has been employed in several
different contexts from quantum many-body systems to glassy
dynamics [63,64]. Thanks to DMFT, we can map an infinite
number of randomly coupled DP processes—a formidable
problem—into a single DP process with additional terms to be
determined self-consistently (a colored noise and a memory
term).

Our derivation follows the one developed in Ref. [61] for
LV models, and it can be found in Appendix A for generic val-
ues ρ of the spatial heterogeneity of the interactions. Here we
outline the main steps in the special case of patch-independent
interactions, ρ = 1. In the following, we are interested in the
steady states of the dynamics. In fact, we expect that after
a transient, the system will settle in a time translationally
invariant regime. For S → ∞, DMFT allows one to replace
the interaction term −∑

j αi jNj,u by a stochastic expression
that has the same statistical properties:

−μh − σ ξ̃ i
u(t ) + σ 2γ

∫ t

0

∑
v

Ruv (t, s)Ni
v (s)ds. (3)

Since this allows us to decouple different species, for simplic-
ity we will omit the species index i in the following. We now
discuss the different contributions. Note that in the following,
empirical averages over species will be denoted as E[·].

The first term represents the average interaction with all
other species. It is given by the product of the mean of the
interaction strength and the mean abundance, h = E[Nu], that
in the steady state does not depend on the patch u thanks to
translational invariance.

The second term represents the fluctuation of the interac-
tion with all other species. It is given by the product of the
standard deviation of the interaction coefficients and Gaus-
sian noise with zero mean and correlation matching the time
autocorrelation of the single species abundances:

〈ξ̃u(t )ξ̃v (s)〉 = E[Nu(t )Nv (s)] := Cu,v (t − s). (4)

The noise ξ̃u(t ) is multiplied by the abundance in the LV
equations. Henceforth we will call it environmental since its
effect is to add fluctuations to the carrying capacity. Since the
autocorrelation of the abundances generically decays to a pos-
itive plateau at large time separations [61], one can decompose
the environmental noise into a fluctuating component and a
static one. The former corresponds to the fluctuations due to
ecological dynamics for a given species. The latter is
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characteristic of a given species and fluctuates from species
to species [61]. We decompose the noise by rewriting
ξ̃u(t ) = z

√
C∞

d + ξu(t ), where C∞
d = limτ→∞ Cu,u(t, t + τ ) is

the value of the correlation function within the same patch
at infinite times, z is a static Gaussian variable with zero
mean and unit variance, which now plays the role of quenched
disorder, and ξu(t ) is a fluctuating noise whose covariance
vanishes at long times. Again z and C∞

d do not depend on the
patch u thanks to translational invariance.

To distinguish the roles of fluctuating and static noises in
the GLV equation, we introduce two kinds of averages: 〈·〉
indicates the average over the fluctuating noises ξ and η. It
is an average over the ecological dynamics, or by ergodicity,
over patches for a fixed species. In analogy with physical
systems, we call it thermal average. The overline · instead
stands for the average over the static field z; it corresponds
to averaging over species or over different instances of the
interaction matrix. Again in analogy with the physical system,
we call it quenched disorder average.

The last term in the dynamical mean-field treatment of
the interactions is due to a feedback mechanism: a fluctu-
ation of the abundance of species i influences species j,
which in turn influences species i. These contributions sum
up because of the correlation between αi j and its reciprocal
α ji, leading to the factor γ . This feedback mechanism (the
famous Onsager reaction in the spin-glass literature) generates
a memory term, containing the response function of the abun-
dance on patch u to a perturbation in the carrying capacity in
patch v:

Ru,v (t, s) = E

[
δNu(t )

δζv (s)

∣∣∣∣
ζ=0

]
. (5)

In the S → ∞ limit, there is convergence in law between
the statistics of the infinite number of randomly coupled DP
processes and the effective one [62,65], i.e., the dynamics of
a species satisfying the GLV equation (1) is equivalent to the
effective one of a single species living on the original spatial
network:

Ṅu = Nu

(
k − Nu − μh − σ

(
z
√

C∞
d + ξu

)

+ σ 2γ

∫ t

0

∑
v

Ruv (t, s)Nv (s)ds

)

+ D

c

∑
v∈∂u

(Nv − Nu) + ηu
√

Nu. (6)

The DMFT closure consists then in replacing the empirical
averages over species E[·] with the one with respect to the
effective single-species one. Because the effective process
itself depends on some averaged quantities, one ends up with
a self-consistent stochastic equation.

Equation (6) can also be interpreted as the Langevin equa-
tion associated with a Directed Percolation (DP) process, with
the addition of a memory term (that is absent in the special
case γ = 0) and environmental noise. The effect of the static
part of the environmental noise z is to change the control
parameter of the DP process, determining whether this is
subcritical or supercritical.

Interestingly, whereas a system of a few species interacting
and diffusing on a network was established to boil down to
a standard DP problem [11,13,38,39,66], the case of many
species is fundamentally different and belongs to a differ-
ent class. Indeed, a system of many species is equivalent to
a family of many DP processes, characterized by different
values of static and fluctuating noises and coupled through
the common self-consistently determined mean, correlation,
and response functions. Understanding the behavior of this
self-consistent DP problem is an open challenge. In this work,
we study whether the DP transition can fundamentally change
nature due to this self-consistent coupling. Even if the tran-
sition remained qualitatively DP-like (continuous and from
an absorbing state to a fluctuating one), critical properties
could change. In fact, although an environmental noise can be
shown to be an irrelevant perturbation of the associated field
theory [40], within DMFT the environmental noise inherits
the time dependence of the correlation function through the
self-consistency. It can therefore develop long-range correla-
tions in time at the critical point, possibly altering the critical
behavior and leading to a new universality class.

B. Symmetric interactions, mean-field approximation,
and mapping to a system in thermal equilibrium

Studying the coupled field theories (6) is a formidable
task. In the following, we simplify the problem by doing a
mean-field approximation, which allows us to obtain a general
theory independent of the underlying network of patches.

We replace the term D
c

∑
v∈∂u Nv by its thermal aver-

age. This amounts to D
c

∑
v∈∂u Nv → DN∗, where N∗ =

1
c

∑
v∈∂u〈Nv〉, and, using translation invariance, it simplifies

to 〈Nu〉 (which is time-independent since we are considering
steady states). This procedure corresponds to a mean-field ap-
proximation of the spatially dependent DMFT Eqs. (6). Such
a DMFT2 approximation becomes exact for a fully connected
network. In fact, in this case, taking the L → ∞ limit, the
empirical average of the abundances over the patches concen-
trates around the thermal average N∗ = 〈Nu〉. From now on,
we shall focus on this case.

By substituting D
c

∑
v∈∂u Nv with N∗ in Eq. (6), one obtains

an equation on Nu only, with an additional parameter to be
determined self-consistently. Note that N∗ is obtained by av-
eraging only over thermal fluctuations, and not over disorder:
therefore, it will have to be determined as a function of z. This
means that different species will have different immigration
rates (here, for simplicity, we are still focusing on the ρ = 1
case; generalizations will be discussed later).

This substitution allows us to decouple stochastic pro-
cesses for the abundance in different patches. Omitting for
simplicity the index u, we now obtain (for large times, i.e.,
in the steady state)

Ṅ = N

(
k − N − μh − σ z

√
C∞

d − σξ (t )

+ σ 2γ

(∫ t

0
Rd (t − s)N (s)ds + N∗

∫ t

0
R0(t − s)ds

))

+ D(N∗ − N ) + η(t )
√

N . (7)
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Since all patches are equivalent on a fully connected lat-
tice, the Ruv and Cuv matrices (of functions) only have two
independent elements: the diagonal ones, Rd and Cd , and
the off-diagonal ones, R0/L and C0 (see Appendix C for the
justification of the scaling with L of R0/L and C0).

In the case of symmetric interactions, γ = 1, one can show
(see Appendix B) that the self-consistent solution maps to a
thermal equilibrium process. In fact, one finds that the diago-
nal elements of the response and correlation functions obey a
fluctuation-dissipation relation:

Rd (τ ) = − 1

T

∂

∂τ
Cd (τ ). (8)

The memory term and ξ therefore play the role of a fric-
tion term and the noise associated with a colored thermal
bath at temperature T . The stochastic process maps then to
a generalized Langevin equation whose stationary probability
distribution is given by the Boltzmann distribution at temper-
ature T and with the effective Hamiltonian:

Heff =
(

1 − σ 2

T

(
C0

d − C∞
d

))N2

2
− (

k − D − μh

− z
√

C∞
d σ + σ 2N∗Rint

0

)
N + (T − DN∗) ln N, (9)

where C0
d is the equal-time correlation function, namely

the second moment of the abundances over disorder and
noise, 〈N2〉. The long-time limit of the correlation function,
C∞

d , represents instead the second moment of the thermal-
averaged abundances, 〈N〉2. Rint

0 is the integrated off-diagonal
response, which is the solution of the self-consistent equation
(see Appendix C):

Rint
0 = rd (z)

Dχ (z) + σ 2Rint
0 rd (z)

1 − [
Dχ (z) + σ 2Rint

0 rd (z)
] . (10)

χ (z) and rd (z) are the species-dependent response to a per-
turbation in the immigration rate or the carrying capacity,
respectively:

χ (z) = 〈N log N〉 − 〈N〉〈log N〉, (11)

rd (z) = 〈N2〉 − 〈N〉2. (12)

The self-consistent equations can be expressed as averages
with respect to the Boltzmann distribution:

N∗(z) = 〈N〉 =
∫∞

0 dNNe−βHeff∫∞
0 dNe−βHeff

, (13)

h = 〈N〉 =
∫

Dz

∫∞
0 dNNe−βHeff∫∞

0 dNe−βHeff
, (14)

C0
d = 〈N2〉 =

∫
Dz

∫∞
0 dNN2e−βHeff∫∞

0 dNe−βHeff
, (15)

C∞
d = 〈N〉2 =

∫
Dz

(∫∞
0 dNNe−βHeff∫∞

0 dNe−βHeff

)2

, (16)

and analogously for Rint
0 .

∫
Dz = ∫

dz√
2π

e−z2/2 indicates the
average over the Gaussian field.

These equations can be solved iteratively: starting from a
suitable initial condition for N∗(z), h, C0

d , C∞
d , and Rint

0 , one
updates their values according to Eqs. (13)–(16) until reaching
a fixed point. Because very large values of z are exponentially
suppressed by the Gaussian distribution, it is sufficient to
determine N∗(z) for z of O(1).

In conclusion, within the DMFT2 approximation and for
the symmetric case, the formidable self-consistent stochastic
equations (6) can be analyzed by studying a set of static
self-consistent equations on four parameters h,C0

d ,C∞
d , Rint

0
and one function N∗(z). Solving these equations (see the next
section) allows us to obtain a general picture of the inter-
play between migration and demographic noise for spatially
extended metacommunities. To show that such a picture is
valid beyond the simplified case we focus on, we have also
considered several extensions that we shall present below.

C. Extensions

1. Spatial heterogeneity

In the case of a generic value of the spatial heterogeneity
of the interactions ρ, an analogous procedure can be imple-
mented, with some important differences. The static disorder
is now a patch-dependent and correlated variable, which we
can decompose as ρ

√
C∞

0 z + √
C∞

d − ρ2C∞
0 wu, where z is

constant and wu is independent across locations, and C∞
d and

C∞
0 are the infinite time correlation function of the abundance

on the same patch and on different patches, which coincide for
ρ = 1. Averaging the abundance across patches to obtain the
immigration rate requires an additional step, i.e., averaging
also over wu. The solution of the self-consistent equations,
albeit conceptually analogous to the ρ = 1 case, is much more
numerically challenging for generic values of ρ because of the
need to integrate over two disorder fields, z and wu. For this
reason, we focused on the two extreme cases, ρ = 1 and 0,
in which only one of the two disorder fields is present. The
results are qualitatively similar, so we expect our conclusions
to hold also for intermediate values of ρ. We confirm it by
numerical simulations at 0 < ρ < 1.

2. Asymmetric interactions

The mapping to an equilibrium distribution requires
symmetry in the interactions: nonsymmetric interactions cor-
respond to nonconservative forces, which explicitly break
time reversal and lead to nonequilibrium steady states. To
show that our results hold also in this case, at least if the
asymmetry is not too strong, we have analyzed the case of
small asymmetry in perturbation theory. The analysis of the
Martin–Siggia–Rose–De Dominicis–Janssen action [67–70]
allows us to conclude that a small degree of asymmetry
(γ = 1 − ε, ε � 1) does not affect qualitatively the results
we shall present in the next section, therefore establishing
that our findings for the symmetric case also holds for small
asymmetry (see Appendix D for more details). We have also
confirmed this result by numerical simulations for γ < 1.

IV. RESULTS

In the following, we present our analytical results focusing
on ecosystems with parameters σ = 0.5 and μ = 1, hence a
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FIG. 4. Average abundance 〈N〉 and diversity φ as a function of
the diffusion constant D for T = 0.25 (top) and as a function of
temperature (strength of demographic noise) for D = 0.1 (bottom).
The dashed lines represent the T = 0 well-mixed results. μ = 1,
σ = 0.5.

case in which interactions are in average competitive for the
pool of species.

A. Characterization of the self-sustained phase

By solving the DMFT equations described in the previ-
ous section, one finds that when the diffusion constant is
large enough, the system is in a self-sustained phase (active
phase in the directed percolation jargon) in which a nonzero
abundance is maintained despite the presence of demographic
fluctuations. In this regime, although some species go globally
extinct on all patches, others survive thanks to the migra-
tion from neighboring patches. This mechanism is sufficient
to prevent extinctions due to demographic stochasticity and
leads to a self-sustained metacommunity.

In the following, we discuss the salient properties of this
phase, focusing on two ecologically relevant observables: the
average abundance, h = 〈N〉, and the ecosystem diversity φ,
defined as the fraction of species that are not globally ex-
tinct, i.e., that have nonzero abundance in at least one patch.
At stationarity, we can compute the ecosystem diversity as
φ = θ (〈N〉).

As expected, demographic noise is detrimental to survival:
the fraction of surviving species, or diversity, and the average
abundance decrease with the strength of demographic fluc-
tuations; see the bottom panels of Fig. 4. On the contrary,
dispersal is beneficial, as shown in the top panels of Fig. 4.
The behavior of the diversity for species-rich ecosystems with
heterogeneous interactions in the presence of demographic
noise is a novel result of our approach: in the case of fixed
external immigration, previously often considered in the lit-
erature, all species are kept alive by the immigration, albeit
some at very small abundances, it is therefore not possible
to rigorously define the ecosystem diversity [32]. We find
that the species that go extinct are those whose growth is on
average more affected by the interactions with the rest of the
ecosystem, as quantified by the static part of the environmen-
tal noise zσ

√
q0, which renormalizes the carrying capacity

of a species. For ρ = 1, if z is larger than a critical value

z∗, the corresponding species goes extinct (for z > z∗, the
renormalized carrying capacity is negative). This is true also
for smaller values of ρ (Appendix E). The case of independent
interactions across patches (ρ = 0) is special, for all species
are globally equivalent so that they can only be all surviving or
all extinct. In general, all species have some patches in which
they are very abundant. Immigrants from these patches can
then save them from extinction in the rest of the system. This
favorable role of dispersal through which spatial heterogene-
ity enhances diversity has been discussed in [9,14,35,36].

The limits D → ∞ and T → 0 can be mapped to the
well-mixed case. For D → ∞, the timescale of spatial mix-
ing is much smaller than all other timescales, therefore the
abundances of each species are equal on all sites. The absence
of spatial fluctuations allows one to write an evolution equa-
tion involving only the space-averaged abundances, which
corresponds to an effective single local community without
demographic fluctuations with interactions given by the spa-
tial average of the original ones. The well-mixed result is also
recovered (for ρ = 1) in the T → 0 limit (see the two bottom
panels of Fig. 4): because the abundances do not fluctuate,
there is no migration flux between patches, and the diffusion
term plays no role.

As for the distribution of the abundances, we find an expo-
nential decay (see Appendix G), as is the case in other models
with random fully connected interactions [3–5,71].

B. Transition to complete extinction: Emergence
of a discontinuous transition at low dispersal

When demographic fluctuations are sufficiently strong, de-
creasing the diffusion constant leads to a continuous phase
transition from an active phase in which some species are
able to self-sustain, to an inactive phase in which they are all
extinct. The critical value of the diffusion constant is the same
as would be obtained in the absence of interactions, where
the system directly maps to directed percolation, or in the
case of constant interactions [16]; see Fig. 2 and Appendix F.
This is to be expected: upon approaching the transition, the
abundances tend to zero, and therefore the interactions, which
have a quadratic dependence on the abundances, become ir-
relevant. The critical exponents indeed match the ones falling
in the Directed Percolation universality class; in particular,
the abundance goes to zero linearly [Fig. 5(c)]. Interestingly,
approaching the transition the diversity does not go to zero
and instead tends to a finite value [Fig. 5(e)]. The average
abundance goes to zero not because more and more species
are going extinct, but because all surviving species are simul-
taneously decreasing their abundances. This homogenization
in the behavior of species is yet another consequence of the
irrelevance of the interactions, the only trait distinguishing
one species from another in our model.

At smaller demographic noise this picture changes drasti-
cally and interactions play a major role, as shown in the phase
diagram in Fig. 5(a). The ecosystem is able to self-sustain
at values of the diffusion constant for which in the absence
of interactions it would be in the inactive phase. Upon fur-
ther lowering D, we encounter a discontinuous transition at
which all species abruptly go extinct, i.e., species abundances
suddenly jump to zero. Before the discontinuous transition,

013014-7



GARCIA LORENZANA, ALTIERI, AND BIROLI PRX LIFE 2, 013014 (2024)

FIG. 5. (a) The phase diagram for constant interactions across patches (ρ = 1). The continuous line indicates the continuous transition, and
the dotted and dashed lines are the limits of the metastability region, highlighted in gray. At the two limits of the metastability region, one of
the two solutions disappears and we have a discontinuous transition. The arrows indicate the parameter range in the right figures. The average
abundance h = 〈N〉 and the diversity φ = θ (〈N〉) as a function of D across a discontinuous (b), (d) or continuous (c), (e) transition. In subfigure
(c) the arrows indicate the direction of the hysteresis cycle: with decreasing D (starting from high values), the ecosystem would follow the
finite solution until the discontinuous transition, where the abundances would jump to zero. If we now increase D, it would follow the zero
solution until this becomes unstable at D0(T ). Gray dashed lines indicate the value of D at which a single species would go (continuously)
extinct. Note that we have divided D by the critical value of the diffusion constant for Directed Percolation D0(T ) in all plots to emphasize the
effect of interactions on the already known case. Because D0(T ) vanishes exponentially for T → 0 (Appendix F), the metastability region has
a vanishing width in this limit and the system is always in the survival phase. μ = 1, σ = 0.5.

there is an extended region in which the ecosystem is
metastable [in gray in Fig. 5(a)]: in this regime, the system
reaches an equilibrium with high or low abundances depend-
ing on the initial conditions. It exhibits hysteresis [Fig. 5(b)].

It was recently shown that a metacommunity subject to de-
mographic noise and constant mutualistic interactions exhibits
a similar discontinuous phase transition [45]. The authors
of [45] also performed numerical simulations with random
(patch-independent) interactions, showing that the surviv-
ing species have more mutualistic interactions than the total
species pool. We find that a similar mechanism is at play in
our case: it is an emergent phenomenon due to ecological
dynamics which is present even though interactions are not
on average mutualistic (in fact they are competitive, μ = 1).
Because of the symmetry in the interaction network, species
that interact more competitively are more negatively affected
by the interactions with the rest of the ecosystem, and will
hence be more easily driven to extinction. This leads to
a decrease of the mean of the interaction matrix restricted
to surviving species, which we have estimated in the case
ρ = 1 using a result obtained in [72] (Appendix I). Another
quantity of interest is the average interaction term for nonex-

tinct species, Int
+ = ∑

j αi j〈Nj〉+ (the + indicates that the
average is carried out only over nonextinct species, 〈Ni〉 > 0),
which we find to be negative in the entire metastability region
[Fig. 6(a)]. For a species to survive in conditions in which
without interactions it would go extinct, we need the interac-
tion term (that appears summed to the carrying capacity with
a negative sign) to give on average a negative contribution.

We indeed find numerically that only species with negative
interaction terms manage to survive [Fig. 6(b)], thus leading
to an enhancement of mutualism between surviving species—
see Appendix I for details.

FIG. 6. Thermal averaged interaction term, Int = 〈∑ j αi jNj〉,
averaged over nonextinct species (indicated by an overline with a
+ superscript), for two temperatures corresponding to the discon-
tinuous regime. Left: analytical results for T = 0.4, ρ = 1 [as in
Figs. 5(b)–5(d)]. Int+ is negative in the metastability region; it jumps
to zero when all species go extinct at the discontinuous transi-
tion. Right: Distribution of the thermal averaged interaction terms
in a numerical simulation in the metastability region [T = 0.18,
D/D0(T ) = 0.8, S = 200, L = 400, tmax = 500, averaged over two
runs]. Nonextinct species are highlighted in orange; only species
with negative (or close to zero) interaction terms manage to survive.
Averaging only over nonextinct species (orange dotted line) leads to
a significantly lower (more mutualistic) value than averaging over all
species (blue dotted line). μ = 1, σ = 0.5.
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FIG. 7. The phase diagram for independent interactions across
patches (ρ = 0). The continuous line indicates the continuous
transition; the dotted and dashed lines indicate the limits of the
metastability region, highlighted in gray. At the two limits of the
metastability region, one of the two solutions disappears and we have
a discontinuous transition. μ = 1, σ = 0.5.

In Fig. 7 we also show the phase diagram in the case of
independent (ρ = 0) interactions across patches, to be com-
pared to the one of Fig. 5(a) corresponding to constant (ρ = 1)
interactions across patches. In both cases, the upper limit of
the metastability region is bounded from below by the critical
value of the diffusion constant in the absence of interactions,
D0(T ). For ρ = 1 these two lines coincide, whereas for ρ = 0
the metastability region extends above D0(T ) in some range
of temperature. In the part of the metastability region above
D0(T ), the two metastable solutions are both finite: one is
of order 1 and the other is proportional to the distance from
D0(T ); the two solutions coalesce at the tip of the metastabil-
ity region.

One can also analytically show that the phase diagrams
remains qualitatively unchanged considering a small asymme-
try in the interactions (γ = 1 − ε, ε � 1); see Appendix D.
Numerical simulations presented in the next sections confirm
this result.

V. ASSESSING THE GENERALITY OF THE SCENARIO

To confirm the generality of our results, we now consider
different variations of the model studied in the previous sec-
tion. The aim is to show that our results hold in a broader
setting. We shall be particularly interested in considering the
case of a large but finite number of species, a large but finite
number of patches, a small but finite asymmetry of interac-
tions, as well as intermediate values of ρ. All these cases could
in principle be studied analytically, but they would require
very involved (in some cases very challenging) analysis. We
therefore turn to direct numerical simulations of the general-
ized Lotka-Volterra equation (1), and we show that the results
agree with and extend the theory presented in the previous
section. The details on the numerical scheme implemented for
the simulation can be found in Appendix J. These simulations
are challenging as we are interested in considering both a large
number of species and a large number of patches. Moreover,
lowering the temperature results in a strong slowdown of the
dynamics (Appendix K), leading to additional computational

(a) (b)

FIG. 8. Average abundance 〈N〉 as a function of the diffusion
constant D for (a) T = 0.18 and (b) T = 0.8. Green and red dots
indicate the initial conditions of order 1 and of order 0.1. The dashed
line indicates the analytical prediction for the critical value of the
diffusion constant for the continuous transition. μ = 1, σ = 0.5,
S = 200, L = 400, tmax = 500 (left) and 200 (right).

costs. The slowdown of the dynamics is much stronger in the
presence of heterogeneity in the interactions than with zero or
constant ones.

A. Finite number of species and finite number of patches

Generically, for moderate system sizes (S < 100 and
L < 100) we find strong fluctuations due to the quenched
disorder in the interaction matrix, and quantitative finite-size
effects compared to the asymptotic S, L → ∞ solution, in par-
ticular for ρ = 1 [for ρ = 0 each patch is characterized by an
independent realization of the interaction matrix, thus leading
to a faster (self-averaging) convergence of the system to its
disorder average]. For larger values of S and L, e.g., S = 200,
L = 400, fluctuations and finite-size effects are limited and
one finds results that are both qualitative and quantitative in
agreement with the analytical solution.

In Fig. 8 we show the behavior of the average abundance as
a function of the diffusion constant for two different values of
the temperature, starting from two different initial conditions.
To probe the existence of hysteresis, and therefore a discon-
tinuous transition and metastability, we numerically simulate
systems with different initial conditions. For the green curves,
the initial abundances were uniformly sampled between 0 and
1, for the red curves between 0 and 0.1. The former should
therefore be more prone to evolve toward the self-sustained
solution, if it exists, whereas the latter is prone to evolve
toward the “all-extinct” solution.

We find that indeed at higher temperatures, T = 0.8,
in agreement with the analytics and the phase diagram in
Fig. 5(a), the final abundances vary continuously when vary-
ing the diffusion constant, and they converge to the same value
regardless of the initial condition. The value of D at which the
final abundances significantly depart from zero quantitatively
matches the analytical result for the critical value of the diffu-
sion constant at the continuous transition.

Instead, at T = 0.18 the final abundances show a strong
dependence on the initial condition in an extended interval
of diffusion strengths; for a given initial condition, the final
abundance exhibits a very abrupt change [73]. Interestingly,
the dynamics strongly slows down in this regime, in particular
for the decay of the abundances from large initial conditions.
In fact, this process occurs via the rare extinctions of species
that are asymptotically not able to self-sustain but can persist
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(a) (b)

FIG. 9. Average abundance 〈N〉 as a function of the diffusion
constant D for (a) T = 0.18 and (b) T = 0.8 with some spatial hetero-
geneity (ρ = 0.9) and some asymmetry in the interactions (γ = 0.9).
Green and red lines indicate the initial conditions of order 1 and of
order 0.1, lighter dots show the average abundance at intermediate
times (50% and 75% of tmax). μ = 1, σ = 0.5, S = 200, L = 400,
tmax = 500 (left) and 200 (right).

for very long times, especially in this regime in which demo-
graphic fluctuations are weak. The strong dependence on the
initial conditions cannot be explained just by the slowdown
of the dynamics because the abundances with different ini-
tial conditions evolve in opposite directions (see Fig. 8 and
Appendix K).

The heterogeneity in the interaction network is essential
to allow the ecosystem to self-sustain below the single DP
critical point: indeed if we consider the same parameters but
take σ = 0, all species go extinct below D0(T ), and there is
no strong dependence on the initial conditions (Appendix K).

B. Asymmetric interactions and partial
correlation between patches

We are now interested in focusing on cases in which the
interactions between species are not fully symmetric, and the
interaction matrices are partially correlated between patches,
i.e., 0 < ρ < 1.

As we have already discussed, we have analytically es-
tablished that a very small asymmetry is not a singular
perturbation. Thus, our results should qualitatively hold also
for a finite, at least not too large, asymmetry.

To confirm this finding and study intermediate values of
ρ (besides ρ = 0, 1 considered analytically), we performed
simulations with spatial heterogeneity ρ = 0.9 and asymme-
try in the interactions γ = 0.9, and as before for L = 400,
S = 200. Also in this case at T = 0.8 we find a continuous
transition and no strong dependence on the initial conditions,
while at T = 0.18 we find a discontinuous transition and a
hysteresis region (Fig. 9) [74]. Although the curves quanti-
tatively change with respect to their γ = ρ = 1 counterparts,
as expected, the results and in particular the existence of a
discontinuous transition do remain qualitatively unaltered.

In conclusion, combining all these numerical tests, we con-
clude that the scenario obtained from the analytical solution is
robust and holds broadly. We will come back to this point in
the Conclusion to suggest other extensions and tests.

VI. PRECURSOR OF THE INSTABILITY
TOWARD EXTINCTION

In the previous section, we have shown that dispersal can
rescue complex and large ecosystems from extinction due to

FIG. 10. Average abundance and its response to a perturbation
of the carrying capacity k at T = 0.153 for ρ = 0 approaching the
instability of the self-sustained phase. μ = 1, σ = 0.5.

demographic noise. Depending on the strength of the demo-
graphic noise, the transition from the self-sustained to the
extinct phase can be either continuous or discontinuous. The
latter takes place for low demographic noise and low dis-
persal. In this regime, we have found that the transition is
accompanied by a metastable regime and hysteresis. Such a
transition is what is called in ecology, and in environmental
and social sciences, a tipping point or regime shift [41,75],
and in physics it is called a spinodal. Tipping points are often
catastrophic events, as the abrupt rapid shifts almost always
lead to negative consequences and a less favorable state of the
system. Our case is no exception, as the system’s transition
is from a self-sustained state with high diversity to one in
which all species are extinct. As was done for several other
tipping points [76,77], it is therefore important to find early
signs or precursors that can allow one to detect the closeness
of the system to the tipping point before the catastrophic shift
actually takes place.

In our case, following intuition that comes from the physics
of spinodal points, we focus on responses to perturbations as a
probe of closeness to the tipping point. We can show analyti-
cally (see Appendix H) that the instability of the self-sustained
state is accompanied by a diverging response to perturbations.
This phenomenon is strongly linked to the saddle-node bifur-
cation of the mean-field equations that governs the transition.

In particular, we have studied the change of the average
abundance due to a change in the carrying capacity. Such
a response, which can be measured in controlled labora-
tory experiments, does diverge approaching the discontinuous
transition; see Fig. 10 for the ρ = 0 case. A similar behavior is
expected for generic values of ρ. This probe can therefore be
used as an early warning signal of the proximity to the tipping
point of the self-sustained phase. In natural ecosystems, where
measuring responses to perturbation can be challenging, one
could instead monitor the long-term fluctuations of average
abundance due to environmental noise affecting the carry-
ing capacity on a long time. This would be a proxy for the
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response proposed above (it is important to focus on long
times as all the processes at play are slow).

VII. CONCLUSIONS

We uncovered a rich phase diagram for many-species
Lotka-Volterra metacommunities subject to heterogeneous
symmetric interactions, demographic noise, and diffusion. If
the demographic fluctuations are too strong, they drive all
species to extinctions, but when the diffusion constant is large
enough these extinctions can be compensated by recoloniza-
tions from neighboring sites, and the ecosystem is able to
self-sustain at finite abundance and diversity. The system ex-
hibits a phase transition between an extinction and a survival
phase. The transition can be either continuous or discontin-
uous, depending on whether the behavior of the system is
dominated by the demographic fluctuations or the heteroge-
neous interaction network.

When the demographic fluctuations are strong, the tran-
sition is continuous and interactions play a secondary role.
In fact, the transition is completely analogous to what one
would have in the absence of the interactions (even the critical
values of the diffusion constant coincide). This is because
when the abundances tend to zero, the interactions become
subdominant and the system falls in the standard Directed
Percolation universality class.

The situation is drastically different at lower demographic
noise. In this case, the transition becomes discontinuous and
the system exhibits novel features, which are a signature of
the complexity of the ecosystem and the major role played by
the interactions. There is an extended range of parameters in
which without interactions, i.e., for single species, the system
would be driven to extinction, but the metacommunity is in-
stead able to self-sustain at finite abundances. This is possible
because strongly competing species are eliminated from the
community, while surviving species cooperate to self-sustain
in such harsh conditions. For small demographic noise and
lowering the diffusion constant, the ecosystem reaches a tip-
ping point at which all surviving species go extinct; close to
this point the ecosystem is subject to collapses upon small per-
turbations, and its dynamics exhibits hysteresis. We therefore
find that mutualism naturally emerges from an (on average)
competitive pool of species when conditions become harsher.
This has a double effect: it allows the ecosystem to survive in
conditions in which all species in isolation would go extinct,
but it also makes it fragile to perturbations. In this regime, it
is not possible to predict the vicinity of the catastrophic shift
of the ecosystem by looking at the average abundance. As an
early warning sign, we propose to monitor the response of the
system to perturbations. We have shown that this is a suitable
probe, as it diverges approaching the discontinuous transition.

We confirm and complement our analytical approach with
numerical simulations, which show that our results are quite

robust to modifications of the model, in particular to the in-
troduction of a small asymmetry in the interactions, to various
degrees of correlation of the interaction network between dif-
ferent spatial locations, and for a system with a finite number
of species and patches.

There are several directions that warrant future investiga-
tions. We focused on a fully connected spatial system, which
provides a mean-field analysis for generic spatial lattices. On
the other hand, our DMFT treatment of the interactions is
directly generalizable to any other spatial network, including
finite-dimensional ones. It would be very interesting to study
cases in which the patches are located in a finite-dimensional
lattice or on random structures. In particular, it would be
interesting to find out (1) whether the discontinuous transition
is also present in this case or if finite-dimensional fluctuations
destroy the metastable region, and (2) whether the contin-
uous transition can still be described in terms of directed
percolation, or if interactions, although secondary, can alter its
universality class. It would also be worth analyzing stronger
asymmetries in the interactions, e.g., lowering the value of
γ . We expect that a significant positive correlation between
reciprocal interactions is needed to induce metastability. This
ensures that species that interact more competitively are also
more negatively affected by the interactions with the rest of
the ecosystem and hence go extinct, thus leading to mutualism
for the surviving species.

Finally, the species-rich LV model with heterogeneous and
strong interactions displays multiple equilibria and chaotic
dynamics [2–5]. The possibility of different patches to con-
verge to different stationary states could strongly modify the
behavior of the system, in particular allowing the system to
experience higher values of global diversity, possibly violating
May’s bound [47].

Note added. During the preparation of this manuscript,
we became aware of the work of Denk and Hallatscheck on
tipping points in mutualistic Lotka-Volterra communities [45].
Their results are complementary and agree with ours.
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APPENDIX A: DMFT DERIVATION

Here we outline the derivation, adapted from Ref. [61],
of the Dynamical Mean Field Theory for our system, for a
generic value of the spatial correlation of the interactions ρ.

We consider S species, indexed by i = 1, . . . , S, and their Lotka-Volterra dynamics,

Ṅi,u = Ni,u

⎛
⎝1 − Ni,u −

∑
j

αu
i jNj,u + ζi,u

⎞
⎠ + D

(
1

c

∑
v∈∂u

Ni,v − Ni,u

)
+ ηu

i (t )
√

Ni,u + λi,u, (A1)
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to which we have added a perturbation to the carrying capacity ζi,u and an external immigration λi,u, which will be taken to be
zero at the end of the computation. These equations [for a given value of the ηu

i (t )] define the trajectories Ni,u(t ). We add a new
species, i = 0, to the system, and we draw its interactions and initial conditions independently from the rest of the system and
with the same statistics. At large S, thanks to the scaling of the interactions, the presence of a new species is a small perturbation
to the system, so that the trajectories of the other S species will only be slightly modified. We consider their linear response:

δNi,u(t ) =
∑

v∈∂u, j

∫ t

0

δNi,u(t )

δζ j,v (t ′)
[−αv

j0N0,v (t ′)
]
dt ′ =

∑
v∈∂u,i

∫ t

0
Ru,v

i, j (t, t ′)
[−αv

j0N0,v (t ′)
]
dt ′. (A2)

We have introduced the response function Ru,v
i, j (t, t ′) of the abundance of species i in patch u at time t to a variation in the carrying

capacity of species j in patch v at time t ′.
The dynamics of species 0 will depend on these new trajectories:

Ṅ0,u = N0,u

(
1 − N0,u −

∑
i

αu
0i

(
N0

i,u + δNi,u
)) + D

(
1

c

∑
v∈∂u

N0,v − N0,u

)
+ η0,u(t )

√
N0,u. (A3)

Because the correlations between interaction coefficients in any two patches are the same, these Gaussian variables can
generically be decomposed into a common random contribution, identical in all patches and proportional to the correlation
ρ, and one independent in different patches, proportional to

√
1 − ρ2. We thus introduce the matrix ai, j and au

i, j such that

αu
i, j = μ/S + σ (ρai, j +

√
1 − ρ2au

i, j ), E[ai, j] = E[au
i, j] = 0, E[a2

i, j] = E[au
i, j

2] = 1/S, E[ai, ja j,i] = E[au
i, ja

u
j,i] = γ /S, and all

other correlations are 0. We can rewrite the interaction term as

−
∑

i

α0i
(
N0

i,u + δNi,u
) = −

∑
i

[
μ/S + σ

(
ρa0i +

√
1 − ρ2au

0i

)]
N0

i,u +
∑
i, j

[
μ/S + σ

(
ρai0 +

√
1 − ρ2au

i0

)]

× [
μ/S + σ

(
ρa0 j +

√
1 − ρ2au

0 j

)]∑
v∈∂u

∫ t

0
Ru,v

i, j (t, t ′)N0,v (t ′)dt ′. (A4)

We want to describe its statistical properties in the limit S → ∞. The response function Ru,v
i, j (t, t ′) is defined on the

unperturbed trajectories, and is therefore uncorrelated from the interactions coefficients with species 0. Ru,v
i, j (t, t ′) ∼ 1/

√
S for

i = j [61], so that the off-diagonal terms can be neglected. Thanks to the central limit theorem,
∑

j a0 ja j0Ru,v
j, j (t, t ′) will converge

to its average:

∑
j

a0 ja j0Ru,v
j, j (t, t ′) → SE[a0 ja j0]E

[
Ru,v

j, j (t, t ′)
] = γE

[
Ru,v

j, j (t, t ′)
]
. (A5)

By similarly evaluating all terms in (A4), we obtain

−
∑

j

α0 j
(
N0

j,u + δNj,u
) → −μE

[
N0

j,u

] − σρξ̃u(t ) − σ
√

1 − ρ2ψ̃u(t ) + σ 2ρ2γ
∑
v∈∂u

∫ t

0
E
[
Ru,v

j, j (t, t ′)
]
N0,v (t ′)dt ′

+ σ 2(1 − ρ2)γ
∫ t

0
E
[
Ru,u

j, j (t, t ′)
]
N0,u(t ′)dt ′, (A6)

where ξ̃u(t ) and ψ̃u(t ) are Gaussian fields with zero mean and covariance E[ξ̃u(t )ξ̃v (t ′)] = E[N0
j,u(t )N0

j,v (t ′)], E[ψ̃u(t )ψ̃v (t ′)] =
δuvE[N0

j,u(t )N0
j,u(t ′)]. Note that ξ̃u and the first integral of (A6) derive from the component of the interactions constant across

patches, ai j , as we can see from the ρ-dependent prefactors, and they therefore couple different patches. ψ̃u and the second
integral of (A6) derive instead from the component of the interactions independent across patches, au

i j , and therefore they
represent diagonal correlations and responses. Plugging this expression in the dynamical equation for species 0, we obtain

Ṅ0,u = N0,u

(
1 − N0,u − μE

[
N0

j,u

] − σρξ̃u(t ) − σ
√

1 − ρ2ψ̃u(t ) + σ 2ρ2γ
∑
v∈∂u

∫ t

0
E
[
Ru,v

j, j (t, t ′)
]
N0,v (t ′)dt ′

+ σ 2(1 − ρ2)γ
∫ t

0
E
[
Ru,u

j, j (t, t ′)
]
N0,u(t ′)dt ′

)
+ D

(
1

c

∑
v∈∂u

N0,v − N0,u

)
+ η0,u(t )

√
N0,u. (A7)
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Species 0 is statistically equivalent to all the others, therefore we can replace the averages over the S original species with
averages with respect to this new dynamics for a single species, obtaining some self-consistent equations:

Ṅu = Nu

(
1 − Nu − μhu − σρξ̃u(t ) − σ

√
1 − ρ2ψ̃u(t ) + σ 2ρ2γ

∫ t

0

∑
v∈∂u

Ruv (t, s)Nv (s)ds (A8)

+ σ 2(1 − ρ2)γ
∫ t

0
Ruu(t, s)Nu(s)ds

)
+ D

(
1

c

∑
v∈∂u

Nv − Nu

)
+ ηu(t )

√
Nu, (A9)

〈ξ̃u(t )ξ̃v (s)〉 = Cuv (t − s) = E[Nu(t )Nv (s)], (A10)

〈ψ̃u(t )ψ̃v (s)〉 = δuvCuu(t − s), (A11)

Ruv (t, s) = E

[
δNu(t )

δζv (s)

∣∣∣∣
ζ=0

]
, (A12)

hu = E[Nu]. (A13)

Since species have been effectively decoupled, we can sup-
press the species index.

In the single equilibrium phase, we expect the process
to reach a time translation invariant regime, in which the
one-time averages are time-independent, and two-times ob-
servables only depend on the times difference. This was
shown in [5] for a single community with demographic noise
and fixed immigration, and it is known to be the case for Di-
rected Percolation [40] and in a many-species metacommunity
with constant interactions [16]. It is also confirmed by our
numerical results, which show a quick relaxation of one-time
observables to an asymptotic value (see Appendix K), at least
away from phase transitions. Since the autocorrelation of the
abundance of one species does not tend to zero at large times,
we can decompose ξu and ψu into a constant and a fluctuating
component:

ξ̃u(t ) = ξ̂u + ξu(t ), (A14)

ψ̃u(t ) = ψ̂u + ψu(t ), (A15)

where ξ̂u and ψ̂u are (time-independent) Gaussian variables
with zero mean and correlations limτ→∞ Cuv (t, t + τ ) = C∞

uv

and δuvC∞
uu , and the autocorrelation of ξu and ψu goes to zero

at long times. Averaging over ξu, ψu, and η at fixed ξ̂u and
ψ̂u corresponds to performing a time-average for one species
in one patch; averaging also over ψ̂u and ξ̂u corresponds to
averaging over patches and species. In this sense, ξ̂u and ψ̂u

play the role of the quenched disorder, which was previously
represented by the interaction matrix αu

i j . We will refer to the

average over ξ and η at fixed ξ̂u and ψ̂u as thermal average

and indicate it with brackets, and to the average over ξ̂u and
ψ̂u as disorder average and indicate it with an overline.

While the derivation is so far valid for any spatial network,
we will now restrict ourselves to a fully connected network, in
which the empirical average over neighbors can be replaced
by its thermal average. In the large-L limit, the connected
correlation over thermal fluctuations between Nu and Nv is
subdominant, so that ξu and ξv become independent. A pertur-
bation in patch v influences the abundance in patch u through
the diffusion term, which in a fully connected network is of
order 1/L, therefore Ruv for u = v scales as 1/L, whereas Ruu

is of order 1. Since all patches are equivalent, the elements of
the Ruv matrix can only take two values:

Ruu = Rd (A16)

Ruv = R0/L, u = v. (A17)

The same is true for Cuv:

C∞
uu = C∞

d , (A18)

C∞
uv = C∞

0 , u = v. (A19)

We separate ξ̂u in a patch-independent and a patch-dependent
part: ξ̂u = z

√
C∞

0 + wu
√

C∞
d − C∞

0 . We call patch disorder
average the average over wu and ψ̂u, and species disorder
average the average over z. 1

L

∑
v Nv concentrates around

its average over thermal fluctuations and patch disorder N∗,
which will be a function of the static Gaussian field z. Substi-
tuting in the dynamical equation and using time translational

invariance, we obtain

Ṅ = N
[
k − N − μh − σ

(
ρ
√

C∞
0 z + ρ

√
C∞

d − C∞
0 w +

√
1 − ρ2

√
C∞

d ψ̂ + ρξ +
√

1 − ρ2ψ
)]

+ Nσ 2γ

(
ρ2

∫ t

0
Rd (t − s)N (s)ds + ρ2

∫ t

0
R0(t − s)N∗(s)ds + (1 − ρ2)

∫ t

0
Rd (t − s)N (s)ds

)
+ D(N∗ − N ) + η(t )

√
N
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= N
[
k − N − μh − σ

(
ρ
√

C∞
0 z +

√
C∞

d − ρ2C∞
0 w + ξ

)] + Nσ 2γ

(∫ t

0
Rd (t − s)N (s)ds + ρ2Rint

0 N∗
)

+ D(N∗ − N ) + η(t )
√

N, (A20)

where we have summed the random variables that had the same behavior of the correlations (w and ψ̂ , ξ and ψ), and

Rint
0 =

∫ ∞

0
dτR0(τ ). (A21)

The equations simplify in the extreme cases ρ = 1 and 0, because only one of the components of the static part of the disorder
is present, either w or z. For ρ = 1, C∞

d = C∞
0 . For ρ = 0, N∗ coincides with h, so that we have one less self-consistent equation,

and R0 is not present; these two facts greatly simplify the numerical solution of the equations.

APPENDIX B: STATIONARY PROBABILITY DISTRIBUTION IN THE SYMMETRIC CASE

In the case of symmetric interactions (γ = 1), in the single equilibrium phase, the system relaxes to equilibrium and it verifies
the Fluctuation-Dissipation Theorem (FDT) [78]:

Rd (τ ) = − 1

T

dC(τ )

dτ
. (B1)

We can integrate by parts the term with the memory kernel:∫ t

0
Rd (t − s)N (s)ds = 1

T

∫ t

0

dCd (t − s)

ds
N (s)ds (B2)

= 1

T

(
C0

d N (t ) − C(t )N (0) −
∫ t

0
Cd (t − s)Ṅ (s)ds

)
(B3)

= 1

T

((
C0

d − C∞
d

)
N (t ) −

∫ t

0

[
Cd (t − s) − C∞

d

]
Ṅ (s)ds

)
. (B4)

We have obtained an additional quadratic term in N (t ), and a friction term. The friction term and the noise ξ describe the coupling
of the system to an effective colored bath at temperature T , which replaces the coupling of one species to all the others.

Using the Martin–Siggia–Rose–De Dominicis–Janssen (MSRDJ) formalism, we can show that the stationary probability
distribution associated with the stochastic differential equation

Ṅ = N
(
k − D

(
1 − ρ2σ 2Rint

0 N∗) − μh − ρσ
√

C∞
0 z − σ

√
C∞

d − ρ2C∞
0 w − σξ (t )

)
− N2

(
1 − σ 2

T

(
C0

d − C∞
d

)) + N
σ 2

T

∫ t

0

[
Cd (t − s) − C∞

d

]
Ṅ (s)ds + DN∗ + η(t )

√
N (B5)

is the Boltzmann distribution with the effective Hamiltonian:

Heff =
(

1 − σ 2

T

(
C0

d − C∞
d

))
N2/2 − (

k − D
(
1 − ρ2σ 2N∗Rint

0

) − μh − ρσ
√

C∞
0 z − σ

√
C∞

d − ρ2C∞
0 w + ζ

)
N

+ (T − DN∗ + λ) ln N, (B6)

where we have reintroduced the perturbations ζ and λ. To show that this is the correct equilibrium distribution, we need to verify
that, with this as an initial condition, time reversal is a symmetry of the associated MSRDJ action. We will do it, following
Ref. [70], for a simplified dynamics, which contains all the crucial ingredients:

Ṅ = N

(
1 − N − σξ (t ) − σ 2

∫ t

0
ν(t, s)Ṅ (s)ds

)
+ η(t )

√
N + λ, (B7)

〈ξ (t )ξ (s)〉 = T ν(t − s), (B8)

〈η(t )η(s)〉 = 2T δ(t − s). (B9)

Its equilibrium distribution is given by

Peq(N ) = e−βH

Z
, (B10)

H = N2/2 − N + (T − λ) log N, (B11)
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where β = 1/T , the inverse temperature. The white noise should be interpreted according to Ito’s discretization. It is convenient
to convert it to Stratonovich’s discretization, which is left invariant by time reversal. The multiplicative nature of the noise makes
the two discretizations not equivalent: we then need to introduce an additional drift term as follows:

η
√

N → η
√

N − 1

2

√
2T

2
√

N

√
2T N = η

√
N − T

2
. (B12)

The MSRDJ action can be written in terms of a deterministic and a dissipative part [70,79],

S[N, N̂] = Sdet[N, N̂] + Sdiss[N, N̂], (B13)

Sdet[N, N̂] = log Peq(N (−T )) +
∫ T

−T
du
(
iN̂[N (1 − N ) + λ − T/2 − T/2] + N − 1/2

)
, (B14)

Sdiss[N, N̂] =
∫

u
iN̂u

∫
v

[δ(u − v) + ν(u − v)θ (u − v)Nu](iT N̂vNv − Ṅv ). (B15)

The time reversal transformation for the two fields is given by

N (t ) −→ NR(t ) = N (−t ), (B16)

iN̂ (t ) −→ iN̂R(t ) = iN̂ (−t ) + 1

T N (−t )

∂

∂t
N (−t ). (B17)

The deterministic and dissipative part of the action are independently invariant under this transformation:

Sdet[NR, N̂R] = − log Z − βH (N (T )) +
∫

u

[(
iN̂−u + 1

T N−u

∂

∂u
N−u

)
(N−u(1 − N−u) + λ − T ) + N−u − 1/2

]

= − log Z − 1

T
[N2

T /2 − NT + (T − λ) ln NT ] + 1

T

∫
u

∂

∂u

(
N2

u /2 − Nu + (T − λ) ln Nu
)

+
∫

u

(
iN̂u[Nu(1 − Nu) + λ − T ] + Nu − 1/2

)
= − log Z − βH (N (−T )) +

∫
u

(
iN̂u[Nu(1 − Nu) + λ − T ] + Nu − 1/2

) = Sdet[N, N̂], (B18)

Sdiss[NR, N̂R] =
∫

u

(
iN̂−u + 1

T N−u

∂

∂u
N−u

)∫
v

(δu−v + νu−vθu−vNu)iT N̂−vN−v

=
∫

u
(iT N̂uNu − Ṅu)

∫
v

(δv−u + νv−uθv−uNv )iN̂v = Sdiss[N, N̂]. (B19)

The action is invariant under the time-reversal transformation using Peq as the initial and final condition, therefore Peq is the
correct equilibrium probability distribution.

APPENDIX C: RESPONSE FUNCTIONS

In the following, we restrict ourselves to the ρ = 1 case for simplicity, unless specified, and we show how to obtain the
self-consistent equation leading to Rint

0 .
At equilibrium we can rewrite the integrated disorder-dependent responses to a perturbation of the carrying capacity and of

the immigration rate in terms of connected correlation functions of N ,

rint
d (z) =

∫ ∞

0
dτ

〈
δNu(τ )

δζu(0)

〉
= ∂〈Nu〉

∂ζu
= β(〈N2〉 − 〈N〉2), (C1)

χ (z) =
∫ ∞

0
dτ

〈
δNu(τ )

δλu(0)

〉
= ∂〈Nu〉

∂λu
= β(〈N log N〉 − 〈N〉〈log N〉). (C2)

When the time dependence is not present, we are considering a time-independent perturbation.
Adding a perturbation in site v leads to a variation of the abundances in all other sites, because of the coupling by diffusion

and the memory term. These variations are of order 1/L, but since there are L of them they give a significant contribution.
When studying ∂〈Nu〉

∂ζv
we need to take into account four contributions: there is an O(1) variation of Nv that leads to an O(1/L)

perturbation of the immigration rate perceived by Nu and an O(1/L) change in its off-diagonal memory term; there are L − 2
variations of O(1/L) of the Nw, with w = u, v, each leading to an O(1/L2) change in both immigration and memory term.
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Carefully taking into account all these contributions, we can write rint
0 (z) in terms of rint

d (z), χ (z), and rint
0 (z) itself:

rint
0 (z) = L

∫ ∞

0
dτ

〈
δNu(τ )

δζv (0)

〉
= L

∂〈Nu〉
∂ζv

= L

〈(
∂Nv

∂ζv

(
D

L

∂Nu

∂λu
+ σ 2Rint

uv

∂Nu

∂ζu

)
+

∑
w =u,v

∂Nw

∂ζv

(
D

L

∂Nu

∂λu
+ σ 2Rint

uw

∂Nu

∂ζu

))〉

= (
Dχ (z) + σ 2rint

d (z)Rint
0

)(
rint

d (z) + rint
0 (z)

)
. (C3)

In the third line we used the fact that the correlations between different patches are subleading to take separately the thermal
averages. Solving for rint

0 (z), we obtain

rint
0 (z) =

[
Dχ (z) + σ 2rint

d (z)Rint
0

]
rint

d (z)

1 − [
Dχ (z) + σ 2rint

d (z)Rint
0

] . (C4)

We can then average over z to obtain Rint
0 :

Rint
0 =

[
Dχ (z) + σ 2rint

d (z)Rint
0

]
rint

d (z)

1 − [
Dχ (z) + σ 2rint

d (z)Rint
0

] . (C5)

APPENDIX D: ASYMMETRIC INTERACTIONS

The MSRDJ action with nonsymmetrical interactions is given by

S[N, N̂] =
∫

u
i

(
N̂u
[
Nu
(
k − D

(
1 − σ 2γ N∗Rint

0

) − μh + σ
√

C∞
d z − Nu

) − T + DN∗] + N − 1

2

)
(D1)

+
∫

u
iN̂u(iT N̂uNu − Ṅu) + σ 2

2

∫
u

iN̂uNu

∫
v

Cc(u − v)iN̂vNv + γ σ 2
∫

u
iN̂uNu

∫
v

R(u − v)Nv + [log P(N (0))], (D2)

where we have defined Cc(u − v) = Cd (u − v) − C∞
d . If the introduction of a small asymmetry in the interactions (ε = 1 −

γ � 1) is a nonsingular perturbation, all the self-consistently determined quantities in the action (h, Cd , Rint
0 , and Rd ) will be

close to their counterparts for γ = 1. At first order in ε we can neglect their change; therefore, Rd and Cd will still respect a
Fluctuation-Dissipation Relation. We can separate the action in a part that would respect FDT and a part that breaks it explicitly:

δS = εσ 2

T

∫
u>v

Cc
u−viN̂uNuṄv. (D3)

An average 〈 f (Nt )〉 can be expanded as

〈 f (Nt )〉 = 〈 f (Nt )〉0 + 〈 f (Nt )δS〉0 + O(ε2), (D4)

where 〈·〉0 indicates the average with respect to the action neglecting δS.
We want to estimate the scaling of

〈 f (Nt )δS〉0 = εσ 2

T

∫
u>v

Cc
u−vi〈 f (Nt )N̂uNuṄv〉0 = εσ 2

T

∫
u>v

Cc
u−vi

∂

∂v

δ

δζu
〈 f (Nt )Nv〉0 (D5)

to show that it is not singular approaching a phase transition. In the simple equilibrium phase, the connected correlation function
decays exponentially, with a typical relaxation time τ that could diverge at the phase transitions:

Cc(u − v) ∼ (〈N2〉 − 〈N〉2)e−|u−v|/τ . (D6)

The correlation function 〈 f (Nt )Nv〉0 will contain a v independent part (that we can neglect since we will be taking the derivative
in v) and a connected component of order 1 that decays with the same relaxation time τ . Perturbing the system with a field ζu,
this observable will respond as

δ

δζu
〈 f (Nt )Nv〉0 ∝ 1

T τ
e−(t−v)/τ . (D7)

Inserting these scalings in Eq. (D5), we obtain

〈 f (Nt )δS〉0 ∝ εσ 2

T

∫
u>v

e−(u−v)/τ ∂

∂v

(
1

T τ
e−(t−v)/τ

)
= εσ 2

T 2τ 2

∫ t

−∞
dve−(t−v)/τ

∫ t

v

due−(u−v)/τ (D8)

= εσ 2

T 2τ

∫ t

−∞
dve−(t−v)/τ (1 − e−(t−v)/τ ) = εσ 2

T 2τ

(
τ − τ

2

)
= εσ 2

2T 2
. (D9)

Considering a small asymmetry in the interactions, observables are shifted by a correction of order ε, where the prefactor is
of order 1 and has no divergence at the phase transitions. We thus expected the phase diagram to remain qualitatively unchanged.
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APPENDIX E: EXTINCTION THRESHOLD
AND DIVERSITY (FOR ρ = 1)

The self-consistency condition for N∗ reads

N∗(z) = 〈N〉Heff (N ;h,C0
d ,C∞

d ,Rint
0 ,z,N∗ )

=
∫∞

0 dNNe−βHeff (N ;h,C0
d ,C∞

d ,Rint
0 ,z,N∗ )∫∞

0 dNe−βHeff (N ;h,C0
d ,C∞

d ,Rint
0 ,z,N∗ )

. (E1)

N∗ = 0 is always a solution of this equation; we want to find
the value of z at which it becomes unstable.

We can separate the effective Hamiltonian into a quadratic
and a logarithmic part:

Heff
(
N ; h,C0

d ,C∞
d , Rint

0 , z, N∗)
= Hq

(
N ; h,C0

d ,C∞
d , Rint

0 , z, N∗) + (T − DN∗) ln N.

(E2)

For N∗ → 0, the logarithmic part gives rise to a nonintegrable
divergence in 0 in the denominator. To improve the numerical
stability of our solution at small N∗, we performed an integra-
tion by parts of the denominator:∫ ∞

0
dNe−βHeff =

∫ ∞

0
dNe−βHq N−1+βDN∗

= 1

DN∗

∫ ∞

0
dNe−βHq NβDN∗ dHq

dN
. (E3)

The integral is now finite for N∗ → 0 and we can expand
Eq. (E1) in powers of N∗:

N∗(z) = DN∗(z)

∫∞
0 dNe−βHq NβDN∗(z)∫∞

0 dNe−βHq
dHq

dN NβDN∗(z)

= N∗(z)D

∫∞
0 dNe−βHq∫∞

0 dNe−βHq
dHq

dN

+ O([N∗(z)]2). (E4)

The term of order N∗(z)2 is always negative, therefore the
number of solutions depends on the coefficient of the N∗(z)
term: if c1(z) < 1 the only solution is N∗(z) = 0; if c1(z) > 1
the N∗(z) = 0 solution is unstable and there is a positive
stable one. We define the effective growth rate reff = 1 −
σ 2β(C0

d − C∞
d ) and the effective growth factor reffgeff(z) =

k − μh − z
√

C∞
d σ + Dσ 2N∗Rint

0 . The extinction threshold z∗
(Fig. 11) is given by

1 = c1(z∗)

= D

√
βπ

2reff
exp

(
β

2

(geff(z∗)reff − D)2

reff

)

×
[

1 + erf

(√
β

2

(
geff(z∗)reff − D√

reff

))]
. (E5)

As noted in Ref. [16], this is the same condition that would
determine the criticality of the Directed Percolation process
with corresponding growth rate and growth factor:

Ṅu = reff
(
N2

u /2 − geffNu
) + D

(
1

L

∑
v

Nv − Nu

)
+ η

√
Nu

(E6)

〈η(t )η(t ′)〉 = 2T δ(t − t ′). (E7)

FIG. 11. Self-consistent solution for N∗(z) (blue), coefficient of
the first-order expansion c1(z) (orange), and Gaussian probability
distribution P(z) (green). The highlighted region corresponds to the
nonextinct species; its area is the diversity of the ecosystem. T = 0.4,
D = 0.15, μ = 1, σ = 0.5.

The diversity, given by the fraction of nonextinct species,
can be obtained as

φ =
∫ ∞

z∗
P(z)dz = 1

2
erfc

(
z∗
√

2

)
. (E8)

APPENDIX F: CONTINUOUS TRANSITION POINT

At the continuous transition, all moments of N tend to zero,
and we can expand the extinction condition (E5) in powers of
these moments. Keeping only the zeroth order, we obtain an
equation on the critical value of the diffusion constant:

D0

√
βπ

2
e

β

2 (k−D0 )2

[
1 + erf

(√
β

2
(k − D0)

)]
= 1. (F1)

This condition has no dependence on the distribution of the
interactions; indeed, it is the same one that would be obtained
with zero or constant interactions [16].

For T → 0 we can expand Eq. (F1) and show that D0

vanishes exponentially:

D0(T ) ∼ 1√
2πβ

e− k2

2T . (F2)

The reason for this behavior is that at low demographic noise,
the abundances of a species with carrying capacity k undergo
a fluctuation toward very low values very rarely. In fact, one
needs to wait for a rare fluctuation of the demographic noise
that makes the species go against the force due to the logistic
growth. This phenomenon is similar to the one encountered
in the Kramers’ problem for barrier crossing. Using the same
line of arguments employed there, one finds that the timescale

for this rare event is e
k2

2T (the “energy barrier” equals k2/2).
The equation above can therefore be interpreted as a balance
between two inverse timescales: the one needed for diffusion
to operate and the one over which extinctions take place.

By a careful (and cumbersome) expansion of the self-
consistent equations, we can show that approaching the
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FIG. 12. (a) Probability distribution of the abundance N ; in orange deep in the survival phase [T = 0.8, D/D0(T ) = 1.5], in blue right
before the discontinuous transition [T = 0.4, D/D0(T ) = 0.84]. Note that the shown distributions do not integrate to 1 because a finite fraction
of the species are extinct, leading to a δ function in zero with weight 1 − φ. (b) Probability distribution of the abundance for a given species,
i.e., at fixed z; in blue for a species close to extinction (z = −0.45, N∗ = 0.148), in orange for a species far from extinction (z = −2.45,
N∗ = 1.733); T = 0.4, D/D0(T ) = 0.84. (c) Probability distribution of the space (or time) averaged abundance, because of extinct species we
again have a δ function in zero with weight 1 − φ. T = 0.4, D/D0(T ) = 0.84, μ = 1, σ = 0.5, ρ = 1.

continuous transition h ∝ qd ∝ D − D0, q0 ∝ (D − D0)2, and
z∗ (and therefore φ) has a finite limit.

APPENDIX G: ABUNDANCE DISTRIBUTION

As noted before, two types of stochasticity contribute to the
distribution of abundances. Each species is subjected to demo-
graphic and environmental noise, making their abundance a
time-dependent random variable. For each species, the abun-
dance is distributed according to the Boltzmann distribution
with Hamiltonian Heff; we will call this P(N |z). On top of
this, because of disorder, different species experience different
average interactions with the rest of the ecosystem [different
values of z, i.e., distributed according to P(z) Gaussian], lead-
ing to species-dependent factors in Heff. If we want to study
the distribution of the abundances of all species at a given time
in one site [P(N )], we need to take into account both effects.
We can compute P(N ) marginalizing over z:

P(N ) =
∫

dzP(N |z)P(z), (G1)

with

P(N |z) = e−βHeff(N ;z,N∗(z))∫∞
0 dNe−βHeff(N ;z,N∗(z))

(G2)

P(z) = e−z2/2

√
2π

. (G3)

We could also be interested in the distribution across
species of the abundance averaged over patches or time, given
by P(N∗) = P(z)( dN∗(z)

dz )−1 for N∗ > 0. There is also a finite
probability 1 − φ that N∗ = 0, where φ is the diversity.

Examples of these abundance probability distributions are
shown in Fig. 12.

APPENDIX H: DIVERGENCE OF RESPONSE TO A
VARIATION OF THE CARRYING CAPACITY

The divergence of response functions when approaching
a tipping point is a generic feature of saddle node bifur-
cations [76]. Let us consider a generic dynamical system,

described by

d�x
dt

= F (�x, k). (H1)

�x contains all the degrees of freedom of the system, whereas
k is a control parameter. The zeros of F yield the stationary
states x∗:

F (x∗, k) = 0. (H2)

The stationary point is stable if the Jacobian of F has only
negative eigenvalues, ensuring that x returns to x∗ upon small
perturbations. In a saddle node bifurcation, a stable and an un-
stable stationary point collide and annihilate each other. Since
the Jacobian at the stable stationary point has only negative
eigenvalues whereas the one at the unstable stationary point
has at least a positive eigenvalue, one of the eigenvalues has
to cross zero at the bifurcation. The existence of a zero mode
leads to a diverging response to perturbation.

We show below how this mechanism is at play in our
case when approaching the stability limit of the self-sustained
phase. We study the response of the system to a perturbation in
the environmental conditions in the case of independent inter-
action coefficients (ρ = 0). We will consider for concreteness
a perturbation to the carrying capacity k, but we expect the
same qualitative behavior for perturbations to the diffusion
constant, the moments of the interactions, or the strength of
the demographic fluctuations.

The response of the order parameters to a variation of k
involves some connected moments of N and the derivative of
H in k:

dh

dk
=
∫

Dz

(∫
dNNe−βH (−β )dH/dk∫

dNe−βH

−
∫

dNNe−βH
∫

dNe−βH (−β )dH/dk(∫
dNe−βH

)2

)

= −β

(〈
N

dH

dk

〉
− 〈N〉

〈
dH

dk

〉)
, (H3)
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dC0
d

dk
= −β

(〈
N2

dH

dk

〉
− 〈N2〉

〈
dH

dk

〉)
, (H4)

dC∞
d

dk
= −2β

(
〈N〉

〈
N

dH

dk

〉
− 〈N〉2

〈
dH

dk

〉)
. (H5)

Thanks to the fact that ρ = 0, H has the simplified form

H = [
1 − σ 2β

(
C0

d − C∞
d

)]
N2/2

+ (
μh − k + D − z

√
C∞

d σ
)
N + (T − Dh) ln N. (H6)

dH/dk depends on the derivative of the order parameters in k:

dH

dk
= −N + ∂H

∂h

dh

dk
+ ∂H

∂C0
d

dC0
d

dk
+ ∂H

∂C∞
d

dC∞
d

dk
, (H7)

∂H

∂h
= μN − D ln N, (H8)

∂H

∂C0
d

= −σ 2β

2
N2, (H9)

∂H

∂C∞
d

= σ 2β

2
N2 − 1

2
√

C∞
d

zσN. (H10)

Substituting dH/dk in Eqs. (H3)–(H5), we obtain

dh

dk
= −β

{
−(〈N2〉 − 〈N〉2) + [μ(〈N2〉 − 〈N〉2) − D(〈N log N〉 − 〈N〉〈log N〉)]

dh

dk
− σ 2β

2
(〈N3〉 − 〈N〉〈N2〉)

dC0
d

dk

+
[

σ 2β

2
(〈N3〉 − 〈N〉〈N2〉) − 1

2
√

C∞
d

σ (〈N2〉z − 〈N〉2z)

]
dC∞

d

dk

}
, (H11)

dC0
d

dk
= −β

{
−(〈N3〉 − 〈N2〉〈N〉) + [μ(〈N3〉 − 〈N2〉〈N〉) − D(〈N2 log N〉 − 〈N2〉〈log N〉)]

dh

dk
− σ 2β

2
(〈N4〉 − 〈N2〉2)

dC0
d

dk

+
[

σ 2β

2
(〈N4〉 − 〈N2〉2) − 1

2
√

C∞
d

σ (〈N3〉z − 〈N2〉〈N〉z)

]
dC∞

d

dk

}
, (H12)

dC∞
d

dk
= −2β

{
−(〈N〉〈N2〉 − 〈N〉3) + [μ(〈N〉〈N2〉 − 〈N〉3) − D(〈N〉〈N log N〉 − 〈N〉2〈log N〉)]

dh

dk
− σ 2β

2
(〈N〉〈N3〉

− 〈N〉2〈N2〉)
dC0

d

dk
+
[

σ 2β

2
(〈N〉〈N3〉 − 〈N〉2〈N2〉) − 1

2
√

C∞
d

σ (〈N〉〈N2〉z − 〈N〉3z)

]
dC∞

d

dk

}
. (H13)

We collect the three order parameters in a vector �p =
(h,C0

d , q0)T . Then d �p
dk satisfies

d �p
dk

= Ĵ
d �p
dk

+ �s, (H14)

where Ĵ is a 3×3 matrix and s is a vector; their elements are
the coefficients of Eqs. (H11)–(H13). The solution is given by

d �p
dk

= −(Ĵ − 1̂)−1�s. (H15)

The response to a variation of k diverges if Ĵ − 1̂ has a zero
eigenvalue, which is found to happen when approaching the
discontinuous transition.

We expect the same qualitative behavior of the response to
perturbations for generic values of ρ, but for ρ = 0 we need
to take into account also the variations of the function N∗(z),
which leads to the study of an infinite-dimensional matrix.

APPENDIX I: REDUCED INTERACTION MATRIX

In the case of fixed interaction matrices, a finite fraction
of the species goes extinct; the interaction matrix restricted

to the surviving species has a smaller mean than the starting
one. The statistics of the reduced interaction matrix can be
computed at 0 temperature [72]:

μ′ = φμ − 2
σ 2h

φ

dφ

dζ
= φμ − 2

σh

φ
√

2πC∞
d

e−(z∗ )2/2. (I1)

FIG. 13. Left: Analytical estimate of the mean of the reduced in-
teraction matrix using Eq. (I1) for T = 0.4. Right: Numerical results
for the distribution of the interaction coefficients for all and surviving
species. T = 0.18, D/D0 = 0.8. In both cases, in the initial species
pool μ = 1, σ = 0.5; if all species go extinct, we say μ′ = 0.
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FIG. 14. Time evolution of the average abundance for two different temperatures and two average values of the initial conditions. Note the
different time ranges in the top and bottom figures: at high temperature the abundances have converged to their asymptotic values at tmax = 200,
while at lower temperature it is necessary to wait much longer (tmax = 500). S = 200, L = 400, μ = 1, σ = 0.5.

Since we are not at 0 temperature, in our case this formula
is only an approximation, but it provides a useful estimate of
the variation of the mean interaction. We find that the interac-
tion mean decreases (more mutualistic) when decreasing the
diffusion coefficient [Fig. 13(a)]; it is negative in the entire
metastability region. In Fig. 13(b) we show the distribution of
the interaction coefficients considering all species or only sur-
viving ones in numerical simulations. The distribution of the
interaction coefficients is slightly shifted to more negative val-
ues, and indeed μ′ = S 1

S2

∑
i j αi j changes from 0.96 to −0.28.

To compute the average interaction term, we can again use
the cavity method and imagine to add a species (with index 0)

to the community. Using Eq. (A6),

Int0 =
〈∑

j

α0 jN
u
j

〉
= μh + σ

√
C∞

d z − γ σ 2
(
Rint

d + Rint
0

)〈N0〉.
(I2)

We can now average it over all species (all values of z, over-
line), or over only nonextinct ones (z < z∗, overline with +
superscript),

I = μh − γ σ 2
(
Rint

d + Rint
0

)
h, (I3)

I
+ = μh − σ

√
q0

φ

e−z∗2/2

√
2π

− γ σ 2
(
Rint

d + Rint
0

) h

φ
. (I4)

FIG. 15. Time evolution of the average abundance with partial correlation between patches (ρ = 0.9) and nonsymmetric interactions
(γ = 0.9) at T = 0.18 and two average values of the initial conditions. At t = 500 the abundances have not yet reached their asymptotic
value, leading to an apparent smoothing of the discontinuous transition. Nevertheless, this is ensured by the abrupt change of behavior of the
evolution of the average abundance: for one value of the diffusion constant at long times, the abundance is decaying to 0, whereas for the next
it shows a (slow) increase. We conclude that the asymptotic values would likewise show an abrupt change. S = 200, L = 400, μ = 1, σ = 0.5.
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FIG. 16. Time evolution of the average abundance without heterogeneity in the interaction network (σ = 0) at T = 0.18 and two average
values of the initial conditions. For D < D0(T ) the abundances converge to 0. S = 200, L = 400, μ = 1.

Note that we will always find I
+

< I; I
+

is negative in the
entire metastability region [Fig. 6(a) in the main text]. This
is also confirmed by numerical simulations: the average in-
teraction term is 0.13 considering all species, and −0.46
considering only nonextinct ones [Fig. 6(b) in the main text].

In the case of independent interaction matrices, all species
survive, so that the interaction matrix is not modified.

APPENDIX J: NUMERICAL SCHEME

The numerical simulation of demographic noise poses
some technical challenges. Naively sampling it as a Gaussian
variable can result in negative species abundances, an unphys-
ical result that makes the scheme numerically unstable. A
clever solution was found in Ref. [59], and improved in [5,80].
The idea is to separate the process in a deterministic part:

Ṅi,u = Ni,u

⎛
⎝1 − Ni,u −

∑
j

αu
i jNj,u

⎞
⎠ + D

(
1

L

∑
v

Ni,v − Ni,u

)

(J1)

and a stochastic one:

Ṅi,u = √
Ni,uηi,u. (J2)

At each time step we numerically integrate the two in se-
quence. For the stochastic part, an exact solution of the
associated Fokker-Planck equation is available for any initial

condition, and it can be efficiently sampled using Gamma and
Poisson variables:

Ñi,u(t ) = Gamma

[
Poisson

(
Ni,u(t )

T dt

)]
T dt . (J3)

For the deterministic part, we rely on the Euler method,

Ni,u(t + dt ) =
[

Ñi,u(t )

(
1 − Ñi,u(t ) −

∑
j

αu
i j Ñ j,u(t )

)

+ D

(
1

L

∑
v

Ñi,v (t ) − Ñi,u(t )

)]
dt . (J4)

APPENDIX K: ADDITIONAL NUMERICAL RESULTS

Some of the challenges encountered in numerical simu-
lations become clear examining the time evolution of the
average abundances (Figs. 14 and 15). At high temperature
(top) the average abundance fluctuates significantly even with
a large number of species and patches (S = 200, L = 400); fi-
nite size effects on L lead to an excess of extinctions. At lower
temperature (bottom), the dynamics strongly slows down, and
at t = 200 some of the abundances (depending on the value
of D) have not yet reached their asymptotic value, leading to
a smoothing of the discontinuous transition. Without hetero-
geneity in the interaction network we observe no dependence
on initial conditions, even at T = 0.18 (Fig. 16).
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