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The evolution of resistance remains one of the primary challenges for modern medicine, from infectious
diseases to cancers. Many of these resistance-conferring mutations often carry a substantial fitness cost in
the absence of treatment. As a result, we would expect these mutants to undergo purifying selection and be
rapidly driven to extinction. Nevertheless, preexisting resistance is frequently observed from drug-resistant
malaria to targeted cancer therapies in non-small-cell lung cancer (NSCLC) and melanoma. Solutions to this
apparent paradox have taken several forms, from spatial rescue to simple mutation supply arguments. Recently,
in an evolved resistant NSCLC cell line, we found that frequency-dependent ecological interactions between
ancestor and resistant mutant ameliorate the cost of resistance in the absence of treatment. Here, we hypothesize
that frequency-dependent ecological interactions in general play a major role in the prevalence of preexisting
resistance. We combine numerical simulations with robust analytical approximations to provide a rigorous math-
ematical framework for studying the effects of frequency-dependent ecological interactions on the evolutionary
dynamics of preexisting resistance. First, we find that ecological interactions significantly expand the parameter
regime under which we expect to observe preexisting resistance. Next, even when positive ecological interactions
between mutants and ancestors are rare, these resistant clones provide the primary mode of evolved resistance
because even weak positive interaction leads to significantly longer extinction times. We then find that even
in the case where mutation supply alone is sufficient to predict preexisting resistance, frequency-dependent
ecological forces still contribute a strong evolutionary pressure that selects for increasingly positive ecological
effects (negative frequency-dependent selection). Finally, we genetically engineer several of the most common
clinically observed resistance mechanisms to targeted therapies in NSCLC, a treatment notorious for preexisting
resistance. We find that each engineered mutant displays a positive ecological interaction with their ancestor. As
a whole, these results suggest that frequency-dependent ecological effects can play a crucial role in shaping the
evolutionary dynamics of preexisting resistance.
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I. INTRODUCTION

The rapid, and often inevitable, evolution of therapy resis-
tance is the primary threat to modern medicine’s successful
treatment of cancer and infectious disease (e.g., bacterial,
viral, fungal, and parasitic infections) [1–5]. The story of
resistance and treatment failure is strikingly similar across
biological kingdoms. A patient is diagnosed and undergoes
an initially successful treatment, only for a small resistant
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subclone of the original disease to relapse, resulting in treat-
ment failure. For decades, the response to this paradigm has
been the development of novel, more efficient drugs, targeting
orthogonal pathways in hopes of winning the evolutionary
arms race. While this response has undeniably resulted in
major success stories when considering individual cancers
or infections, the overall outlook for drug-resistant disease
remains grim [6–9].

As a result, growing efforts have been made to study
these diseases in an evolutionary context, whereby scientists
seek to understand the ecological and evolutionary forces
that seem inevitably to result in the untreatable disease state.
Understanding these evolutionary forces that lead to resis-
tance should allow scientists and physicians to not only
design more effective drugs but, perhaps more crucially, de-
sign more effect treatments. For example, recent work has
focused on improving and prolonging the efficacy of our al-
ready established drugs via optimal dose scheduling [10–12],
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FIG. 1. Illustrated abstraction demonstrating how frequency-dependent ecological interactions might increase the likelihood of preexisting
resistance. (a) Visualization of a typical frequency-dependent growth experiment. The ancestor (black line) is assumed to grow at a constant
rate. Two hypothetical resistant mutants are depicted. Both mutants share the same intrinsic fitness and fitness cost, however the positive
ecological mutant (red, growth increases as the fraction of ancestor cells increases) has a significantly higher ecological fitness ( fe ≈ 1) than the
negative ecological mutant (blue, growth decreases as the fraction of ancestor cells increases). (b) Top: Visualization of an evolving population
with no ecological interactions. All mutants are assumed to have a noninsignificant fitness cost fc, and as a result go extinct. Bottom: The
same evolving population, assuming ecological interactions are present. Note that an identical number of mutants emerge, however semirare
mutants with positive ecological interactions demonstrate an increased time to extinction. As a result, when a drug intervention is administered,
preexistence is much more likely to be present.

drug combinations [13–17], understanding spatial dynamics
[18–20], understanding ecological interactions between com-
peting subclones [21–24], and exploiting collateral sensitivity
[25–29].

In a similar spirit, this work seeks to understand the evo-
lutionary fates of potential resistance-conferring mutations
that emerge before treatment has occurred. The fraction of
these mutants that survive to see treatment are often the pri-
mary cause of treatment failure, referred to as “preexisting
resistance” [30–33]. While these resistant populations provide
a large fitness advantage once treatment begins, they often
carry a significant fitness disadvantage, or fitness cost ( fc),
in the absence of treatment [34–38]. Nevertheless, resistance-
conferring mutants often persist until treatment, at which time
their treatment-sensitive ancestors are preferentially killed,
resulting in the competitive release and relapse of the re-
sistant population and inevitable treatment failure [39,40].
Understanding how these resistant clones—with a fitness
disadvantage—persist in the disease population prior to treat-
ment may allow us to prevent resistance from emerging.

This interest is derived from recent work where we mea-
sured the frequency-dependent ecological interaction between
an evolved epidermal growth factor (EGFR) tyrosine kinase
inhibitor (TKI) resistant non-small-cell lung cancer (NSCLC)
population and its TKI-sensitive ancestor [40]. The focus of
that work was on the ecological interaction under TKI treat-
ment, and the inevitable competitive release. Strikingly, we

observed an interaction between the resistant mutant and its
ancestor in the absence of any treatment. The resistant popula-
tion was observed to grow about 20% slower than the ancestor
when cultured separately; however, when the resistant pop-
ulation was cocultured with a majority ancestor population,
that difference in fitness nearly vanished. This observation,
referred to as negative frequency-dependent selection (neg-
ative because the fitness for the mutant decreases as the
mutant frequency increases), is a long-studied phenomenon
[41–43], and has been described as the most “intuitively ob-
vious explanation for polymorphisms in nature” [44]. Despite
its long history and potential for potent evolutionary effects,
frequency-dependent selection remains understudied in the
context of drug resistance. This is especially surprising, be-
cause a resistant population typically first emerges as a single
individual in a predominantly ancestor population, and as
a result frequency-dependent ecological interactions have a
profound potential to effect the dynamics of a resistant clone
(Fig. 1).

In this work, we seek to develop a rigorous theory of
pretreatment evolution that incorporates frequency-dependent
ecological interactions between the emerging resistant sub-
clones and the ancestor from which they evolve. Using both
a generalized Moran process and Wright-Fisher simulations,
we show that mutants with the same intrinsic fitness (mono-
culture fitness) can have mean extinction times that vary by
several orders of magnitude as a function of their ecological
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fitness (fitness when cocultured in a predominantly ancestor
environment). Next, we calculate the expected number of
resistance-conferring mutants in the population as a function
of the cost of resistance, as well as the population size and
rate at which resistance-conferring mutations occur. When
comparing the result of this calculation both when we assume
ecological interactions exist and when they are forbidden, we
identify a wide parameter space where preexistence is only
likely to occur if ecological interactions are assumed. We then
investigate the “many mutant regime” where preexistence is
likely even without ecological interactions, and demonstrate
that these ecological interactions play a prominent role in
shaping the distribution of mutants, dramatically increasing
the prevalence of mutants with high ecological fitness. Im-
portantly, we show that these ecological effects drive the
evolutionary outcomes even when mutants with high ecolog-
ical fitness are rare. Surprisingly, despite the complexity of
the model, we obtain analytical approximations for extinction
rates, expected number of resistance-conferring mutants, and
the distribution of observed mutants over the full range of
ecological fitness. These analytical approximates both support
our numerical simulations and allow us to extend our results
to population sizes too large to simulate.

Finally, we test our theory experimentally by engineering
several of the most common clinically observed mutations
to TKI therapy in EGFR-driven NSCLC and compete these
mutants against the TKI-sensitive ancestor. In all cases we
observed an ecological interaction that resulted in mutant
ecological fitnesses larger than their intrinsic fitness. Taken
together, these theoretical and experimental results argue that
frequency-dependent ecological interactions between resis-
tant mutants and their ancestor confer a primary mode by
which resistance emerges in modern cancer therapeutics, and
potentially all evolutionary diseases.

II. RESULTS

A. Ecologically dependent extinction time distributions
with a generalized Moran process

We begin by considering a one-step birth-death process
[45–47] with states s ∈ {0, 1, . . . , N}, where N is the total
population size, s is the mutant population, and N − s is the
ancestor population. We do not consider mutation, and as a
result the states s = 0 (extinction) and s = N (fixation) are
absorbing. To account for ecological interactions, the mu-
tant’s growth rate is defined to be a function of N−s

N , or the
fraction of the population that is of the ancestral type, and
assumed to be linear. In addition, for simplicity, we define
the ancestor’s growth rate to be constant and, without loss
of generality, normalized to 1 (see Materials and Methods
section for full model details). First, we are interested in how
the distribution of extinction times differs between recently
emerged mutants with identical fitness costs but distinct eco-
logical interactions [Fig. 2(a), left]. In particular, we assume
one (neutral) mutant has no ecological interaction with the
ancestor, and thus 1 − fc = fi = fe [Fig. 2(a), blue], while the
comparative (positive) mutant has an interaction that amelio-
rates the fitness cost of the mutant at extremely large ancestor
fractions, fe = 1 [Fig. 2(a), red]. Here, fc is the fitness cost or

difference between the ancestor’s growth rate and the mutant’s
monoculture growth rate, fi is the mutant’s intrinsic fitness
or monoculture growth rate, and fe is the mutant’s ecological
fitness or a mutant’s fitness in an otherwise purely ancestor co-
culture environment [definitions depicted visually in Fig. 2(a),
left]. In population genetics literature this positive interac-
tion is known as negative frequency-dependent selection and
fitness is typically plotted as a function of the mutant’s fre-
quency rather than the ancestor. Throughout this work we
have chosen to plot fitness relative to the ancestor’s frequency
in order to more intuitively connect a positive ecological in-
teraction with a positive slope in frequency-dependent growth
plots. In the case of a mutant with a positive ecological inter-
action, we see that the extinction time distribution is heavily
right-skewed in comparison to a neutral ecological effect. As
a result, if these two mutants were equally likely to emerge
in a population, we would expect to observe a mutant with a
positive ecological interaction significantly more often than
an equivalent mutant with a neutral ecological interaction.
However, ecological interactions are not always positive. Re-
peating this process in comparing a neutral mutant with a
mutant that has a negative ecological interaction with the
ancestor reveals a distinct shift to shorter extinction times
(Fig. S1).

B. Extinction times depend on ecological interactions
in a Wright-Fisher model

While formulating our system as a generalized Moran pro-
cess allows for convenient closed-form solutions to quantities
of interest such as extinction time distributions, this represen-
tation becomes computationally expensive as the population
size approaches increasingly realistic values. In addition, we
have completely ignored mutation, as well as more realis-
tic conditions where many mutants are competing within an
evolving population. As such, we switch to a Wright-Fisher
formulation of our system [48–50]. In the Wright-Fisher
model, populations are still constant in population size N ,
however each individual of the population is replaced every
generation with offspring inheriting the parent’s genotype
with probability proportional to the parent’s fitness. (Note
that in certain cases systems with varying populations can
be approximately mapped onto a Wright-Fisher model that
describes similar evolutionary dynamics, in which case N is
interpreted as an effective population size [51]. However, care
must be taken in using this mapping in the presence of se-
lection, where the precise form of the population change over
time influences its applicability [52].) In addition, individuals
acquire mutations with some probability μ and we assume
mutant populations are sufficiently small that we can ignore
both ecological and genetic mutant-mutant interactions. Still,
several characteristics from the generalized Moran process re-
main. Namely, the ancestor’s growth is defined to be constant
and normalized to 1, and the mutant growth rate is assumed to
vary linearly between fi and fe (as a result, a mutant’s growth
is fully characterized by these two fitness values along with
the fraction of the population that is ancestor).

Each simulation begins with an exclusively ancestor popu-
lation, and with each generation cells mutate with probability
μ. Each mutant that arises has an intrinsic fitness drawn with
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FIG. 2. Analytical approximations and simulations predict that extinction times depend on ecological interactions. (a) Closed form
extinction time distributions are calculated and visualized for a generalized Moran process (N = 100, fc = 0.25). The red distribution results
from a mutant with a positive ecological interaction with the ancestor ( fe = 1.0), while the blue population has no ecological interaction with
the ancestor ( fe = 1 − fc = 0.75). (b) Wright-Fisher simulations are used to numerically calculate the mean extinction time as a function of fe

(N = 10 000, μ = 10−6, 500 generations, fi is drawn uniformly in [0, 1 − fc], fi is drawn uniformly in [0,1]). (c) Wright-Fisher simulations
are repeated for varying values of fc, μ, and N to confirm theoretical prediction that the extinction time distribution depends only on fe.
(d) Phase diagram depicting the three regimes of preexisting resistance.

uniform probability in [0, 1 − fc] and a corresponding eco-
logical fitness drawn with uniform probability in [0,1].

Each Wright-Fisher “generation” consists of a mutation
step, followed by an offspring (selection) step. For each
mutant that emerges we record its intrinsic and ecological
fitness values and track its evolutionary trajectory, and thus
extinction time τ . A mutant that emerges but does not sur-
vive the subsequent selection step is defined to survive zero
generations. Employing this model, we find that the mean
extinction time varies nearly five orders of magnitude between
the most positive (approximately 10 generations) and deleteri-
ous (approximately 0.001 generations) ecological interactions
[Fig. 2(b)]. In order to develop a more rigorous understand-
ing of the evolutionary dynamics, we sought an analytical
approximation for the extinction time of a mutant under the
same Wright-Fisher conditions. Strikingly, we find a robust
approximation across the whole range of fe:

τ ( fe) ≈ 3 ln(1 − fe)

f 2
e − 3

. (1)

Despite its simple form, this approximation agrees with
simulation results with a typical error of 5% [Fig. 2(b), full

derivation and details found in the SI] [61]. Interestingly, the
approximation is only a function of ecological fitness and
not mutation rate (assuming μ � 1), population size, or fit-
ness cost. This finding is supported by our simulation results
[Fig. 2(c)]. The dependence of τ solely on fe in Eq. (1) is
due to two factors: (i) the small total proportion of mutants
in the population, which means the fitness of a mutant is ap-
proximately fe, and (ii) at each time step (new generation) the
chances of the mutants achieving a population comparable to
N are vanishingly small, so the extinction probability becomes
approximately independent of N .

C. Ecological interactions can increase the probability
of preexisting resistance

Next we consider the model’s implications for preexisting
resistance. Specifically, we are interested in quantifying the
expected number of mutants in an evolving population. While
it might be tempting to quickly conclude that including eco-
logical interactions will necessarily increase the probability
of preexisting resistance because positive interactions will
lead to longer extinction times, it is important to note that

023010-4



FREQUENCY-DEPENDENT ECOLOGICAL INTERACTIONS … PRX LIFE 2, 023010 (2024)

mutants with a high intrinsic fitness are more likely to acquire
a relatively deleterious ecological fitness than one that is ben-
eficial. As such, a careful mathematical treatment is required.
When the expected number of mutants in a population is
low (Nmut � 1), potential resistance-conferring mutations are
unlikely to be present at time of treatment. Contrarily, when
the expected number of mutants is greater than 1, we expect
treatment-threatening resistance to be present when a drug is
administered. We begin adapting our analytical model to cal-
culate the mean number of mutants (see SI for full derivation
and details) [61]. To begin, we consider the case where no
ecological interactions are present ( fi completely describes
the growth rate of the mutant). In this case it can be shown
that Nno eco

mut , the mean number of mutants ignoring ecological
interactions, is

Nno eco
mut = Nμ

(
− ln fc

1 − fc
− 1

)
. (2)

Next, we seek to find an analytical approximation for Neco
mut,

the mean number of mutants assuming ecological interactions
exist. In the case of a sufficiently small mutation rate, we can
approximate the total mutant number as

Neco
mut ≈ Nμ

(
− ln(1 − fmax)

fmax
− 1

)
for μ � 1. (3)

Here, fmax is the maximum value that fe can take. While we
can set fmax arbitrarily close to 1, it can never be exactly
1 for a well-defined normalization. Interestingly, for suffi-
ciently small μ, the ratio Neco

mut
Nno eco

mut
is constant with Nμ. While the

simplicity of the approximation is appealing, unfortunately it
breaks down as μ gets large. As a result, a more robust, though
significantly more complex, approximation was derived (see
SI for full derivation [61]):

Neco
mut ≈ Nμ

fmax
W

[(
1 − fmax + μ f fc/( fc−1)

c

)−1
]
. (4)

Here, W (x) is the Lambert W function, which is the solu-
tion y of the equation yey = x. This approximation allows
for efficient calculation across several decades of μ within
10% of our numerical simulations. Employing these analytical
approximations, we identify three regimes of interest. The
least interesting regime is the small Nμ regime [Fig. 2(d),
green]. Here, the effective population size is insufficient to
maintain a mutant subpopulation regardless of the strength or
frequency of ecological interactions. This regime corresponds
to extremely rare preexisting resistance and high likelihood of
treatment success.

As Nμ gets larger [Fig. 2(d), yellow], we enter a
regime where ecological interactions would suggest preex-
isting resistance is likely (Neco

mut > 1), while ignoring eco-
logical interactions would suggest preexistence is still rare
(Nno eco

mut < 1). In this regime mutants have yet to become
abundant, however, mutants with strong ecological interac-
tions persist sufficiently long to threaten treatment efficacy.
Representative simulation trajectories of this “rare mutant
regime” are shown in Fig. 3(a). Without ecological inter-
actions [Fig. 3(a), top panel] the mutation rate alone is
insufficient to maintain a mutant subpopulation capable of
threatening future treatment efficacy. However, with the in-

troduction of ecological interactions [Fig. 3(a), bottom panel,
and Fig. S(2)], rare positive ecological mutants climb to
significant fractions of the population, and have measurably
longer extinction times that may threaten future treatments.
As one might intuitively expect, the size of this regime where
ecological effects drive preexistence is heavily dependent on
the imposed fitness cost of resistant mutants. We find that the
larger the fitness cost imposed by resistance, the larger the
comparative increase provided by allowing ecological effects.

D. Ecological interactions significantly influence
the distribution of mutants

Next, we consider the final regime when Nμ is large
[Fig. 2(d), blue]. In this regime the mutational supply is suf-
ficiently large to self-sustain a small, resistant subpopulation,
regardless of ecological interactions (that is, both Nno eco

mut > 1
and Neco

mut > 1). Representative simulation trajectories of this
“many mutant regime” are shown in Fig. 3(b). At first glance
one might assume this regime is uninteresting. In both cases
mutants are sufficiently common to threaten future treat-
ments, albeit ecological interactions significantly increase the
steady-state fraction of resistant mutants. However, the results
become more interesting when we consider the shape of the
resistant subpopulation distribution. In each trajectory plot,
the color is proportional to the mutants’ ecological fitness,
with red representing an ecological fitness near 1 and blue
representing an ecological fitness near 0. By inspection, it is
immediately clear that the most positive ecological mutants
are over-represented in the mutant population, considering
they emerge with equal probability. However, we can do better
and extract this relationship explicitly from our simulations
[Fig. 3(c), left]. We find, similar to the impact of ecological
effects on extinction times, that the frequency of a mutant
spans multiple orders of magnitude as a mutant’s ecological
fitness varies from 0 to 1.

Extending our previous analytical work, it is straight-
forward to show that the stationary distribution of mutant
ecological fitnesses goes as

P( fe) ≈ feμ

fmax(1 − fe)
for μ � 1. (5)

The above approximation works remarkably well despite the
simplicity of its form. From this equation we find that the
frequency of a mutant is invariant with respect to fitness cost
and population size. This is shown explicitly via numerical
simulations and visualization of the joint distribution of fitness
cost and ecological fitness [Fig. 2(c), right].

E. Nonuniform ecological distributions show similar
qualitative results

An important context to keep in mind with the work is
that up to this point we have assumed emerging mutants
are assigned an ecological fitness with uniform probability
in [0,1]. This assumption was not made for simplicity, but
instead out of necessity. While evolutionary biologists have
spent significant time both theorizing about and measuring
the distribution of fitness effects (DFE), very little time has
been spent quantifying either the frequency or magnitude of
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FIG. 3. Positive ecological interactions make preexistence more likely and dominate the stationary distribution of mutants. (a) Representa-
tive Wright-Fisher trajectory in the “rare mutant regime.” Black corresponds to the ancestral population. Mutants exist in higher fractions and
for longer periods with ecological interactions. Each mutant is colored by its ecological fitness, where red represents an fe value near 1 and
blue represents an fe value near 0. (b) Representative trajectory in the “many mutant regime.” Strong positive ecological interactions dominate
the stationary distribution of mutants (visually the mutants appear red, not blue). (c) Left: Stationary distribution of mutant ecological fitnesses
when the mutant-generating function is uniform across ecological fitness. Right: joint distribution density plot between intrinsic and ecological
fitness. (d) Same as c, however the mutant-generating function is now Gaussian centered about fe = 0.5.

ecological effects (which we propose calling the distribution
of ecological effects, DEE). As a result, it is difficult to even
speculate on what the null model ought to be.

Crucially, the analytical approximations derived herein can
be generalized to fit any assumed, or future measured, DEE.
While we assumed a uniform distribution, a Gaussian model
where the most positive and negative ecological interactions
are rare relative to more modest or noninteracting mutants
may be more accurate. As an example, the general stationary
distribution of mutant ecological fitnesses would become

P( fe) ≈ feμ

(1 − fe)
ρ0( fe) for μ � 1. (6)

Here, ρ0( fe) can be any theorized or measured distribution of
ecological effects. Equation (6) can be roughly interpreted as a
balancing of two opposing forces to produce a stationary state:
the probability ∝ feμρ0( fe) that a new mutant with fitness
fe arises and survives is counterbalanced by the probability
∝ (1 − fe)P( fe) that an existing mutant with fitness fe dis-
appears. As proof of principle, we numerically simulate the
distribution of mutant ecological fitnesses under an assumed
Gaussian DEE, and show the above analytical approximation
still holds. The results are qualitatively similar to the uniform
DEE and, strikingly, despite the rarity of mutants with posi-
tive ecological interactions, they still manage to dominate the
predicted stationary distribution of mutants [Fig. 2(d)].

F. Sufficiently large positive ecological interactions result
in a stable fixed point between mutant and ancestor

We now briefly consider the regime wherein the ecological
fitness of a mutant can sample values greater than 1. Put
another way, when the mutant population emerges, it may
emerge into an environment where it outcompetes its ances-
tor. Importantly, all emerging mutants still have a nonzero
fitness cost relative to the wild type and therefore as selec-
tion increases their frequency, their relative growth advantage
becomes a growth disadvantage, preventing a strong selec-
tive sweep. Though our earlier analytical approximations do
not apply for fmax > 1, the numerical simulations are ro-
bust in this regime. We find that the majority of stationary
distribution mutants are mutants with ecological fitnesses
larger than the ancestor, or fe > 1 [Fig. 4(a)]. This qual-
itative change in behavior above fe = 1 can be explained
in evolutionary game theory terms by a switch in the evo-
lutionary game being played. When fe < 1, the ancestor
outcompetes the mutant population at all population fre-
quencies. As a result, it is a question of when, not if, the
mutant population will be driven to extinction. When fe > 1,
however, the mutant population outcompetes the ancestor at
high ancestor frequencies, while the ancestor outcompetes
the mutant at high mutant frequencies (as a result of the
mutant fitness cost). This leads to a stable fixed point at
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(a)

(c)

(b)

(d)

FIG. 4. Positive ecological fitnesses above 1 result in a stable fixed point between mutant and ancestor. (a) Stationary distribution of
mutant ecological fitnesses when the mutant generating function has uniform probability in [0,1.10]. (b) Stationary distribution of mutant
intrinsic fitnesses. (c) Joint distribution density plot between intrinsic and ecological fitness reveals the size of the fitness cost now has a
significant impact on mutant survival. (d) Illustration of why two mutants with identical values of fe can result in different extinction times.
Colored arrows point to stabled fixed points between mutant and ancestor.

some ancestor frequency where the two populations have an
equal growth rate. This is particularly worrying in the case
of therapy-resistant mutants, because it suggests if such a
mutant emerges and survives the initial stochasticity of drift,
it will coexist at a sizable frequency in the population until
treatment.

Next, contrary to our previous results, the fitness cost of
the mutant plays an important role in determining the sta-
tionary distribution of mutants [Figs. 4(b) and 4(c)]. Here, we
see that only the mutants with the largest positive ecological
interactions and smallest fitness costs (intrinsic fitness = 1−
fitness cost) are represented at meaningful frequencies. This
result can be explained by the qualitative shift in evolution-
ary game for mutants where fe > 1. Previously, regardless
of the fitness cost, any mutant with fe ≈ 1 would grow at
that ecological fitness, as the mutant population never became
a meaningful fraction of the whole population [Fig. 4(d),
left]. However, as hinted at in the numerical simulations, fc

and fe combine to determine the stable fixed point between
the mutant and the ancestor [Fig. 4(d), right]. As a result,
even mutants with fe < 1 are no longer characterized by their

ecological fitness, instead they are characterized by their fit-
ness at the frequency determined by the stable fixed point.

G. Clinically observed lung cancer mutations confer positive
ecological interactions

EGFR TKIs are the first-line treatment for patients di-
agnosed with advanced NSCLC. While the development of
targeted TKIs has importantly extended overall survival times,
these drugs are rarely curative [39] and patients often recur
with TKI-resistant tumors. In addition, resistance acquisition
to EGFR inhibitors has previously been linked to the selection
of small preexisting mutant populations [53,54]. As a result,
EGFR-mutant NSCLC is an ideal system for studying preex-
isting resistance and where we would expect to find positive
ecological interactions between mutants and their ancestor.

To test our theory we genetically engineered (see Materials
and Methods section) three of the most commonly clinically
observed resistance mutations found in response to TKIs
[55,56]: BRAF-V600E, KRAS-G12V, and PIK3CA-E545K.
Then, using our previously described evolutionary game assay
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[23,40], we measured the ecological interaction between each
of these mutants and the ancestor PC9 cell line from which
they emerged.

Excitingly, we found that each of the three engineered mu-
tants had positive ecological interactions with their ancestor
(Fig. 5, bottom). In addition, these positive ecological interac-
tions are strikingly similar in both magnitude and shape to the
measured ecological interaction between the evolved mutant
and its ancestor (Fig. 5, top). While we already reported on the
ecological interaction between the evolved mutant and its an-
cestor as it was the motivator of this study [40], we performed
additional sequencing analysis (WXS and RNA-seq) and
identified several common clinical mutations present, distinct
from the engineered mutations: MET overexpression, CCND1
amplification, and KRASG12D mutation (Fig. 5, top).
Taken together, the engineered and evolved mutants combine
to survey approximately 70% of clinically known resistance
mechanisms to TKIs in NSCLC, and in all cases we observed
large positive ecological interactions ameliorating a sizable
fitness cost of resistance. Next, as a control, we measured the
ecological interaction between the engineered BRAF-V600E
and KRAS-G12V cell lines in coculture and did not observe
a positive ecological interaction (Fig. S3). This is unsur-
prising because a key aspect of our model is that positive
ecological interactions are enriched during coevolution and
thus should be more likely between ancestor and mutant,
not two mutants. These experimental results are harmonious
with our theoretical work and strongly support the hypothesis
that frequency-dependent ecological interactions can play a
critical role in the acquisition of resistance in evolutionary
diseases.

III. DISCUSSION

While much work has gone into quantifying clinically
problematic resistant bacteria, cancers, and viruses, we nearly
always characterize these clones in monoculture—entirely
outside the eco-evolutionary forces that selected for (or
against) them in the first place. In this work we set out to
provide the foundation for a rigorous and generalizable math-
ematical framework that incorporates frequency-dependent
ecological interactions and can be used to study their role
in preexisting resistance. This work both complements and
builds off of recent studies from a wide range of dis-
ciplines ranging from theoretical population genetics and
ecology to clinical trials across several biological kingdoms.
We demonstrate that the presence of ecological interactions
can significantly increase the probability of preexisting re-
sistance, in addition to shaping the distribution of mutants
likely to be present before treatment. We derive analytical
approximations of several quantities of interest including
extinction time, mean mutant population numbers, and the
underlying distribution of mutants, each as a function of
ecological fitness. Importantly, these results can easily be
generalized to any theorized distribution of ecological ef-
fects or future experimentally measured distribution. As an
important example, we show that even when we assume
positive ecological interactions are rare, they still end up as
a plurality of the stationary mutant frequency distribution.
Finally, in a model system for preexisting resistance, we

show common clinically observed mutants harbor positive,
frequency-dependent ecological interactions when cocultured
with their ancestor, providing strong evidence for our theory in
cancer. In addition, recent exciting work in bacteria provides
additional evidence, as frequency-dependent interactions re-
sulted in maintenance of otherwise costly antibiotic-resistant
populations in Escherichia coli [58] and Pseudomonas
aeruginosa [59].

It is also important to address several limitations of our
work. As we mentioned earlier, the DEE has never been ex-
perimentally measured. As a result, assumptions regarding the
distributional parameters have to be made in order to calculate
meaningful quantities of interest. While we did our best to
combat this by developing analytical models that are agnostic
to this distribution, the quantitative aspect of our results are
subject to the specifics of a model. Our hope is that the
analytical and numerical results herein, when combined with
the promising experimental work in NSCLC, motivate fu-
ture measurements of the DEE across diverse model systems.
Similarly, our own experimental validation is constrained to
one subsystem. Our predictions are broad and should apply
to many evolving populations where preexistence is evolved.
Therefore it is important that future studies should should aim
to test these theories not just in other cancers, but in other
organisms from HIV to drug-resistant bacteria. It is possible
that these principles provide the most explanatory power in
cancer and bacteria, where it is common to find highly dense
heterogeneous populations, in contrast to viruses, for exam-
ple. Finally, while the model aims to generally capture major
evolutionary forces that may underlie preexisting resistance,
it is still an abstraction of a much more complex clinical
scenario where the immune system, spatial dynamics, and
treatment adherence, to name only a few, can play major roles.

IV. MATERIALS AND METHODS

A. Cell culture

PC-9 human adenocarcinoma cells derived from undiffer-
entiated lung tissue were obtained from Sigma (Sigma, USA).
PC-9 cells were cultured in RPMI-1640 medium supple-
mented with 10% heat inactivated fetal bovine serum (FBS)
and 1% penicillin streptomycin solution at 37◦C with hu-
midity containing 5% CO2. Cells were split every 4 days to
maintain optimum confluency of approximately 80%–90%.

B. Engineering of mutant cell lines

To establish PC-9 cells stably expressing target genes,
HEK-293T cells were cotransfected using TransIT-Lenti
transfection reagent (Mirus, USA), with 500-ng psPAX2 (ad-
dgene, USA), 100-ng PMD2 (addgene, USA) and 500-ng of
target genes. Viral particles were collected after 48 h and used
to transduce PC-9 cells. Then, to establish ancestor PC-9 cells
stably expressing nuclear localized green fluorescent protein
(GFP), cells were transduced with pLVX-eGFP-Hygro (Vec-
torbuild, USA). In addition, to establish query cells expressing
fluorescently labeled PC-9 cells with a gene of interest, cells
were cotransduced with pLVX-mCherry-Hygro or pLVX-
mCherry-Puro and pLVX-PIK3CA-E545K-Bsd (Vectorbuild,
USA). Next, 72 h after transduction, cells were selected with
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FIG. 5. Common clinically observed resistance mutations in NSCLC harbor strong positive ecological interactions with their ancestor in a
model system of preexisting resistance. Stacked bar chart: Visual representation of the known resistance mechanisms to osimertinib, a third-
generation TKI and the current standard of care for EGFR-positive NSCLC. Mutation frequencies and categorical definitions from Leonetti
et al. [57]. Top: Evolved gefitinib-resistant NSCLC PC9 mutant (previously reported [40]) exhibits a positive ecological interaction with its
ancestor. Fresh sequencing analysis identifies clinically observed resistant mutations including KRASG12D, MET amplification, and CCND1
amplification (cell cycle gene). Bottom: Measured positive ecological interactions between engineered resistant mutants (KRAS-G12V top
left, PIK3CA-E545K top right, BRAF-V600F bottom) and their ancestor.
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200 µg/mL hygromycin, 5 µg/mL puromycin, and 5 µg/mL
blasticidin.

C. Drug sensitivity assay

Cells were harvested at 70%–80% confluence, stained with
trypan blue (Corning, USA), and counted with a TC20 Auto-
mated Cell Counter (Bio-Rad, USA). Luminescent-based cell
viability assays using CellTiter-Glo (CTG) reagent (Promega,
USA) were performed in a 96-well plate (Corning, USA). A
total of 3000 cells were plated in 90 µL of complete medium
per well in three replicates per drug concentration with a
Multidrop reagent dispenser (Thermo Fishers, USA). After
3 h of incubation, 10 µL of gefitinib, osimertinib, and erlotinib
(Cayman, USA) diluted in complete RPMI-1640 medium
were added to the cells. Compounds were tested in a threefold
dilution in a range of 0–1.8 µM, 0–3 µM, and 0–10 µM for
gefitinib, osimertinib, and erlotinib, respectively. After 72 h of
incubation, 25 µL of CTG reagent was add to the cells, then
incubated for 10 min at room temperature, and luminescence
was measured.

D. Game assay

PC-9 mutants stably expressing nuclear localized fluores-
cent signal ancestor PC-9 stably expressing nuclear localized
GFP were cocultured at different initial proportions of an-
cestor cells at a density of 1500 cells in 90 µL of fresh
medium. After 3 h of incubation, 10 µL of Dimethyl sulfox-
ide (DMSO) diluted in complete RPMI-1640 medium (final
DMSO concentration of 0.1% v/v) were added to the cells
in three replicates per initial proportion. Then time-lapse mi-
croscopy images were obtained for GFP and mCherry using
BioSpa automated incubator (BioTek, USA) every 4 h over
the course of 96 h. Then, images were processed with the
open-source software CELLPROFILER [60]. Images were back-
ground subtracted, converted to 8-bit, contrast enhanced, and
thresholded, then raw cell numbers were extracted.

E. Generalized Moran model details

In this work we consider a well-known generalized
Moran process, a model previously used to study frequency-
dependent evolutionary dynamics [45–47]. Briefly, we
consider a one-step birth-death process with states s ∈
{0, 1, . . . , N} and characterized by birth and death rates bi

and di with i ∈ {1, 1, . . . , N − 1}. As a result, this model
describes a fixed population size N , with s resistant mutants
and N − s ancestor population. We forgo mutation rate and
as a consequence the states s = 0 and s = N are absorbing.
We consider an evolutionary game with a 2 × 2 payoff matrix
such that

( R A
R (1 − fc) fe

A 1 1

)
.

As a result, we can write the expected payoffs in a popula-
tion of s mutants and N − s ancestor individuals as

P(R) = s − 1

N − 1
(1 − fc) + N − s

N − 1
fe P(A) = 1.

F. RNA-Seq

Paired-end reads are preprocessed using FASTP to trim
and quality filter the reads. Following the filtering, reads are
aligned to the GRCh38 reference genome via a STAR aligner.
Read quantification is done using SALMON on the extracted
transcriptome locations from spliced STAR alignment. Gene-
level abundance is aggregated from bootstrapped transcript
abundances using the R package TXIMPORT. The ARRIBA tool
is coupled with spliced alignments for fusion-transcript detec-
tion as well. Pathway level expression activities are quantified
using the R package GSVA and MSIGDBR for the hallmark path-
ways. The R package COMPLEXHEATMAP was used to generate
heat maps.

G. Whole exome sequencing

Paired-end whole-exome reads of ancestor and parental
lines were preprocessed using FASTP similar to RNA-Seq.
Alignment to the GATK (GATK best practices bucket) ver-
sion of the GRCh38 reference is done using a BWA-MEM

aligner. Following the alignment, variant calling pipeline ac-
cording to the GATK workflow, including duplicate marking
and variant calling via HAPLOTYPECALLER, was conducted.
Variants passing filtering based on hard-filtering are further
annotated using the variant effect predictor (VEP) tool. Ex-
ome alignments are further input to CNVKIT for copy-number
alterations. Using a flat reference for bias correction, log2
scaled abundances are generated for ancestor and resistant
strains. Copy-number segments are captured using circu-
lar binary segmentation and assigned to genes mapping to
the segment.

H. Code availability

Code used in this study is made openly available on GITHUB

(https://github.com/jamaltas/Preexistence).
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