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Controlling arbitrary observables in correlated many-body systems
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Here we present an expanded analysis of a model for the manipulation and control of observables in a strongly
correlated, many-body system, which was first presented by McCaul et al. [G. McCaul et al., Phys. Rev. Lett. 124,
183201 (2020)]. A field-free, nonlinear equation of motion for controlling the expectation value of an essentially
arbitrary observable is derived, together with rigorous constraints that determine the limits of controllability. We
show that these constraints arise from the physically reasonable assumptions that the system will undergo unitary
time evolution, and has enough degrees of freedom for the electrons to be mobile. Furthermore, we give examples
of multiple solutions to generating target observable trajectories when the constraints are violated. Ehrenfest
theorems are used to further refine the model and provide a check on the validity of numerical simulations.
Finally, the experimental feasibility of implementing the control fields generated by this model is discussed.
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I. INTRODUCTION

The study of the control of quantum systems has a rich
history [1], encompassing a diverse array of strategies. This
includes optimal control [2,3] where a system is steered to a
final target state using iterative optimization [4–6], possibly
under additional constraints [7,8]. Local control [9] forgoes
this iterative procedure and chooses a control field based on
a system response such that the expectation of a target oper-
ator is monotonically increased [10]. This has been applied
both to counteracting decoherence in molecular systems [11]
and control of magnetic nanoparticles [12]. Separate from
this is tracking control [13–18], where a physical system is
evolved in such a way that a chosen observable conforms to
(or “tracks”) a preselected trajectory. This procedure can be
thought of as local control applied to a time-dependent target
state.

Examples of tracking control abound, with applications as
diverse as singularity-free tracking of molecular rotors [14],
optimizing dynamics within the density matrix renormaliza-
tion group [3,15], and spectral dynamical mimicry, where a
shaped pulse is used to induce an arbitrary desired spectrum
in an atomic system [16]. While tracking control is far more
computationally efficient than optimal control (as it requires
one to simulate only a single evolution of the system, rather
than iteratively exploring the space of control fields), if one
attempts to track a trajectory that is inconsistent with the sys-
tem’s physically allowed dynamics, singularities in the control
field emerge and tracking breaks down. In a recent paper [19],
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a model for the tracking control of a many-electron system
was presented without derivation. One of this model’s main
advantages was the ability to explicitly identify when control
field singularities could occur. Here, we expand greatly upon
that work, in three principal directions.

First, the tracking model used in Ref. [19] is explored in
Sec. II. Starting from general considerations of an N-electron
Hamiltonian, a comprehensive derivation of the tracking equa-
tion is presented. Additionally, in Sec. III, we derive, for a
finite-dimensional system, the precise constraints on tracking
necessary both to avoid singularities and to guarantee a unique
evolution. A simple example where these constraints are
not obeyed and multiple solutions for the tracking field are
possible is also provided.

Given that in tracking control one recovers the expected
observable trajectory by design, a method of verifying that
the numerical calculations are physically valid is vital. To
this end, we detail in Sec. IV the application of an Ehrenfest
theorem to the model as a way both to verify simulations and
to remove nonphysical discontinuities from the control fields.

In Sec. V, we examine the tracking control strategy that
arises when the system model is continuous and the con-
sequences of this for the properties of the control scheme.
Finally, with the purpose of further exploring the experimental
requirements of the control protocol, we examine in Sec. VI
the performance of the control fields detailed in Ref. [19]
when the calculated fields are fitted to an experimentally fea-
sible set of parameters. We close in Sec. VII with a discussion
of the results and questions for future work.

II. TRACKING MODEL

A. Background

Our goal is to implement a tracking control [17] model
for a general N-electron system subjected to a laser pulse
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described by the Hamiltonian (using atomic units) [20]

Ĥ =
∑

σ

∫
dx

2
ψ̂†(x)[i∂x − A(t )]2ψ̂ (x)

+
∑
σσ ′

∫
dxdx′

2
ψ̂

†
σ ′ (x′)ψ̂†

σ (x)U (x − x′)ψ̂σ (x)ψ̂σ ′ (x′),

(1)

where A(t ) is the field vector potential, U (x − x′) is the
two-body interaction potential, and ψ̂σ (x) are the stan-
dard fermionic field operators satisfying {ψ̂†

σ ′ (x′), ψ̂σ (x)} =
δσσ ′δ(x − x′). Ultimately, we wish to calculate the control
field AT (t ), such that the trajectory of an expectation 〈Ô(t )〉
follows some desired function OT (t ) [13–16]. For the sake of
specificity, here we derive the control field AT (t ) necessary
to control the current expectation, but emphasize that an
expression can be derived for an arbitrary expectation using
the technique described in Sec. II C. We first reexpress the
model in an explicitly self-adjoint form using

ψ̂†(x)[i∂x − A(t )]2ψ̂ (x)

= ∂x[eiA(t )xψ̂σ (x)]†∂x[eiA(t )xψ̂σ (x)]. (2)

In this form, one may straightforwardly construct a continuity
equation for the density operator ρ̂(x) = ψ̂†(x)ψ̂ (x):

d

dt
ρ̂(x) = i[Ĥ, ρ̂(x)] = −∂xĴ (x), (3)

which defines the current operator Ĵ (x),

Ĵ (x) = 1

2i
[ψ̂†(x)∂xψ̂ (x) − ∂xψ̂

†(x)ψ̂ (x)] + A(t )ψ̂†(x)ψ̂ (x).

(4)
The current expectation is obtained from this expression
by taking expectations and integrating over space, i.e.,∫

dx〈Ĵ (x)〉 = J (t ). Noting that N = 〈∫ ρ̂(x)dx〉 is a con-
served quantity, one may straightforwardly invert Eq. (4) to
obtain the AT (t ) that corresponds to

∫
dx〈Ĵ (x)〉 = JT (t ):

AT (t ) = i

2N

∫
dx〈ψ̂†(x)∂xψ̂ (x) − ∂xψ̂

†(x)ψ̂ (x)〉(t ) + JT (t )

N
.

(5)

For systems with bosonic statistics, it is easy to show that the
control field equation is almost identical, but the definition of
the current operator picks up a negative sign, Ĵ (x) → −Ĵ (x).

B. Tracking control in a discrete model

While the equation for the tracking control field will,
in principle, describe tracking for an N-electron system, in
this paper we will provide a concrete illustration of its use
with a lattice model. To do so, we first discretize the model
Hamiltonian, using a as the lattice constant such that x = ja
and x′ = ka,∫

dx →
∑

r

a �⇒ δ(x − x′) → δ jk

a
, (6)

ψ̂σ (x) → ĉ jσ√
a

�⇒ {ĉ†jσ , ĉkσ ′ } = δ jkδσσ ′ , (7)

∂xg(x) → [g j+1 − g j]/a. (8)

FIG. 1. Schematic representation of the Fermi-Hubbard model.
Electrons hop between sites with an on-site repulsion of U , and a
Hermitian hopping amplitude scaled by the applied field �(t ).

After discretization and assuming periodic boundary condi-
tions, the Hamiltonian takes the form

Ĥ = −
∑
j,σ

1

2a2

(
e−i�(t )ĉ†j+1σ ĉ jσ + ei�(t )ĉ†jσ ĉ j+1,σ

)

+
∑
j,σ

1

a2
ĉ†jσ ĉ jσ +

∑
j,k,σ,σ ′

Uj−k ĉ†kσ ′ ĉ
†
kσ

ĉ jσ ĉ jσ ′ , (9)

where we have set �(t ) = aA(t ). From this discretized Hamil-
tonian, one is able to derive a continuity equation for ρ̂ j =∑

σ ĉ†jσ ĉ jσ ,

d ρ̂ j

dt
= 1

a
(Ĵ j − Ĵ j−1), (10)

Ĵ j = −i
1

a

∑
σ

(
e−i�(t )ĉ†jσ ĉ j+1σ − H.c.

)
. (11)

This continuity equation defines the current operator Ĵ =∑
j Ĵ j and has the important property of being composed

only from the kinetic part of the Hamiltonian. This means the
current operator is not explicitly dependent on the form of the
interaction Uj−k . As a result of this property, the construction
of a method to track the expectation of the current operator
does not depend on the specific form of the Hamiltonian’s
interparticle interactions. For this reason, we will restrict our
derivation to a specific Hamiltonian, but emphasize that the
results may be applied to any model with the form of Eq. (1).

From this point forward, we will use the one-dimensional
(1D) Fermi-Hubbard model [21] (see Fig. 1 for a schematic
representation) as a concrete example of the tracking strategy.
This model has the Hamiltonian

Ĥ (t ) = − t0
∑
j,σ

(
e−i�(t )ĉ†jσ ĉ j+1σ + ei�(t )ĉ†j+1σ ĉ jσ

)

+ U
∑

j

ĉ†j↑ĉ j↑ĉ†j↓ĉ j↓. (12)

As in the continuum case, we wish to find the vector potential
that will produce a specified current JT (t ) = 〈Ĵ〉. To do so, we
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take the current expectation,

Ĵ = −iat0
∑
j,σ

(
e−i�(t )ĉ†jσ ĉ j+1σ − H.c.

)
, (13)

and rearrange for �, expressing the nearest-neighbor expecta-
tion in a polar form,

〈ψ (t )|
∑
j,σ

ĉ†jσ ĉ j+1σ |ψ (t )〉 = R(ψ )eiθ (ψ ). (14)

In both Eq. (14) and later expressions, the argument ψ in-
dicates that the expression is dependent on a functional of
|ψ〉 ≡ |ψ (t )〉. Equation (14) can be used in conjunction with
Eq. (13) to yield

J (t ) = − iat0R(ψ )(e−i[�(t )−θ (t )] − ei[�(t )−θ (ψ )] )

= − 2at0R(ψ ) sin[�(t ) − θ (ψ )]. (15)

An important caveat that should be noted here is that if one
were to apply a time-dependent rotation to the system, the
current expectation would no longer depend explicitly on �(t )
[22], but instead there would remain an implicit dependence
through the state of the system |ψ〉. This is important, as in
order to define a control field which reproduces a tracking
current JT (t ), we invert Eq. (15). From this inversion, we
obtain the tracking control field �T (t, ψ ), which takes the
desired current expectation as a parameter,

�T (t, ψ ) = arcsin [−X (t, ψ )] + θ (ψ ), (16)

in which we have defined

X (t, ψ ) = JT (t )

2at0R(ψ )
. (17)

From Eq. (16), it is possible to eliminate the control field
entirely from the model Hamiltonian using the equality

e±i�T (t,ψ ) = e±iθ (ψ )[
√

1 − X 2(t, ψ ) ∓ iX (t, ψ )], (18)

where the above equality is obtained via Euler’s equation and
cos [arcsin (x)] = √

1 − x2. From this, we are able to define
the “tracking Hamiltonian” ĤT (JT (t ), ψ ), which takes the
target current JT (t ) as a parameter,

ĤT (JT (t ), ψ ) =
∑
σ, j

[P+e−iθ (ψ )ĉ†jσ ĉ j+1σ + H.c.]

+ U
∑

j

ĉ†j↑ĉ j↑ĉ†j↓ĉ j↓, (19)

P± = −t0[
√

1 − X 2(t, ψ ) ± iX (t, ψ )]. (20)

This leads to a field-free, nonlinear evolution for the wave
function given by

i
d|ψ〉

dt
= ĤT (JT (t ), ψ )|ψ〉, (21)

which is equivalent to evolving the system with the original
Hamiltonian given in Eq. (12) and the usual Schrödinger
equation i d|ψ〉

dt = Ĥ (t )|ψ〉, under the additional constraint
that �(t ) is chosen such that 〈Ĵ (t )〉 = JT (t ). After solving
Eq. (21), it is also possible to recover the tracking field �T (t )
via Eq. (16).

FIG. 2. Induced switching currents via tracking such that the
current models Eq. (22). Electron-electron interactions at strengths
of U = [0, 0.5, 1, 1.5]t0 are shown. The upper panel shows that the
necessary control field needed to reproduce this current is sensitive
to the correlation strength.

As a first test for the tracking strategy, we use it to
dynamically manipulate the current of a system so that it
changes abruptly from zero to nonzero and back, which can
therefore be used as a current “switch.” Forcing JT (t ) to
track an arbitrary function is possible, provided the tracking
conditions are obeyed (see Sec. III). We therefore assign the
target current JT (t ) to a boxlike switch function,

JT (t ) = 1

4(1 + e−2(t−T/5))
− 1

4(1 + e−2(t−4T/5))
. (22)

In Fig. 2, we show the result of applying the tracking
algorithm, along with the tracking phase �T (t ) necessary
to produce JT (t ) at several interaction strengths. While the
target current can be tracked at all selected model parame-
ters, increasing the on-site repulsion results in compensatory
oscillations within the control phase �T (t ). This reflects the
increasing nonlinearity in the equation of motion as one
increases the on-site repulsion.

C. Tracking arbitrary observables

Finally, we extend the derivation for tracking current to an
arbitrary observable Ô = Ô†, whose expectation O(t ) = 〈Ô〉
is not a function of �. In this case, the time derivative is

dO(t )

dt
= it0

∑
j,σ

(e−i�(t )〈[ĉ†jσ ĉ j+1,σ , Ô]〉 + H.c.)

− iU
∑

j

〈[ĉ†j↑ĉ j↑ĉ†j↓ĉ j↓, Ô]〉. (23)

From this evolution, we assign∑
j,σ

〈[ĉ†jσ ĉ j+1,σ , Ô]〉 = ROeiθO , (24)

B = −iU
∑

j

〈[ĉ†j↑ĉ j↑ĉ†j↓ĉ j↓, Ô]〉. (25)

With this substitution, we obtain an expression for the deriva-
tive of the observable in terms of the control field,

dO(t )

dt
= −2t0RO sin (� − θO) + B. (26)
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This can be inverted to obtain the tracking control field for an
arbitrary observable,

�O = arcsin

(
B − dO

dt

2t0RO

)
+ θO. (27)

From this, a tracking Hamiltonian and constraint can be de-
rived using the methods presented previously. The theoretical
considerations in the rest of this paper may be applied to track-
ing an arbitrary variable, but in the interests of clarity we shall
restrict our attention to tracking of the current expectation
using Eq. (19).

III. TRACKING CONSTRAINTS

In this section, we prove the following statement:
For a finite system, if the wave function |ψ〉 ≡ |ψ (t )〉 solves

Eq. (21) and satisfies the constraints

|X (t, ψ )| < 1 − ε1, (28)

R(ψ ) > ε2, (29)

where ε1, ε2 are any positive constants, then |ψ〉 is a unique
solution of Eq. (21) and therefore, by Eq. (16), �T (t ) is a
unique field which solves the current tracking problem.

Both of the constraints given by Eqs. (28) and (29) are nec-
essary conditions for ĤT (JT (t ), ψ ) to be Lipschitz continuous
(LC) over |ψ〉 [23]. In this case, the Picard-Lindelöf theorem
guarantees |ψ〉 has a unique solution depending on its initial
value when being evolved by the tracking Hamiltonian [24].

In Sec. III A, we formally show that under the constraints
given by Eqs. (28) and (29), the tracking Hamiltonian is
LC, while in Sec. III B, we provide a physical motivation
for these constraints. Finally, in Sec. III C, we provide a
simple example where the derived constraints do not hold and
multiple solutions for the tracking field are possible.

A. Proving Lipschitz continuity

We define the L2 norm ‖|ψ〉‖2 = √〈ψ |ψ〉 and spectral
norm [25],

‖Â‖L = sup
〈 ψ |ψ〉=1

‖Â|ψ〉‖2. (30)

These norms obey a submultiplicative property [26],

‖Â|ψ〉‖2 � ‖Â‖L‖|ψ〉‖2, (31)

which, when combined with the Cauchy-Schwarz inequality,
yields

|〈φ|Â|ψ〉| � ‖|φ〉‖2‖Â|ψ〉‖2 � ‖|φ〉‖2‖Â‖L‖|ψ〉‖2. (32)

We now proceed to prove that for the set of wave functions
which obeys Eqs.(28) and (29), the following inequality holds:

‖ĤT (JT (t ), ψ )|ψ〉 − ĤT (JT (t ), φ)|φ〉‖2 � LH‖|ψ〉 − |φ〉‖2,

(33)
where LH is some finite constant, and is the definition of LC
for the function ĤT (JT (t ), ψ )|ψ〉. In order to prove this, it is
convenient to establish some properties both for operators and
functionals of |ψ〉.

First, in finite dimensions, all linear operators are bounded,
which implies that they are also LC over the whole Hilbert
space,

‖Â(|ψ〉 − |φ〉)‖2 � ‖Â‖L‖|ψ〉 − |φ〉‖2. (34)

Additionally, the expectation of linear operators 〈ψ |Â|ψ〉 =
A(ψ ) is also LC on the space of wave functions (‖ψ‖2 = 1).
This is demonstrated by taking the identity

A(ψ ) − A(φ) = 〈ψ |Â|ψ〉 − 〈φ|Â|φ〉
= 〈ψ |Â(|ψ〉 − |φ〉) − (〈φ| − 〈ψ |)Â|φ〉, (35)

and applying the triangle inequality |x + y| � |x| + |y| to its
norm,

|A(ψ ) − A(φ)| � 2‖Â‖L‖|ψ〉 − |φ〉‖2. (36)

More generally, an arbitrary functional of |ψ〉, f : |ψ〉 →
C is LC over |ψ〉 if, for all |ψ〉, |φ〉 in its domain, it satisfies
the inequality

| f (ψ ) − f (φ)| � L f ‖|ψ〉 − |φ〉‖2, (37)

where L f is some finite constant. Taking two functionals
f (ψ ), g(ψ ), which are LC over |ψ〉 with Lipschitz constants
L f and Lg, the norm of their product h(ψ ) = f (ψ )g(ψ ) is

|h(ψ ) − h(φ)| = |[ f (ψ ) − f (φ)]g(ψ ) + f (φ)[g(ψ ) − g(φ)]|
� | f (ψ ) − f (φ)||g(ψ )| + | f (φ)||g(ψ ) − g(φ)|
� [L f |g(ψ )| + Lg| f (φ)|]‖|ψ〉 − |φ〉‖2. (38)

This means that if the functionals f (ψ ), g(ψ ) are LC and
bounded over the domain of ψ , then their product is also
LC. In the case of a product between an operator and an LC
functional, f (ψ )Â, a similar result to Eq. (38) is obtained:

‖ f (ψ )Â|ψ〉 − f (φ)Â|φ〉‖2

� ‖Â‖L[L f + | f (ψ )|]‖|ψ〉 − |φ〉‖2, (39)

i.e., if f (ψ ) is bounded and LC, then f (ψ )Â is also LC. Lastly,
sums of any LC operators or functionals will themselves be
LC by the triangle inequality.

Equipped with these properties, the most direct route to
proving Eq. (33) is to prove that each of the constituent
components of Eq. (19) is both LC and bounded, which by
Eqs. (38) and (39) and the triangle inequality is sufficient to
prove that the tracking Hamiltonian is itself LC in ψ .

The relevant parts of the Hamiltonian for which Lipschitz
continuity over |ψ〉 and boundedness must be demonstrated
are eiθ (ψ ) and P±. To prove the former is LC, we first consider
the nearest-neighbor expectation, using

∑
j,σ ĉ†jσ ĉ j+1σ = K̂ ,

〈ψ |K̂|ψ〉 = K (ψ ) = R(ψ )eiθ (ψ ). (40)
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This expectation is LC by Eq. (36), and bounded due to
Eq. (32) and the normalization of the wave functions. Com-
bining this result with the reverse triangle inequality ||x| −
|y|| � |x − y| further demonstrates that R(ψ ) = |K (ψ )| is
also LC and bounded. The final step in order to show eiθ (ψ )

is itself LC is to establish that R−1(ψ ) is LC under Eqs. (28)
and (29). This is easily established by

|R−1(ψ ) − R−1(φ)| = 1

R(ψ )R(φ)
|R(ψ ) − R(φ)|

� 1

ε2
2

‖K̂‖L‖|ψ〉 − |φ〉‖2, (41)

where in the second inequality we have utilized Eq. (29). By
Eq. (38), we therefore establish eiθ (ψ ) = K (ψ )

R(ψ ) is LC and is
bounded by definition.

The final term to tackle is P±. Since this is the only
term that involves our target JT (t ), we work directly in the
variable x = X (t, ψ ). The function f (x) = x is itself trivially
LC and bounded over this domain where Eq. (28) is satisfied.
It therefore only remains to check the Lipschitz continuity of
f (x) = √

1 − x2. Since this function is differentiable on the
interval I = [−(1 − ε1), 1 − ε1] which satisfies Eq. (28), by
the mean value theorem [27] the function is LC if | f ′(x)| � M
for all x ∈ I and M is finite. It is easy to show that

M = max
x∈I

| f ′(x)| = 1 − ε1

2
√

2ε1 − ε2
1

, (42)

and therefore P± is LC and bounded provided ε1 �= 0 and
<1. Note that the presence of ε1/2 in the tracking conditions
is necessary to exclude the neighborhood around which LH

becomes unbounded. As a result, we establish that under the
conditions of Eqs. (28) and (29), each of the components of
the tracking Hamiltonian is LC and bounded, meaning that the
Hamiltonian is itself LC. From this continuity, it follows that
the Picard-Lindelöf theorem is obeyed and |ψ〉 has a unique
solution depending on its initial value. It is interesting to note
that this result, derived from the analysis of the continuous
formulation (19), stands in sharp contrast to some discretized
approaches to tracking problems, in which multiple solutions
are possible [28].

B. Physical motivation

It is reasonable to ask whether the constraints imposed
upon ψ are well justified, and here we provide physical
motivation for them. First, the condition |X (t, ψ )| < 1 − ε1 is
easily justified by noting that if this is violated, P†

+ �= P− and
the tracking Hamiltonian in Eq. (19) is no longer Hermitian.
This constraint therefore corresponds to a restriction on the
currents that can be produced in a physical system to ensure
that the state undergoes appropriate unitary time evolution.

The restriction imposed by Eq. (29) is somewhat more
general as it does not make reference to the current being
tracked. Nevertheless, we shall demonstrate here that it is
reasonable to expect this property in physical systems. We
first consider K̂ in a diagonal basis, using the transformation
ĉ jσ = ∑

k eiωk j c̃kσ , where ωk = 2πk
L , and L is the number of

FIG. 3. An example of the contributions to K (ψ ) for L = 10
sites at half filling. In this example, the occupied states for one-spin
species (dashed blue) have been chosen so that they are in antiphase
with the other species (red), and therefore K (ψ ) = 0.

sites. The nearest-neighbor expectation then assumes the form

K (ψ ) =
∑
k,σ

[cos (ωk ) + i sin (ωk )]〈ψ |c̃†kσ
c̃kσ |ψ〉. (43)

In the diagonal space, we immediately see that every occupied
state in momentum space contributes components with equal
magnitude, but which differ by a phase. For an even number
of particles (as is always the case at half filling), it is math-
ematically very easy to construct an arbitrary wave function
such that each occupied state’s contribution is in antiphase
with another, making K (ψ ) = 0 and violating the tracking
constraint. A simple example of this is shown in Fig. 3.

While it is possible to construct a wave function which
violates Eq. (29), the question is whether such a wave function
is truly physical. To answer this, we consider Eq. (12) in the
tight-binding limit (U

t0
= 0). In the diagonalized basis, this

Hamiltonian is [29,30]

Ĥ (t ) = −2t0
∑
k,σ

cos[ωk − �(t )]c̃†kσ
c̃kσ . (44)

Notice that this shares a common eigenbasis with the nearest-
neighbor expectation. While the tracking strategy is insensi-
tive to the initial state, we consider here a system that begins
in the ground state |ψg〉, minimizing the system energy. Since
the Hamiltonian is diagonal in the occupation number basis,
the ground state will be a pure state [31] in this representation,
and has energy

〈ψg|Ĥ (0)|ψg〉 = −2t0
∑
k,σ

cos (ωk )δ(k, σ ) = Eg, (45)

where δ(k, σ ) = 〈ψg|c̃†kσ
c̃kσ |ψg〉 is 1 if the relevant mode is

occupied in the ground state, and zero otherwise.
Clearly, the occupation numbers of the ground state will

be such that Eq. (45) is minimized. If one has N = ∑
σ Nσ

particles on an L-site lattice, each spin species’ contribution
to the ground-state energy will consist of the Nσ momentum
modes closest to ωk = 0. From this counting argument, it is
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possible to give an analytic expression for Eg = ∑
σ Eσ ,

−Eσ

2t0
=

⎧⎨
⎩

1 + 2
∑ Nσ

2 −1
k=1 cos ωk + cos πNσ

L if Nσ > 0 is even,

1 + 2
∑ Nσ −1

2
k=1 cos ωk if Nσ is odd.

(46)
It is easy to see from this analytic expression that the only
cases for which Eg is zero are either the vacuum or when
every mode of both spin species is occupied, and the system
dynamics are completely frozen.

Having established that Eg is nonzero in all but the most
trivial of circumstances, we now substitute it into the nearest-
neighbor expectation to obtain K (ψg),

K (ψg) = 〈ψg|
∑
j,σ

ĉ†jσ ĉ j+1σ |ψg〉 = − Eg

2t0
+ λ, (47)

λ = i
∑

k

δ(k, σ ) sin (ωk ), (48)

which means that for the ground state, K (ψg) has a nonzero
real part and R(ψg) must be nonzero. Furthermore, since the
Hamiltonian and nearest-neighbor operators commute at all
times in the diagonal basis, the value of R(ψ ) is time indepen-
dent and therefore nonzero for all ψ that can be evolved from
the ground state.

In a system with nonzero U , we can consider only the
kinetic term, which has the form

ĤK = −t0
∑
j,σ

(ĉ†jσ ĉ j+1σ + ĉ†j+1σ ĉ jσ ). (49)

In this case, provided 〈ψ |ĤK |ψ〉 �= 0, an analogous argument
can be made to justify Eq. (29). For this reason, we can
consider that this constraint corresponds to the condition that
there is some kinetic energy in the system, and the electrons
have not been completely frozen (a natural precondition for
observing any current).

We conclude this section with the observation that while,
in principle, the derived constraints are highly nonlinear in-
equalities in |ψ〉, in practice, simulations confirm the expec-
tation that even at high U

t0
, Eq. (29) is obeyed (see, e.g.,

Fig. 7). Furthermore, it is relatively easy to satisfy Eq. (28)
via a heuristic scaling of the target to be tracked, as these
constraints limit only the peak amplitude of current in the
evolution, and otherwise allow for any function to be tracked
when appropriately scaled. If one is concerned only with
reproducing the shape of the target current, then using a
scaled target Js(t ) = kJT (t ) such that |Js(t )| < 2at0R(t ) will
allow tracking unproblematically. Alternately, if one treats the
lattice constant a as a tunable parameter, this can always be set
for the tracking system so as to satisfy |X (t, ψ )| < 1 − ε2.

Singularities in the control field are a common occurrence
in tracking control, which often make a specified trajectory
impossible to reproduce [14,17,32]. While singularities are
present in the unconstrained model presented here, they are
easily identified and avoided using the constraints derived
above.

0 2 4 6 8 10

Time (cycles)

−1.5π

−1π

−0.5π

0π

0.5π

1π

1.5π

Φ
(t

)

Φ(t)

ΦT (t)

FIG. 4. Control fields driving a U = 0 system, each of which
generates the same current. Here there are multiple solutions, �(t ) �=
�T (t ), due to the violation of Eq. (28) at �(t ) = ± π

2 .

C. Multiple solutions

We conclude this section with a demonstration that when
the derived constraints of Eqs. (28) and (29) are not both satis-
fied, multiple solutions for |ψ〉 and hence �T (t ) are possible.
To simplify the algebra, we consider a U = 0 system, where
θ (ψ ) = 0 regardless of the field applied when evolving from
the ground state.

Now consider a situation where one uses tracking simply
to reproduce the current produced by some field �(t ), i.e.,
JT (t ) = J (t ), and if the solution is unique, �T = �(t ). Ap-
plying tracking to this situation, if

�(0) = 0, |�(t )| <
π

2
, (50)

then the solution is unique and �T (t ) = �(t ).
If, however, there is a point where |�(t )| = π

2 , then
X (t, ψ ) = 1 and Eq. (28) is violated. If the control field is
continuous, then any �(t ) which does not obey Eq. (50) also
violates Eq. (28). Figure 4 confirms this violation, where both
control fields generate the same current [shown in Fig. 6(a)],
but have different functional forms.

The multiplicity of the solutions shown can be understood
physically in a simple manner. Reproducing the target cur-
rent only requires that sin[�(t )] = sin[�T (t )], but identical
dynamics requires e±i�(t ) = e±i�T (t ). The latter condition is
much stricter, and only coincides with the tracking require-
ments when Eq. (50) is also obeyed. This phenomenon is
illustrated in Fig. 5, where crossing the threshold produces
two solutions that will track the target observable. It is
therefore possible to generate tracking control fields which
reproduce the target, but have quite different dynamics and,
hence, multiple solutions for |ψ〉 and �T (t ).

We conclude this section with the observation that even in
the case that |ψ〉 is unique, the tracking field �T (t ) defined
in Eq. (16) will only be unique modulo 2π . This constitutes
a nonuniqueness in the tracking field at each time step.
Fortunately, one is able to appeal to another physical principle
to eliminate this nonuniqueness, namely, that the system obey
an Ehrenfest theorem for current.
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FIG. 5. When reproducing a current, while |�(t )| < π

2 , the so-
lution is unique and �(t ) = �T (t ). If, however, at some time t0,
�(t0) < π

2 and at the next time step �(t0 + �t ) = π

2 + α, then
the solution �T (t0 + �t ) = π

2 − α will generate the same current,
but e±i�T (t0+�t ) = e±2iαe±i�(t0+�t ), breaking the dynamical symmetry
between the two systems.

IV. EHRENFEST THEOREMS

We now turn our attention to the question of verification
of numerical simulations. Given that the tracking strategy
will, by definition, reproduce the trajectory one desires, it
is important to have an independent check that tracking has
been achieved via a physical evolution rather than numerical
aberrations. A particularly sensitive test of the physicality of
a numerical simulation is checking that expectations obey the
relevant Ehrenfest theorems (see, e.g., Ref. [15]). These relate
derivatives of a given expectation to other expectations. In
the Hubbard model, there is an Ehrenfest theorem for J (t ),
namely,

dJ (t )

dt
= eat0e−i�(t )

∑
j,σ

(
〈[Ĥ (t ), c†jσ c j+1σ ]〉

− d�(t )

dt
〈c†j,σ c j+1,σ 〉

)
+ H.c., (51)

which must be respected if the evolution is physical.
An important feature of the tracking Hamiltonian is that

although the tracked variable will be reproduced by construc-
tion, there is no guarantee that any other observables will be
tracked. This means that we only know a priori the left-hand
side of Eq. (51), which will correspond by construction to dJt

dt ,
and can therefore verify that a simulation respects physical
principles by checking that the independent expectations from
the right-hand side of Eq. (51) are correct. To do so, we
assign to the commutator in the first term of (51) the following
shorthand:

1

U

∑
j,σ

〈[Ĥ (t ), c†jσ c j+1σ ]〉 = C(ψ )eiκ (ψ ), (52)

from which we obtain an analytic expression for the current
derivative in terms of the independent expectations defined by

−1

0

1

d
J d
t

(a)

0 2 4 6 8 10

Time (cycles)

−2

0

2

d
J d
t

(b)

Numerical gradient

Analytical gradient

FIG. 6. Comparison between the numerical current gradient and
the analytic prediction calculated via Eq. (53) for both (a) U

t0
= 0 and

(b) U
t0

= 7 when driven by the �(t ) shown in Fig. 4.

Eqs. (14) and (52):

dJ (t )

dt
= − 2eat0

d�(t )

dt
R(ψ ) cos [�(t ) − θ (ψ )]

− 2eat0UC(ψ ) cos [�(t ) − κ (ψ )], (53)

which provides a valuable consistency check for numerical
simulations.

The Ehrenfest theorem also resolves the problem of �T (t )
being only unique modulo 2π when |ψ〉 is unique. If at time
t,�T (t ) correctly reproduces JT (t ), then �T (t ) → �T (t ) +
2nπ , n ∈ Z will generate the same current. This means that
at each time, one in fact has an infinite number of choices for
�T (t ). This nonuniqueness leads to �T (t ) being nondifferen-
tiable. To see this, consider

d�(t )

dt
= lim

�t→0

�T (t + �t ) − �T (t )

�t
. (54)

If the derivative exists for this solution, then the switching
solution to (for instance) �T (t + �t ) → �T (t + �t ) + 2nπ

would render �T nondifferentiable, as the limit on the right-
hand side of Eq. (54) would not exist. For the Ehrenfest
theorem to be meaningful, however, d�(t )

dt must exist. For this
reason, the additional solutions resulting from adding integer
multiples of 2nπ at any time cannot be admitted as physical.
Equation (53) uniquely specifies d�(t )

dt , and stipulating that
the evolution must obey this means that for a given initial
condition, �T (t ) has a unique solution. To test the Ehrenfest
theorem, we take two systems at U = 0 and U = 7t0, and
drive them with the �(t ) shown in Fig. 4. All results are
obtained with a numerically exact time propagation of the
correlated state. More details for these reference systems can
be found in Ref. [19].

Figure 6 compares the dipole acceleration dJ (t )
dt calculated

using Eq. (53) to the numerical gradient. It can be seen that
both calculations align perfectly, as they must for the system
evolution to be considered physical. Extending this to tracking
control, Fig. 7 provides an example demonstrating that the
Ehrenfest theorem is obeyed when tracking the current of
a different system. This highlights the fact that the theorem
is obeyed in two systems with the same current gradient,
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−1

0

1

d
J d
t

Original

Tracking

2

4

6

R
(ψ

)

0 2 4 6 8 10

Time (cycles)

0.0

0.5

1.0

C
(ψ

)

FIG. 7. When tracking the original J (t ) from the U = 0 system
in the U = 7t0 system, we find that dJT

dt when calculated via Eq. (53)
agrees with the numerical gradient (top panel). This is despite the
fact that the untracked expectations R(ψ ) and C(ψ ) used in Eq. (53)
have different trajectories for each of the two simulations.

despite the fact that the nontracked expectations do not match
between simulations.

The verification provided by Ehrenfest theorems is par-
ticularly useful for tracking in high-U

t0
simulations, when

θ (ψ ) exhibits large oscillations. When this angle is calculated
numerically, it is given a value between [−π, π ]. If on a time-
step update this threshold is crossed, a numerical discontinuity
is introduced by the assignment θ (ψ ) = ±π ± δ → ∓π ± δ.
The Ehrenfest theorem is sensitive to this artificial disconti-
nuity, and can therefore be used to correct it in both θ (ψ ) and
�T (t ). An example of a control field where this correction is
necessary is shown in Fig. 8.

V. TRACKING CONTROL IN CONTINUOUS SYSTEMS

The tracking conditions and behaviors derived in the
previous sections were obtained under the assumption of a
finite-dimensional system. We now examine the consequences
for these properties when performing tracking control in a
continuous system. To do so, we consider modeling a single
active electron in an atomic system, coupled to an electric field
E (t ). This is described by the Hamiltonian

Ĥ (t ) = 1
2 p̂2 + V (x̂) − E (t )x̂. (55)

Tracking control in this model has previously been success-
fully implemented for tracking 〈x(t )〉 in Ref. [16]. To make

FIG. 8. While �(t ) − θ (ψ ) is always constrained to lie between
[− π

2 , π

2 ] modulo 2π , both θ (ψ ) and �(t ) can individually undergo
large oscillations, which introduce numerical discontinuities. These
unphysical discontinuities can be identified by appealing to the
Ehrenfest theorem, and removed so as to enforce Eq. (51).

contact with the discrete models considered previously, we
apply the Peierls substitution [33]. This amounts to applying
a time-dependent unitary transformation Û (t ) = e−iA(t )x̂ to
obtain an equivalent Hamiltonian in the rotating frame,

Ĥ (t ) = 1
2 e−iA(t )x̂ p̂2eiA(t )x̂ + V (x̂), (56)

where A(t ) = ∫ t
0 dt ′E (t ′) is the vector potential. An appro-

priate tracking variable in this model is 〈x(t )〉 or its time
derivatives. In order to relate A(t ) and the target expectation,
one must discretize the model either in time or space. If one
takes a spatial discretization, using a lattice {x j} = { ja}, then
one obtains a hoppinglike Hamiltonian,

Ĥ → − 1

2a2

∑
j

(e−iaA(t )|x j+1〉〈x j | + eiaA(t )|x j〉〈x j+1|)

+
∑

j

[
V (x j ) + 1

a2

]
|x j〉〈x j |. (57)

From this discretization, it is possible to derive a tracking
equation for 〈 dx(t )

dt 〉,〈
dx(t )

dt

〉
= −Ra(ψ )

2a2
sin [aA(t ) − θa(ψ )], (58)

where∑
j

〈ψ |(|x j+1〉〈x j | − |x j〉〈x j−1|)|ψ〉 = Ra(ψ )eiθa . (59)

This tracking equation has precisely the same form as those
derived in Sec. II, and the same analyses concerning tracking
constraints and nonuniqueness can be applied to tracking
〈 dx(t )

dt 〉 with identical results.
If one instead works in the continuum, it is possible to

obtain a tracking equation for 〈x(t )〉 by discretizing time to
obtain

〈x̂(t + dt )〉 = 〈x̂(t )〉 + 1

2
dt

[〈
dx

dt
(t )

〉
+

〈
dx

dt
(t + dt )

〉]

+ 1

4
dt2

[〈
d2x

dt2
(t )

〉
+

〈
d2x

dt2
(t + dt )

〉]
+ O(dt3),

(60)

where a midpoint rule has been applied to the discretization
of the expectation derivatives. Substituting for the expec-
tations 〈 dx(t )

dt 〉 = 〈e−iA(t )x̂ p̂eiA(t )x̂〉 and 〈 d2x
dt2 (t )〉 = −〈∂xV (x̂)〉

yields the tracking equation for a continuous system:

A(t + dt ) = − 2

[
〈p̂〉 − 〈x̂(t + dt )〉 − 〈x̂(t )〉

dt

]

− A(t ) + dt〈∂xV (x̂)〉 + O(dt2). (61)

This tracking equation reduces to exactly that derived in
Ref. [16] if one once again applies the midpoint approxima-
tion to express A(t + dt ) − A(t ) = dt

2 [E (t + dt ) + E (t )].
While this equation will successfully track the target

expectation, its continuum nature means that performing a
similar Lipschitz analysis is extremely challenging, if not
impossible. Note also that unlike in the spatial discretization,
if one includes dissipation in the equation of motion, this will
result in an additional term in Eq. (61).
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TABLE I. Fit parameters for �̄T (t ) when tracking U = 0 in the
U = t0 system.

1 2 3

E j

E0
0.52 3.1 × 10−2 4.93 × 10−3

ω j

ω0
1.00 3.01 4.93

δ j 0 π 1.3π

μ = 4.72T α = 1.12 × 10−2T −2

Unlike in the discrete case, the functional dependence of
the tracked expectation on the control field is not explicitly
periodic, and the nonuniqueness observed in the previous
section as a consequence of this is also removed. From this,
we may conclude that while the tracking control strategy
may be used in continuous systems, the advantage of precise
tracking constraints, and the phenomena of nonuniqueness
are only manifestly present in a finite-dimensional context.
This highlights another subtle difference between finite- and
infinite-dimensional representations of quantum phenomena
[34], although in practice any system we wish to simulate
must on some level be restricted to a finite-dimensional ap-
proximation.

VI. EXPERIMENTAL FEASIBILITY

Although the material mimicry done in Ref. [19] demon-
strates that the tracking strategy is successful in silico, there
remains a question of the experimental feasibility of gen-
erating the laser pulses prescribed by the tracking strategy.
Although it is possible to implement a control scheme which
reflects experimental constraints [7,8], this in general does not
guarantee an exact match with the target. In order to guarantee
exact tracking in Ref. [19], neither the intensity nor bandwidth
of the driving field was constrained.

As a first test of the experimental feasibility of our method,
we examine the effect of fitting the control field obtained from
the material mimicry in Ref. [19] to a limited number of D
distinct frequencies, ω j . As targets, we consider the U = 0
and U = 1t0 systems driven by the reference �, given by

�(t ) = a
E0

ω0
sin2

(
πt

T

)
sin(ω0t ), (62)

where T is the total evolution time, and �(t ) shown in Fig. 5.
We then generate the tracking field �T (t ) necessary for each
system to track the reference spectrum produced by the other
system, before fitting this to a model �̄T (t ).

For the U = t0 system tracking the reference current gen-
erated by the U = 0 system, we fit �T (t ) to the model,

�̄T (t ) = �(t ) + fE (t )
D∑

j=1

aT Ej

ω j
sin(ω jt − δ j ), (63)

where fE (t ) is a two-parameter envelope function given by

fE (t ) = e−α(t−μ)2
sin2

(
πt

T

)
. (64)

Using this model, we are able to obtain a reasonable fit for
�̄T for D = 3, with the relevant laser field parameters shown

Time (cycles)

FIG. 9. Tracking current in the U = t0 system. Here, J (t ) is the
current produced by �(t ), while J̄T (t ) is the current produced by the
best-fit control field �̄T (t ). The target is the current produced by �(t )
in the U = 0 system.

in Table I. The results of driving the system with the fitted �̄T

are shown in Fig. 9. We find that the fitted control field tracks
the target reasonably well, accurately reproducing the first five
harmonics of the target current. When compared to untracked
driving with �(t ), the performance of �̄T in reproducing the
target current is markedly superior.

When tracking the U = t0 reference current in the U = 0
system, the fitted model is amended slightly,

�̄T (t ) = fE (t )
D∑

j=1

aT Ej

ω j
sin(ω jt − δ j ), (65)

but retains the same functional form for the envelope function.
Once again, reasonable fits are obtained for D = 3, with pa-
rameters given in Table II. Results for the currents generated
by this fitting, �̄T , are shown in Fig. 10. When examining
the frequency space, the fitted control field does not perform
as well when compared to the previous case, but this is to be
expected given the broadband nature of the target field. In the
time domain (where the control field phases are relevant), we
find �̄(t ) is still able to capture the most prominent features
of the target current, and once again performs markedly better
than using the reference �(t ).

TABLE II. Fit parameters for �̄T (t ) when tracking U = t0 in the
U = 0 system.

1 2 3

E j

E0
0.89 0.27 4.5 × 10−2

ω j

ω0
1.07 3.12 3.86

δ j 0.12π 0.48π −0.41π

μ = 0.6T α = 0.15T −2
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Time (cycles)

FIG. 10. Tracking current in the U = 0 system. Here, J (t ) is the
current produced by �(t ), while J̄T (t ) is the current produced by the
best-fit control field �̄T (t ). The target is the current produced by �(t )
in the U = t0 system.

VII. DISCUSSION

In this paper, we have expanded on the work presented in
Ref. [19]. In addition to providing a more complete deriva-
tion for the tracking model’s equation of motion, constraints
guaranteeing Hermiticity and a unique evolution were rigor-
ously derived. Although these constraints restrict the size of
imitable currents in tracking, this can be circumvented either
by scaling the current one wishes to track or modifying system
parameters such that the constraints are obeyed. The ability
to transparently identify and remove singularities via scaling
represents a tangible advantage over more generic tracking
strategies [14,17,32].

The derived constraints of Eqs. (28) and (29) also highlight
an interesting ambiguity in the tracking model, namely, that
in some circumstances multiple control fields will track the
same target expectation. This raises a question for future
investigations about the enumeration of these solutions and
how their dynamics differ. An Ehrenfest theorem for the
tracked expectation was also introduced for the purpose of

verifying the consistency of the numerics with the constraints
of physical principles. Insistence that this Ehrenfest theorem
be obeyed removes unphysical discontinuities that can arise
from the periodic effect of �(t ) on the dynamics.

In investigating the potential to realize this tracking exper-
imentally, we found that in the considered cases, reasonable
approximations of the target currents could be obtained using,
at most, three frequencies in addition to the reference field
�(t ). This suggests that some form of tracking control is
achievable with current technology. Finally, the same concepts
used to derive the model presented here could potentially
be applied to optimal dynamic discrimination (ODD). This
problem is essentially the converse to that of tracking control,
in which one distinguishes very similar quantum systems
using the dynamics induced by properly shaped laser pulses
[35,36]. Given that the requirements for discrimination are
similar to those for tracking control, the former may benefit
from the techniques presented here.
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