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Linear mechanical oscillators have been applied to measure very small forces, mostly with the help of noise
suppression. In contrast, adding noise to nonlinear oscillators can improve the measurement conditions. Here,
this effect of stochastic resonance is demonstrated in a macroscopic torsion oscillator, for an optomechanical
nonlinear potential. The signal output is enhanced for a subthreshold electronic signal. This nonlinear oscillator
serves as a model system for the enhancement of signal-to-noise ratio in high precision optomechanical
experiments.
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The measurement of very weak forces �1� has great im-
portance as it quite often tests our basic understanding of the
fundamental physical laws. In such measurement systems,
noise is almost universally an unwanted effect as it imposes
a limitation of the measurement sensitivity and precision.
Various noise types have to be considered especially in high
precision weak force measurements. Prominent examples in-
clude gravitational experiments �1,2�, the measurement of
weak radiation pressure effects �3,4�, and combined opto-
mechanical systems �5,6�.

A typical example for a measurement system with ex-
tremely high precision, in which the effect of radiation pres-
sure is non-negligible, is a gravitational wave detector �7�.
Here, the combined optomechanical system shows different
characteristics and physical phenomena such as the optical
spring effect and multistability �8� become important. While
the fundamental limits for noise reduction in linear systems
are well characterized, both theoretically and experimentally
�9,10�, a totally different picture emerges for a combined
nonlinear optomechanical multistable system. In such a sys-
tem, stochastic resonance �SR� �11,12� may appear where by
adding stochastic noise one can enhance the signal-to-noise
ratio �SNR� in precision measurements. Furthermore, if one
can synchronize the system’s natural interwell transition rate,
the so-called Kramers rate �13�, to the frequency of a very
weak subthreshold harmonic signal, this may lead to an in-
creased system response �14�. The effect of SR has been
observed in a few systems, such as bistable ring lasers, semi-
conductor devices, nanomechanical devices, and neuronal
physiological spiking processes in cells �12,15,16�.

Here, we report the observation of stochastic resonance in
a macroscopic optomechanically coupled oscillator. We
implemented a thermal-noise limited torsion oscillator that is
sensitive to femto-Newton level weak forces �4�. Further-
more, the oscillator is coupled to an optical cavity, and its
dynamics now follow an asymmetric multistable opto-
mechanical potential �8�. We apply a weak electronic signal
and observe an SR-like output enhancement. This signal am-
plification process agrees well to a theoretical model but also

shows major deviations from the predictions given for a
symmetric bistable potential.

A linear system yields equal SNR for the input and the
output signal �17�. In contrast, an SR system exhibits in-
creased output SNR for an increased amount of input noise.
This counterintuitive concept can be understood by consid-
ering an overdamped oscillator in a double-well potential
�see Fig. 1�. For a torsion balance oscillator with angular
position variable �, the equation of motion reads

2I�*�̇ − a�3 + b� = TS cos �St + I��t� , �1�

when overdamping ��̈=0� is assumed. TS is the amplitude of
an external signal torque, modulated at a frequency �S, and
��t� represents a time-dependent angular acceleration due to
added thermal noise �10�. The total damping rate �* is the
system’s friction parameter, and I the moment of inertia. Pa-
rameters a and b represent the system’s scaled potential pa-
rameters. Such an oscillator’s static bistable potential U��� is

U��� =
a

4
�4 −

b

2
�2, �2�

with two angular position minima at ��m= ��b /a, sepa-
rated by a potential energy barrier of height �U=b2 /4a. Un-
less the total noise power is much smaller than the given
potential barrier, the oscillator seeks stable angular positions
around ��m, while the additional noise fluctuation torque
I��t� causes occasional transitions of the oscillator between
the two position minima. With increasing noise, the probabil-
ity of noise-driven transitions increases, quantified by the
Kramers rate �13,14�
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FIG. 1. Simple double-well potential �see text�.
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rK =
�m�b

2��*
e−�U/UD, �3�

which gives the average rate of interwell transitions in a
double-well potential with a smooth curvature at the energy
barrier. Here, �m

2 =U���m� / I and �b
2= �U���b� / I� are the

squared mechanical frequencies at the potential minima ��m
and at the potential barrier �b, respectively. U���� is the
system’s total local torsion constant. The value UD=kBT is
the thermal noise energy in the system at the oscillator’s
equivalent noise temperature T, with the Boltzmann constant
kB �10�.

The noise-dependent SNR for the system response in the
presence of the external modulation �14,17,18� is

�SNR� = �� US

UD
�2

rK � � US

UD
�2

e−�U/UD, �4�

where �
US

UD
�2 represents the ratio of power spectra of signal

and noise, respectively. The exponential term in both Eqs. �3�
and �4� represents the Boltzmann energy distribution in the
system for thermal excitation, which is dominant for small
UD. The expression in Eq. �4� implies a signal energy US
=TS�m smaller than the bistable potential’s energy barrier
�U, and in addition requires the adiabatic approximation
�S	�m, which means that the system returns to its equilib-
rium position much faster than a change in the external
modulation signal occurs. SNR reaches a maximum for a

noise level ŪD=�U /2. At this level, the interwell transition
rate is synchronized with the external modulation, such that
the Kramers rate is twice the external signal frequency, rK
=�S /�.

A common way to quantify SNR is to calculate the power
spectral density of the system’s signal output, compared to
the spectral background, both evaluated at the input signal
frequency �12,16�. However, for the multistable system used
here, a residence time analysis method is more appropriate
�14�. Using a threshold filter, this evaluation prefilters irrel-
evant intrawell dynamics from the data, giving a discrete
position signal. Then, a statistical analysis of the distribution
of residence time intervals in either potential level is calcu-
lated, and SR is quantified �14� as the total number of inter-
well transitions around the signal’s half period T /2=� /�S,
for changing noise energy levels. Comparing such events

with the total number of possible transitions shows the de-
gree of coherence between the excitation and the system’s
noise-dependent transition rate, where full coherence means
a perfect synchronization of the system’s Kramers rate with
the excitation. This coherence result is proportional to SNR,
with a typical SR-like “resonant” distribution. Higher order
odd harmonic contributions can be added to the signal, e.g.,
for square wave excitation �12,19�. The discretization
method can be expanded for the multistable optomechanical
potential by considering n discrete levels, where the filter
threshold levels are determined from the positions with least
residence probability.

The experimental system is shown schematically in Fig.
2. It consists of a torsional oscillator �9� made of a gold-
coated glass plate, 50 mm
10 mm
0.15 mm in size, dou-
bly suspended on a 15 cm long, 25 �m diameter tungsten
wire. The oscillator body has a mass of 	0.2 g and a mo-
ment of inertia I=4.6
10−8 kg m2. The measured torsion
constant is �=2.2
10−7 Nm / rad. The torsion pendulum has
a natural frequency of f0=0.36 Hz with a quality factor Q
	2600.

A laser beam is reflected from the center of the oscillator
and detected by a high-sensitivity quadrant diode detector
followed by a lock-in detector �20�. The oscillator’s angular
position voltage signal is digitized at a sampling rate of
5 kHz. This measurement scheme has an angular position
sensitivity of 2 nrad Hz−1/2, which equals a linear displace-
ment of the oscillator arm of 0.4 Å with respect to the feed-
back electrodes. Subsequently, the signal is used as the input
of a computerized, digital control loop. The control signal is
converted to an analog output signal applied to two elec-
tronic feedback electrodes, which enables efficient control of
the balance’s dynamics �21�. Besides other possibilities, this
feedback system allows one to generate proportional and dif-
ferential control schemes, of which the differential scheme
enables active derivative damping of the oscillator by adjust-
ing the total friction parameter �*. The dominant noise
sources of the laboratory environment in the relevant fre-
quency band f0 are of seismic origin. However, the analy-
sis of the damped oscillator’s response to this kind of noise
shows essentially a white excitation spectrum �10�. Thus, a
fine tuning of the relevant parameters precisely controls the
oscillator mode’s thermal noise energy UD. Although this
implies a dependence between friction and noise, the method
is found to give precisely adjustable noise levels while the
total friction only changes slightly.

FIG. 2. �Color online� Experi-
mental scheme. The torsion bal-
ance oscillator �a� is a precision
force measurement device, sensi-
tive down to the fN range. Linear
and nonlinear control techniques
exist for the applied electrostatic
feedback �b�. The stable optical
coupling into a hemispherical cav-
ity is feasible due to the torsion
oscillator’s horizontal alignment.
More details in the text. LIA,
Lock-in amplifier.
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For the generation of optomechanical coupling, the oscil-
lator body’s gold-coated glass plate serves as the moving flat
mirror of a hemispherical optical cavity �8�. A second spheri-
cal mirror with a curvature radius of 25 mm is rigidly
mounted opposite to the glass plate, at a distance of
12.5 mm. When a second laser with a wavelength of
	660 nm is coupled in, this cavity forms Laguerre-Gaussian
TEM00 and TEM20 modes with a free spectral range of the
fundamental mode at 	13.5 GHz. The optical cavity has a
low finesse of F=11, giving a mean mirror reflectivity of
R=0.87. The oscillator’s absolute measurement sensitivity is
100 fN or 15 �W of optical power for the detection of ra-
diation pressure in total reflection �4�. A high vacuum
�10−7 mbar� environment encloses the setup, which itself is
mounted on top of an active vibration isolation system.

The optomechanical potential shown in Fig. 3 exhibits
several nonlinear effects, such as angular position multista-
bility and hysteresis �5,8,22�. This potential is used for a
measurement of optomechanical SR. Experimentally, the me-
chanical torsion constant of the free system is electronically
lowered to �=9.6
10−8 Nm / rad, equal to a mechanical os-
cillation period of T0=4.3 s. This makes the additional opti-
cal potential dominant. Then, the torsion balance is opto-
mechanically coupled using a cavity optical input power of
Pin=32 mW. The two centered TEM00 mode potential
minima �at 	20 �rad and 	36 �rad� have an average po-
tential depth of 	20 aJ. The optical spring effect �8� in-
creases the local optomechanical torsion constant to �os
=2.2
10−6 Nm / rad, equal to an oscillation period of 0.9 s.
This “optical spring constant” slightly increases from one
potential minimum to the next, due to the local potential
curvature �see Fig. 3�. Here, the weak modulation signal is
an electronic square wave applied to the feedback electrodes,
with a frequency �S=2�
100 mHz and a torque amplitude
of TS=0.79 pNm. This gives a subthreshold signal energy
US=TS�m=6.2 aJ.

The upper left plot of Fig. 4 shows five discrete data sets
of 300 s each, with applied modulation signal, for a noise
energy ranging from UD=4.4 aJ �Fig. 4�a�� to UD=6.0 aJ
�Fig. 4�e��. If the system’s response is fully coherent with the
driving force, a maximum of 60 transitions should occur dur-
ing a single measurement. The filtering process considers
only the two centered TEM00 modes. The angular position

sign is inverted with respect to the potential simulation
shown in Fig. 3. As the noise energy increases, the degree of
signal coherence increases, but the system output is never
fully coherent to the excitation signal. For lower noise levels
�Figs. 4�a� and 4�b��, the oscillator appears to have a higher
residence probability in the lower discrete position, which
means that it “prefers” the smoother transition. For higher
noise levels �Figs. 4�d� and 4�e��, it also follows the steeper
transition more frequently.

Furthermore, the residence time bins are calculated with a
width of 0.15 s, and a signal bin centered at the excitation
signal’s half period T /2=5 s. The signal is evaluated around

FIG. 3. The optomechanical potential is generated with an opti-
cal cavity input power of 32 mW. Stable potential minima are
formed by TEM00 cavity modes �higher orders not considered�,
with an angular spacing of 	16 �rad. The potential plot shows the
directional asymmetry, with an average potential depth of the cen-
tered wells of 	20 aJ. This is also the smallest applied signal en-
ergy if the oscillator is to be moved directly from one potential
minimum to the next.

FIG. 4. �Color online� SR in the optomechanical potential. The
multistable system response is shown �upper left plot� for an ap-
plied weak electronic modulation signal with a signal energy US

=6.2 aJ, at a frequency �S=2�
100 mHz. The noise energy varies
from UD=4.4 aJ �a�, UD=4.8 aJ �b�, UD=5.0 aJ �c�, UD=5.2 aJ �d�,
to UD=6.0 aJ �e�. For the discrete filtering �upper left�, two neigh-
boring TEM00 optical cavity modes are considered. Time bin histo-
grams �upper right plot� serve to find the degree of coherence be-
tween the excitation signal and the transition rate. The relevant
transitions are shown in the shaded region around T /2= �5�0.5� s,
including a statistical uncertainty which transfers to the SR analysis.
SR is quantified as the ratio of observed transitions and the total
number of possible transitions due to external excitation, shown as
the black curve in the lower plot. The resulting degree of coherence

exhibits two maxima at ŪD1=4.8 aJ and ŪD2=5.2 aJ, with a clear
minimum around UD=5.0 aJ. Ignoring the local minimum, a fit
�solid dotted curve� to the theoretical model of Eq. �4� is also
shown. This curve’s maximum gives an exponential factor
e−�U/UD =e−1.98, which agrees to the theoretical curve maximum at

ŪD=�U /2. Thus, experiment and theory are in good agreement for
this coarse resolution. However, a fine resolution leads to SR split-
ting around �c�, implying a dependence of SR on the applied poten-
tial’s local shape �more details in the text�.
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T /2= �5�0.5� s, where the given signal range considers the
numerical error of the discrete filtering process. The upper
right plot of Fig. 4 shows the residence time bins for the
given measurements, where the shaded region represents the
signal time bins. The lower plot of Fig. 4 shows the number
of signal time bins, i.e., the degree of coherence between
excitation and system response as a function of noise energy,
proportional to SNR introduced in Eq. �4�. Here, the black
curve represents all measured interwell transitions, indepen-
dent of their direction. A clear minimum is found in this
curve at a noise energy of UD=5.0 aJ �Fig. 4�c��, between

two maxima at ŪD1=4.8 aJ �Fig. 4�b�� and ŪD2=5.2 aJ �Fig.
4�d��. Ignoring the datapoints between �Figs. 4�b� and 4�d��
in a first analysis step, a coarse fit �solid dotted curve� ac-
cording to the model given in Eq. �4� nicely agrees to the

measurement, also giving a maximum at ŪD=�U /2 �see
caption of Fig. 4�.

The fit’s result corresponds well to an assumed symmetric
optomechanical potential. However, the refined analysis
�datapoints around Fig. 4�c�� reveals a deviation from this
assumption, explained in the following. The energy thresh-
olds for two neighboring potential wells show a slight differ-
ence, resulting in a small transition rate splitting �14�. In
addition, the distinct optomechanical potential asymmetry in-
fluences the result, even for equal depths in neighboring po-
tential wells. The SR condition for the smoother transition
appears to be fulfilled at a lower noise energy than for the
steeper transition. Between the resonant noise levels �Fig.
4�c��, neither of the transitions is preferred. Looking at the
histogram plot �upper right of Fig. 4, a clear transition rate
splitting is observed for the noise levels around this central
SR minimum.

Considering a direction-dependent degree of coherence
helps to clarify these results. Comparing the optomechanical
potential’s shape �see Fig. 3� with the assumptions made in
Eqs. �2� and �3� for a symmetric bistable potential, one ex-

pects slightly different values for �m at each minimum, and
thus nonequal Kramers rates in either potential well for a
constant noise energy UD. Therefore, the two considered di-
rectional transition rates are synchronized with the external
excitation signal for slightly different noise energies, which
leads to the observed SR splitting. Thus, the system response
to noise excitation depends on its current discrete position
state. The deviations from the symmetric theoretical model
can be explained by the optomechanical potential’s intrinsic
intrawell and interwell asymmetry.

In summary, the torsion balance oscillator coupled to the
optomechanical potential clearly shows SR phenomena for
an applied weak modulated electronic force. The degree of
coherence with a subthreshold modulation signal is adjust-
able by tuning the noise energy in the system. Furthermore,
since this optomechanical system displays an asymmetry be-
tween adjacent potential wells, a symmetric potential theory
cannot fully explain the observed optomechanical SR split-
ting. This deviation is clearly observed experimentally in the
form of a splitting of the SR signal enhancement. We further
provide a semiquantitative explanation for our experimental
results, based on the fact that the local potential properties
influence the interwell transition rates. Further theoretical
treatment is being developed to explain such effects. The free
torsion balance is a linear instrument. Compared to that, an
artificial conversion into a bistable oscillator, e.g., by means
of appropriate feedback, would not lead to an enhanced SR
output signal for the detection of weak forces �21�. However,
the coupling to an optical resonator creates an intrinsically
nonlinear system. Since the optomechanically coupled tor-
sion oscillator serves as a testbed for mechanical systems
coupled to a resonant light field, the application of SR meth-
ods may find further applications in high-precision opto-
mechanical force measurements.
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