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We develop a generalized principle of electromagnetically induced transparency (EIT) vector magnetometry
based on high-contrast EIT resonances and the symmetry of atom-light interaction in the linearly polarized
bichromatic fields. Operation of such vector magnetometer on the D1 line of 87Rb has been demonstrated.
The proposed compass-magnetometer has an increased immunity to shifts produced by quadratic Zeeman and
ac-Stark effects, as well as by atom-buffer gas and atom-atom collisions. In our proof-of-principle experiment the
detected angular sensitivity to magnetic field orientation is 10−3 deg/Hz1/2, which is limited by laser intensity
fluctuations, light polarization quality, and magnitude of the magnetic field.
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I. INTRODUCTION

The pure quantum state is a basic concept of quantum
physics, which plays a key role in various applications, such
as magnetometry, frequency standards, laser cooling, quantum
information science, nonlinear optics, and “slow” and “fast”
light experiments. The effect of electromagnetically induced
transparency (EIT) [1–4] has been successfully employed in
all these applications.

The idea of EIT scalar magnetometer has been suggested
in [5]. The steep dispersion of EIT media promises a dramatic
improvement of the scalar magnetometer sensitivity. Since
then different schemes for EIT magnetometry have been
considered. Among them are schemes based on the nonlinear
Faraday effect in a manifold of a single ground state [6–8] and
a scheme in which the frequency shift of Zeeman sublevels of
both ground states is detected [9]. The sensitivity of EIT mag-
netometers is in the same range as magnetometers using optical
pumping [10,11]. The recent modification of optically pumped
magnetometers with suppressed spin-exchange broadening
(so-called SERF magnetometer) drastically improves sensitiv-
ity by a factor of 103. It overcomes the sensitivity of SQUID
magnetometers (10−15 T/Hz1/2) [12]. Unfortunately, SERF
magnetometers work in small fields that are less than 0.1 µT,
which is significantly weaker than geomagnetic field.

For many applications it is preferable to know not only
the scalar, but also the direction of the magnetic field. To
achieve this, individual coils are installed for each of the
X, Y , and Z axes in a scalar magnetometer. The coils are
used to induce small modulations of the magnetic field along
each axis, which gives the information about Bx and By field
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components [13–15]. This allows the orientation of the vector
B to be reconstructed. The first EIT vector magnetometer
schemes have been proposed in [16,17]. However, the angular
accuracy of these schemes strongly depends on mathematical
models (describing the atom-field interaction and light field
propagation) used to extract the magnetic field direction
from experimental signals. The vector magnetometer using
the nonlinear magneto-optical rotation has been investigated
in [18], where the angular sensitivity 3.8 × 10−3 deg/Hz1/2

was achieved. The similar method was theoretically studied
in [19]. In the paper [20] the single-ion magnetic compass was
considered. The reviews of existing all-optical magnetometers
were published in [11,21].

In the present paper we show that employing the unique
features of high-contrast EIT resonances on the D1 line of
87Rb allows us to find new approaches to the atomic vector
magnetometery and to model a relevant device in which the
scalar and vector properties of magnetic field can be measured
separately or simultaneously. Our approach does not require
the mathematical models to reconstruct a three-dimensional
(3D) orientation of the magnetic field.

II. GENERAL DESCRIPTION OF THE PROBLEM

The EIT phenomenon is closely connected to the so-called
coherent population trapping (CPT) [1,2] in which an atom-
field interaction of the pure quantum state |dark〉 is zero:

−(̂d · E)|dark〉 = 0, (1)

where d̂ is the operator of atomic dipole moment and E is
the electric field vector. The state (1) is a special coherent
superposition of the ground-state Zeeman sublevels that
neither absorbs nor emits light. Dark states lead to the highest
contrast of EIT resonances. Thus, the preparation of pure states
is crucial for any of the previously mentioned applications.
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FIG. 1. (Color online) Pure � systems at the D1 line of 87Rb;
nonsensitive (a) and sensitive (b) to magnetic field. Here we do not
show Zeeman shifts for upper hyperfine levels with Fe = 1,2.

The generalized problem of the production of pure quantum
states by bichromatic elliptically polarized field was solved
in [22]. In [23–25] it was theoretically and experimentally
demonstrated that the D1 line of 87Rb has unique level struc-
ture for the production of pure dark states using bichromatic
linearly polarized light (so-called lin||lin field), where the
resonant interaction occurs via the upper energy level Fe = 1.
There are two pairs of dark states, where each dark state corre-
sponds to the separate � scheme (see Fig. 1). One pair corre-
sponds to �1 and �2 schemes in Fig. 1(a) and involves the fol-
lowing two-photon transitions: |F1 = 1,m = −1〉 ↔ |F2 = 2,

m = +1〉 and |F1 = 1,m = +1〉 ↔ |F2 = 2,m = −1〉. In our
experiments the EIT resonances of these pairs have a high
contrast (50%) and transmission (60%) (solid line in Fig. 2).
Both �1 and �2 transitions contribute to EIT resonance
(the dependence of transmission on the difference of the
two optical frequencies) that is attractive for applications
in chip-size atomic clocks (CSAC) since it provides high
contrast and smaller (by factor 1.33) quadratic dependence
on the magnetic field compared to the regular atomic clock
transition |F1 = 1,m = 0〉 ↔ |F2 = 2,m = 0〉 [26–28]. Note
that the shifts of zero magnetic sublevels and the frequency
of 0-0 transition do not depend linearly on magnetic field,
while sublevels with m = ±1 do. The electron g factors of
the ground states F1,2 have the same magnitude but opposite
sings (see Fig. 1). As a result, the residual linear shifts (due to
a nuclear contribution) of the �1 and �2 transitions are 250
times smaller than the shifts of individual magnetic sublevels

FIG. 2. (Color online) EIT resonance transmission. Solid line:
The case e ‖ n. The central resonance corresponds to the �1 and �2

schemes [Fig. 1(a)]. This resonance has 120-kHz width and ∼60%
transmission. Dashed line: The case e ⊥ n. The magnetic field has
magnitude 1 G; the angle between B and k equals 20◦.

m = ±1 (≈ ±28 Hz/µT instead of ≈ ±7 kHz/µT). However,
these residual shifts are manifested only in a small broadening
of the resonance lineshape, while the center of the resulting
�1,2 resonance has a zero linear sensitivity to the magnetic
field (due to the symmetry of �1 and �2 systems for the
lin||lin light) [23,24].

The other pair of � schemes [�3 and �4 in Fig. 1(b)] gives
the two-photon transitions: |F2 = 2; m = −1〉 ↔ |F1 = 1;
m = −1〉 and |F2 = 2; m = +1〉 ↔ |F1 = 1; m = +1〉 that
strongly depend on magnetic field and can be used for measure-
ment of the magnetic field magnitude, as it was noted in [24].

To produce quantum dark states (1) for the D1 line of
87Rb, we use (in conformity with [23,24]) a linearly polarized
bichromatic running wave E(r,t) with close frequencies ω1

and ω2 and wave vector k (i.e., lin||lin configuration):

E(r,t) = (E1e
−iω1t + E2e

−iω2t )eik·re + c.c., (2)

where e is a unit vector of the linear polarization, and E1,2

are the scalar amplitudes of the corresponding frequency
components. The interaction occurs in the presence of the static
magnetic field B. If the z axis is directed along the vector B,
the vector e can be expressed in a spherical basis {e0 = ez,
e±1 = ∓(ex ± iey)/

√
2}:

e =
∑

q=0,±1

e(q)eq = (cos θ ) e0 − sin θ√
2

(e+1 − e−1), (3)

where θ is the angle between vectors B and e; e(q) are the
contravariant components of the vector e. Note that for linear
polarization its circular components (σ±) are always equal:

|e(+1)| = |e(−1)| = | sin θ |/
√

2 . (4)

As will be shown in the following, the symmetry (4) is one of
the principal points of EIT magnetometry in a linear polarized
field.

In the resonant approximation we assume that the frequency
component ωj (j = 1,2) excites atoms only from the hyperfine
ground level Fj (Fig. 1). From here on, we use the interaction
representation,

e−iEFmt/h̄|F,m〉 → |F,m〉,
where EFm is the energy of the level |F,m〉 in which the
Zeeman shift is included. The operator of an atom-field inter-
action −(̂d · E) = V̂ + V̂ † under the resonant approximation
takes the form

V̂ = eik·r ∑
q=0,±1

e(q)

×
[
E1

∑
Fe,µ,m1

dFeF1
e−iδ

(1)
µm1 tC

Feµ

F1m1,1q |Fe,µ〉〈F1,m1|

+E2

∑
Fe,µ,m2

dFeF2
e−iδ

(2)
µm2 tC

Feµ

F2m2,1q |Fe,µ〉〈F2,m2|
]
.

(5)

Here, dFeF1
and dFeF2

denote reduced matrix elements of
corresponding optical transitions F1 → Fe and F2 → Fe,
C

Feme

Fj mj ,1q are Clebsch-Gordan coefficients, and δ
(j )
µmj

= ωj −
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(EFeµ
− EFj mj

)/h̄ for j = 1,2 are corresponding one-photon
detunings.

For alkali-metal atoms with nuclear spin In we have F1 =
(In − 1/2) and F2 = (In + 1/2). The corresponding electron
ground-state Landé factors have the same absolute value but
opposite signs: g = −gF1

= gF2
= (In + 1/2)−1 (for 87Rb

g = 1/2). Then in the linear approximation of the dependence
on the magnetic field B and neglecting the nuclear magneton
contribution it is easy to count the number of split two-photon
resonances. For arbitrary directed B there are (4In + 1)
two-photon resonances in transmissions versus Raman
detuning δR = (ω1 − ω2 − �hf s) dependencies centered at
the points δR = lgµB |B|/h̄ (l = −2In, . . . ,2In), where µB

is Bohr magneton. For example, in 87Rb (In = 3/2) we have
seven two-photon resonances (the blue dashed line in Fig. 2).
In the particular case of B ⊥ e, the number of two-photon
resonances equals to 2In = 3 (the red solid line in Fig. 2).

III. EIT-BASED 3D COMPASS

First we examine in detail the central resonance (near
δR = 0). It will be shown below that this resonance can
be used for the vector magnetometer due to the strong
dependence of transmission on the mutual orientation of
vectors e and B [i.e., on the angle θ in Eq. (3)]. The
following two transitions take place in formation of the
central two-photon resonance: |F1,m = −1〉 ↔ |F2,m = +1〉
and |F1,m = +1〉 ↔ |F2,m = −1〉, for which the energy
difference equals h̄�hf s [Fig. 1(a)]. The third two-photon
transition |F1,m = 0〉 ↔ |F2,m = 0〉 (between magnetically
insensitive sublevels) is strongly suppressed due to further
destructive interference of contributions from the opposite
circular components σ±.

In the case of a resolved upper hyperfine structure (Fe = 1,2
in the Fig. 1), the two-photon resonance can be excited via sep-
arate level. Further we assume that the frequency components
(2) are at the resonance with a single hyperfine level Fe = 1
(Fig. 1). Now let us consider a special case where the vectors e
and B are mutually orthogonal (θ = π/2), and, therefore, only
two equal circular components e = −(e+1 − e−1)/

√
2 occur

in the decomposition (3). It is seen from Fig. 1(a) that there
is a two-photon resonance formed via pure �1 scheme with
Zeeman sublevels |F1 = 1,m = +1〉 and |F2 = 2,m = −1〉.
Similarly, the �2 scheme is realized with the other sublevel
pairs |F1 = 1,m = −1〉 and |F2 = 2,m = +1〉. Both of these
�1,2 schemes are formed via the same common upper sublevel
|Fe = 1,m = 0〉. As was mentioned before, the frequencies of
these two-photon resonances are equal (neglecting the nuclear
magneton contribution) to the frequency of the (0-0) resonance
between sublevels |F1 = 1,m = 0〉 and |F2 = 2,m = 0〉.

The uniqueness of the situation arises from overlapping
the two dark states |dark〉�1

and |dark〉�2
, which occur at the

two-photon resonance, δR = 0. These states satisfy Eq. (1) and
have the following forms:

|dark〉�1,2
=

√
3E2|F1,m = ±1〉 ∓ E1|F2,m = ∓1〉√

|E1|2 + 3|E2|2
. (6)

The presence of such dark states in the e ⊥ B case leads to a
high contrast of the central dark resonance near (ω1 − ω2) =

FIG. 3. Orientation of the magnetic field B, wave vector k, and
polarization e of the optical field.

�hf s (i.e., δR ≈ 0). This fact was predicted and experimentally
demonstrated in [23,24].

In the general case of θ �= π/2 [i.e., cos(θ ) �=0] there are no
pure � schemes due to the π -polarized (along B) component in
decomposition (3). It leads to a smaller amplitude and contrast
of the central two-photon �1,2 resonance in comparison to
the case of θ = π/2. This fact will be used as a basis for
determination of the magnetic field orientation (i.e., compass)
in our approach.

The basic idea of our method can be explained in the
following way. Assume that the wave vector k and the vector
B have an arbitrary mutual orientation. We will use the
amplitude of the central resonance (absorption, transmission,
or fluorescence) as the measured quantity (Fig. 2). There are
two cases, where e and B are orthogonal to each other. More
precisely, these situations arise if e||n, where n = [k × B]
(Fig. 3). These cases correspond to the dark states (6), which
leads to the maximal amplitude and contrast of the central
resonance (as explained previously).

Consider the dependence of the dark resonance amplitude,
which is obtained by rotating the polarization vector e around
fixed wave vector k. This dependence can be presented as a
function Ak(ϕ), where ϕ is the angle between the vectors e and
n (Fig. 3). Even the qualitative analysis, provided above, leads
to the conclusion that the function Ak(ϕ) reaches its maximum
at ϕ = 0, π (i.e., when e ⊥ B).

The essence of the measuring procedure could be rep-
resented by the following algorithm. At first, for a chosen
vector k = k1, we get the Ak1 (ϕ) dependence by rotating the
polarization vector e around wave vector k1. The maximum of
this dependence corresponds to the direction of the vector
n = [k1 × B], which gives us the equation for the plane
(k1,B) formed by the vectors k1 and B. Repeating the same
procedure for another orientation of the wave vector k = k2

(e.g., k2 ⊥ k1) provides the equation for the plane (k2,B). The
intersection line of the two planes (k1,B) and (k2,B) gives
the 3D orientation of the vector B with an uncertainty of
the sign.

The basic principle of our method is quite universal and
does not depend on different experimental parameters (such as
the |E1/E2| ratio, one-photon detuning, relaxation constants,
atom-atom collisions, nuclear magnetic momentum, and so
on). This can be seen from the general symmetry of the
problem. Indeed, suppose we have an arbitrary polychromatic
wave propagating along a direction k and having the same
linear polarization e for all frequency components. Also we
assume that the atomic medium is isotropic in the absence of
the light field. We determine the signal S(e,B) as a scalar value
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that depends on the mutual orientation of the vectors e and B.
In the sense of this definition, S(e,B) could be the transmission,
absorption, or fluorescence. A general analysis of the Bloch
equations gives the following relationship:

S(e,B) = S(e, − B) = S(−e,B). (7)

The left equality comes from the symmetry of Clebsch-Gordan
coefficients |CF ′m′

Fm,1q | = |CF ′−m′
F−m,1−q | and the equality of the

circular components (4) in an arbitrary coordinate system.
The right equality in (7) arises due to an independence of the
S(e,B) on field phase (the transmission and absorption depend
on the |E|2).

Consider a configuration shown in Fig. 3, where the light
field has e(ϕ) polarization. Let us perform a mathematical
reflection in relation to the plane (k,B). This leads to the
substitution of the polarization vector e(ϕ) → [−e(−ϕ)], but
for the pseudovector of the magnetic field it leads to B →
(−B). It is known that the mathematical reflection does not
affect a scalar signal (i.e., another relationship is obtained):

S(e(ϕ),B) = S(−e(−ϕ), − B). (8)

By combining (7) and (8) we finally achieve

S(e(ϕ),B) = S(e(−ϕ),B), (9)

(i.e., the scalar signal is an even function of the angle ϕ).
It means that the points ϕ = 0, π (i.e., e ⊥ B) correspond to
the local extremum (maximum or minimum) of the S(e(ϕ),B)
dependence, which is obtained by rotating the polarization
vector e around wave vector k. Similar symmetry consideration
shows that there are two other extremuma when the vector e
lies in the plane (k,B) (i.e., at ϕ = ±π/2). Note that the derived
results remain valid in the case of light wave propagation
(including the nonlinear effects in an optically thick medium).
In this case the previously used vector e(ϕ) corresponds to the
initial linear polarization before atomic medium (cell).

Thus, we have shown that the described principle of EIT
vector magnetometery is valid, in essence, for arbitrary atoms,
lines (D1 or D2), and arbitrary spectral composition of linearly
polarized wave (including a monochromatic wave). However,
the dependence Ak(ϕ) for the central resonance excited by a
bichromatic field at the 87Rb D1 line is the best choice for
the demonstration of the compass principle because of the
significant signal-to-noise ratio (S/N) and transmission.

EIT vector magnetometry in a circularly polarized light has
been discussed in [16,17]. In those schemes the mathematical
models (density matrix and Maxwell equations) are required to
reconstruct the vector of the magnetic field from experimental
signals. Meanwhile, any model is sensitive to the ultimate
knowledge of involved parameters and processes, such as:
light intensities, one-photon detunings, light beam profile,
atomic density, atomic diffusion motion in buffer gas, collision
processes (depolarization, broadening, shifts), and so on. This
may limit and sufficiently decrease the achievable angular
accuracy (to the level of 1◦–10◦) of the vector magnetometer.
In contrast, our 3D compass does not require the use of
mathematical models, because the extremum of the angle
dependence Ak(ϕ) at the points ϕ = 0, π is an inherent
feature.

IV. EIT SCALAR MAGNETOMETER

As was shown above, rotating the linear polarization e
around the wave vector k and analyzing the corresponding
dependence of amplitude Ak(ϕ) of the central dark resonance,
we always can find the condition e ⊥ B. In this section we will
consider two-end magnetically sensitive resonances (Fig. 2,
red solid line), which are connected with �3,4 systems shown
in Fig. 1(b) [i.e., with two-photon transitions (−1) ↔ (−1)
and (+1) ↔ (+1)]. In the e ⊥ B case, the amplitudes of
these resonances attain maximum, too, because at the exact
two-photon resonance (i.e., δR = ±2gµB |B|/h̄) there are the
following two dark states:

|dark〉�3,4
=

√
3E2|F1,m = ∓1〉 ± E1|F2,m = ∓1〉√

|E1|2 + 3|E2|2
. (10)

We can determine the value |B| by measuring the distance
between these resonances |�±|. In the linear approximation for
|B| we apply the formula |�±| = γ ′|B|, where γ ′ = 2(gF2

−
gF1

)µB/h̄ is an effective gyromagnetic ratio. Due to the effect
of the nuclear magneton for 87Rb [29,30] we should use the
following values for g factors: gF1

= −0.501 827 and gF2
=

0.499 836. Thus, in our case, γ ′ = 2.803 905 × 1010 Hz/T.
Taking into account the symmetry of the atom-light

interactions in the linear polarization one can predict some
important properties of such magnetometry scheme. Indeed,
this frequency-differential magnetometer is immune to: (I) the
collisional shift arising due to interactions with an isotropic
buffer gas; (II) the quadratic Zeeman shift of magnetic
sublevels; (III) the shift arising from atom-atom interactions
(including spin exchange) between atoms (here between 87Rb
atoms); and (IV) the ac-Stark shift.

The property (I) is a result of the equality of the collisional
shifts of all Zeeman sublevels |F,m〉 (for a given F ) in an
isotropic buffer gas. The property (II) is also quite obvious
considering that each even on |B| power of the Zeeman shift
has an equal value and sign for the m ↔ m and (−m) ↔ (−m)
transitions. This feature is valid for any atom (i.e., not only for
87Rb) and line (D1 and D2).

The property (III) is a result of the interaction of atoms with
linear polarized light. Indeed, let us consider the atomic density
matrix ρ̂, which describes the distribution among Zeeman
sublevels:

ρ̂ =
∑

F ′,m′,F ′′,m′′
ρF ′F ′′

m′m′′ |F ′,m′〉〈F ′′,m′′|, (11)

where ρF ′F ′′
m′m′′ are matrix elements. We denote the atomic

distribution for two-photon resonances (+1) ↔ (+1) and
(−1) ↔ (−1) (at the δR = ±gµB |B|) as ρ

(+)F ′F ′′
m′m′′ and ρ

(−)F ′F ′′
m′m′′ ,

respectively. From the general symmetry and neglecting some
insignificant details (e.g., a small variation of the one-photon
detuning) we get |ρ(+)F ′F ′′

m′m′′ | = |ρ(−)F ′F ′′
−m′−m′′ |. Obviously, this rela-

tionship is not changed by the atom-atom interactions (includ-
ing the spin-exchange process). Therefore, the corresponding
collisional frequency shifts have the same magnitude, that
is, they do not affect the frequency difference �± (while
the collisional broadening of the EIT resonances will have
an influence). This property gives a significant advantage in
comparison with other schemes of atomic magnetometers,
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where the atom-atom interaction is a limiting factor for precise
magnetic field measurements. The property (III) also supports
the use of miniature-size cells in our EIT magnetometer
because it is possible to work at high cell temperature to get
high atomic density.

Note that the property (III) can be extended to an arbitrary
element (i.e., not only 87Rb) and resonance line, when the
magnetometer uses the frequency difference between two-
photon resonances m ↔ m and (−m) ↔ (−m). In general,
the angle θ (between vectors B and e) can be arbitrary.

The property (IV) follows from two circumstances. Firstly,
the light shifts of two-photon resonances (see Fig. 2, red solid
line) that occur via upper level Fe = 1 are absent, because
the dark states nullify the resonant interaction (1). Therefore,
these ac-Stark shifts are small and appear mostly due to the
interaction with the far-off-resonance level Fe = 2; see Fig. 1.
Secondly, due to the symmetry, these shifts are practically
identical and compensate each other (in the value �±). There
is, however, a small imbalance caused by Zeeman splitting
(�Z). This splitting leads to a small difference for all one-
photon detunings near the dark resonances (+1) ↔ (+1) and
(−1) ↔ (−1). Thus, if the value of the light shift for extreme
resonances is approximately U , then the relative shift can
be estimated as ∼ |�Z/δhf s ||U |, which means an additional
significant suppression of shift by the factor |�Z/δhf s | � 1.
Note that similar advantages of the optically pumped balance
magnetometer also have been pointed out in [31].

In our case the magnetometer sensitivity δB depends on the
signal-to-noise ratio of the Zeeman resonance signal and the
width of the EIT resonance �FWHM: δB = �B/(S/N ), where
�B = �FWHM/γ ′. Therefore, a high contrast of the � reso-
nances, where most of the atoms (50%–70%) are accumulated
in the dark state [23–25], makes them a perspective competitor
for existing all-optical magnetometers [21]. As an example, we
estimate the achievable sensitivity using recently published
data on the lin||lin resonances [26] (authors of [26] character-
ized the lin||lin resonances as an atomic clock reference). With
a resonance width �FWHM = 900 Hz and S/N = 3300 Hz1/2,
the sensitivity for the measurable magnetic field is δB <

10−11 T/Hz1/2, which can be obtained without special efforts
and for very moderate density 1010 cm−3 of rubidium atoms
(50◦C and 1.2 Torr N2 pressure in [26]). To significantly
improve the sensitivity one should increase the number of
atoms. In this case the EIT differential magnetometer will
achieve sensitivity at the level δB ∼ 10−13–10−14 T/Hz1/2

or better, because we expect to reach an atom concentration
greater than 1012 cm−3 without serious limitations due to
collisional processes [property (III)]. The proper choice of
buffer gas pressure and the additional narrowing of EIT
resonance in dense media [32,33] also gives some advantages.
However, it is worth noting that the behavior of the coherent
effects (EIT) in dense vapor >1012 cm−3 has not yet been
studied in detail, though it is known that at 1014 cm−3 EIT is
still observed [34].

Additionally, we note that each of �3 and �4 resonances
[i.e., (−1) ↔ (−1) and (+1) ↔ (+1) two-photon transitions]
can be used also in the compass scheme (described in the
previous section). But it has some drawbacks in comparison
with the compass based on the central resonance (i.e., �1,2).
Firstly, the frequency position of each of these resonances

DL (slave)λ/2λ/2

λ/2

Helmholtz coils

Feedback from Doppler-free 
saturated absorption  resonance

rf modulation
@ 6.8 GHz

Isolator
ECDL 795 nm

(master)

λ/2
PD3

PD2
Cell (87Rb + 5 Torr of Ne)

FIG. 4. (Color online) The schematic of the experimental setup.

depends on the magnetic field. Secondly, their transmission
dependence Ak(ϕ) versus rotation of the vector e(ϕ) can
have two local maxima. One of them (which always exists)
corresponds to the case e ⊥ B, but the other possible maximum
emerges, when the vector e lies in the plane (k,B). Such
situation leads to an uncertainty in the measurement procedure.

V. EXPERIMENT

From our point of view the possibility of an EIT-based
compass is the most attractive and unusual part of the suggested
ideas. Therefore, in the experimental part we just concentrate
on this idea. The experimental setup is shown in Fig. 4. The
bichromatic field E(r,t) is delivered by an extended cavity
(ECDL) and injected into the slave diode laser (DL); frequency
is modulated at �hf s = 6.8 GHz [24]. The experiment is
carried out with a Pyrex cell (40-mm long and 25 mm
in diameter) containing isotopically enriched 87Rb and 5
Torr neon buffer gas. The cell is placed inside Helmholtz
coils, where the field inhomogeneity is ∼2 mG/cm. For the
experiments reported here the cell temperature is 45◦C.

The laser frequency is locked to the Doppler-free saturated
absorption resonance. The radiation power at the cell front
window is 1.5 mW. To excite the �1,2 scheme, the carrier
frequency is tuned to the F2 = 2 → Fe = 1 transition, and
the high-frequency sideband is tuned to the F1 = 1 → Fe = 1
transition. The displayed spectra of the EIT resonances are
shown in Fig. 2, where the curves correspond to the 87Rb
transmission spectra for the two cases e ‖ n and e ⊥ n.

Before entering the cell, light passes through a half-wave
plate, which is rotating at a 13-Hz rate. As a result, we detect
the dependence of light transmission as a function of the angle
ϕ between e and n; see Fig. 5. It is worth noting that the light
transmission is affected by changes of the EIT transmission
and by variation of the Doppler absorption profile due to optical
pumping. To avoid this distortion of the transmission we detect
signals at the second harmonic of the rf-modulated polarization
which is done by Faraday modulator at 7.6 kHz. To determine
the detection sensitivity of the vector B direction we change
the orientation of the magnetic field in 0.1◦ steps. The lock-in
amplifier output detects these steps, from which we estimate a
sensitivity of ∼ 10−3 deg/Hz1/2 (Fig. 6). These data were taken
for B ⊥ k at 1-G magnetic field with the detection bandwidth
of 300 Hz.
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FIG. 5. (Color online) The dependence of the EIT-resonance
amplitude Ak(ϕ) for the 87Rb cell transmission on the angle ϕ between
e and n. Angles between B and k are shown on the right side of each
curve (both vectors lie in the horizontal plane).

We have found that the sensitivity depends on the magnitude
of the applied magnetic field (Fig. 7). At low magnetic field the
sensitivity decreases almost by two orders of value compared
to that at 0.1–7 G. This occurs due to trap states belonging
to the degenerate Zeeman sublevels of the same hyperfine
level where atoms “hide.” The contrast (as well as signal-to-
noise ratio) grows with the magnetic field. It is caused by
lifting of the sublevel degeneracy. To destroy trap states, a
magnetic field should be strong enough [i.e., such that the
splitting between the (0-0) (i.e., �1,2) and (1-1) (i.e., �3,4)
transitions greater than the EIT resonance width]. Once the
(0-0) and (1-1) transitions are separated by ∼0.1 G (in our
setup), the compass has the best sensitivity for |B| >1 G. For
some magnetic field (|B| >5 G in our experiments) the central
resonance begins to split [23–25,35], because the �1 and �2

transitions have a small difference in g factors (±2.8 kHz/G)
due to the nuclear spin. However, this effect itself does not
set the upper operational limit of the magnetic field for the
vector measurements (compass), because in this case we can
work with one of the two separated � resonances. We believe
that the upper limitation on the magnetic field in our method
is connected with the degradation of EIT resonances when
the value µB |B| is comparable with excited state hyperfine
splitting δhf s ≈ 812 MHz (i.e., due to a strong magnetic mixing

FIG. 6. (Color online) The lock-in amplifier output at 0.1◦ angle
step variation of the magnetic field direction. The magnetic field
magnitude is 1 G, and the angle between magnetic field and wave
vector is varied near 90◦.

FIG. 7. Compass sensitivity versus magnetic field magnitude.

between upper hyperfine levels Fe = 1 and Fe = 2; see Fig. 1).
In summary, for the parameters of our setup the magnetic field
operational range of the 3D compass is about ∼0.1–200 G.

VI. CONCLUSION

In conclusion, we have developed the generalized principles
of atomic vector magnetometery based on high-contrast EIT
resonances in a linearly polarized field. These principles follow
from a general symmetry of the problem and are valid for
arbitrary atoms, transitions, and arbitrary spectral composition
of linearly polarized wave (including a monochromatic wave).
The compass involving two nonparallel laser beams allows
one to measure the orientation of the magnetic field in
three dimensions. In our proof-of-principle experiment we
have achieved a compass sensitivity ∼10−3 deg/Hz1/2 at
intermediate magnetic fields. We have found that the major
contribution to the noise-limiting sensitivity is related to
intensity fluctuations of the laser system. Thus, we believe
that the proposed method has a potential to achieve an angular
sensitivity at the level of ∼10−4 deg/Hz1/2. In contrast to other
schemes of the vector EIT magnetometer, the proposed scheme
does not depend on a completeness of the magnetometer
mathematical model and gives a straight way to find the
magnetic field direction and at the end provides a higher
angular accuracy.

We have also discussed properties and advantages of the
EIT scalar magnetometry, such as nonsensitivity to quadratic
Zeeman and ac Stark effects, atom-buffer gas, and atom-atom
collisions. Moreover, our scalar magnetometer works with a
maximal sensitivity and an accuracy at the arbitrary mutual ori-
entation of the vectors k and B, that is, “dead” zones are absent
(see also [36]). The spatial resolution, sensitivity, dynamical
range, and bandwidth of the magnetic field measurement can
be varied by the proper choice of the cell volume, temperature,
buffer gas type, and its pressure (or coating).

EIT vector magnetometers is important for noninvasive
biomedical studies [37,38], including the temporal and spacial
distribution of the brain and heart electrical currents. Recent
successes in the development of chip-sized atomic clocks
and magnetometers [39] provide a legitimate optimism for
the creation of a small-size magnetic sensor. As a whole,
the proposed EIT compass-magnetometer could find a broad
variety of applications in physics, navigation, geology, biology,
medicine, and industry.
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