|&d Selected for a Viewpoint in Physics

PHYSICAL REVIEW A 82, 043612 (2010)

Atom-light crystallization of Bose-Einstein condensates in multimode cavities: Nonequilibrium
classical and quantum phase transitions, emergent lattices, supersolidity, and frustration

Sarang Gopalakrishnan,> Benjamin L. Lev,' and Paul M. Goldbart'-
' Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801, USA
2Institute for Condensed Matter Theory, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801, USA

(Received 5 July 2010; published 18 October 2010)

The self-organization of a Bose-Einstein condensate (BEC) in a transversely pumped optical cavity is a process
akin to crystallization: when pumped by a laser of sufficient intensity, the coupled matter and light fields evolve,
spontaneously, into a spatially modulated pattern, or crystal, whose lattice structure is dictated by the geometry
of the cavity. In cavities having multiple degenerate modes, the quasicontinuum of possible lattice arrangements,
and the continuous symmetry breaking associated with the adoption of a particular lattice arrangement, give rise
to phenomena such as phonons, defects, and frustration, which have hitherto been unexplored in ultracold atomic
settings involving neutral atoms. The present work develops a nonequilibrium field-theoretic approach to explore
the self-organization of a BEC in a pumped, lossy optical cavity. We find that the transition is well described, in
the regime of primary interest, by an effective equilibrium theory. At nonzero temperatures, the self-organization
occurs via a fluctuation-driven first-order phase transition of the Brazovskii class; this transition persists to
zero temperature and crosses over into a quantum phase transition. We make further use of our field-theoretic
description to investigate the role of nonequilibrium fluctuations in the self-organization transition, as well as to
explore the nucleation of ordered-phase droplets, the nature and energetics of topological defects, supersolidity
in the ordered phase, and the possibility of frustration controlled by the cavity geometry. In addition, we discuss
the range of experimental parameters for which we expect the phenomena described here to be observable, along
with possible schemes for detecting ordering and fluctuations via either atomic correlations or the correlations

of the light emitted from the cavity.
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I. INTRODUCTION

Over the course of the past fifteen years, many phenomena
of long-standing interest in condensed-matter physics have
been realized in ultracold atomic settings [1]. Such realizations
are considerably different from condensed-matter systems: in
particular, ultracold atomic systems are highly controllable—
i.e., they are isolated from the environment and are governed
by thoroughly understood microscopic Hamiltonians—and
tunable—i.e., the interaction strength, lattice depth, etc. are
governed by quantities such as laser intensities, which are easy
to alter. The high degree of control and tunability has made it
possible both to explore emergent phenomena in a simpler set-
ting than is typical in condensed matter and to address hitherto
experimentally inaccessible questions, such as the dynamics of
ordering in systems that are quenched past a quantum critical
point [2]. To date, most ultracold atomic realizations have
focused on simulating the physics of electrons propagating
through sratic lattices (via, e.g., realizations of the Hubbard
model [3]) or on constructing novel quantum fluids (e.g.,
Tonks-Girardeau gases [4] or unitary Fermi gases [5]). Areas
of condensed matter such as soft matter, supersolidity [6],
and glassiness—which involve emergent, compliant lattices
capable of exhibiting dynamics, defects, melting, etc.—have
proven inaccessible to ultracold atomic physics because the
lasers that create the lattice potentials in typical experiments
are essentially insensitive to the atomic motion taking place
within those potentials. Aspects of such condensed matter
phenomena remain unsettled in their traditional settings (e.g.,
the dynamics of glassy media and of supersolids), and
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therefore ultracold atomic realizations of them are especially
desirable.

A possible approach to realizing phenomena dependent on
the emergent, compliant character of the lattice is to have
the atoms interact with a potential created by dynamical,
responsive quantum light, instead of static lasers. Exploring
precisely such interactions has been the central theme of
cavity QED [7]. Traditionally, cavity QED has aimed to realize
systems involving a single atom coupled to a single mode
of the electromagnetic field; however, the physics of many
atoms coupled to one (or more) electromagnetic modes, i.e.,
many-body cavity QED, has also been studied extensively
in recent work [8—16]. In particular, it was predicted in
Refs. [8,9] that a cloud of atoms confined in an optical cavity
would exhibit collective effects such as self-organization;
these effects were subsequently observed [10]. The atoms
considered in these works were essentially classical, thermal
particles: however, the dynamics of many quantum atoms (e.g.,
a Bose-Einstein condensate or a Mott insulator) confined in
a cavity has since been explored both theoretically [12—14]
and experimentally [15,16]. Much of the work in this area,
to date, has explored the novel implications of the atom-
cavity coupling for standard ultracold-atomic phenomena
such as the superfluid—Mott-insulator transition [13,14] or the
collective excitations of a Bose-Einstein condensate [12,15].
The objective of the present work is to suggest that a quite
different class of condensed-matter problems, involving the
emergence and dynamics of spatially ordered states, can be
realized and explored using ultracold atoms confined in optical
cavities. Elements of this work were reported in Ref. [17];
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FIG. 1. (Color online) (a) The transversely pumped, quasi-two-dimensional geometry primarily discussed in this paper. (b) Ring cavity
geometry. The pump laser beam is perpendicular to the plane defined by the three mirrors, as indicated in the figure. (c) Schematic representation
of a concentric cavity, showing the partial rotational symmetry that such a cavity inherits from the sphere of which both cavity mirrors are arcs.
(d) Three-dimensional view of a representative mode function for the concentric cavity. This mode function is labeled by (/,m,n) = (2,1,5),
or alternatively by TEM,,. The three numbers enumerate the nodes (one fewer than the number of lobes) in the pump (z), angular, and radial
directions, respectively. The axial mode index 7 is fixed by the requirement that / + m + n be constant for a family of degenerate modes, and
can therefore be suppressed. (e) The intensity profile of the representative mode TEM,; at one of the cavity’s end mirrors. (f) The intensity
profile of the mode TEM,; in the equatorial (i.e., z = 0) plane of the cavity.

related issues, involving the simulation of phonons in optical
lattices, were previously raised in Ref. [18].

A central idea in the extant literature as well as the present
work is the idea of cavity-induced self-organization [8,9],
which may be explained as follows: Consider N two-level
atoms in a single-mode optical cavity, interacting with the
cavity mode and a pump laser oriented transverse to the cavity
axis (see Fig. 1). The atoms coherently scatter light between
the pump and cavity modes. Atoms arranged at every other
antinode of the cavity field (i.e., one cavity-mode wavelength
A apart) emit in phase; therefore, A-period fluctuations of
the atomic density increase the number of photons in the
cavity, thus drawing the atoms into A-spaced wells at either
the even or odd antinodes. This leads to greater constructive
interference in the emitted light, stronger atomic trapping,
and so on. The system reaches a spatially modulated steady
state when the energetic gain from the atom-light interaction
is balanced by the cost, in kinetic energy or repulsive
interactions, of confining the atoms to either the even or the
odd sites of the emergent lattice.

Although self-organization in a single-mode cavity results
in the spontaneous breaking of a discrete symmetry between
even and odd antinodes, the locations of the antinodes are not
themselves emergent, but are fixed by the cavity geometry. In
other words, the noncrystalline state does not possess continu-
ous translational invariance; thus self-organization resembles,
e.g., a phase transition between crystal structures, rather than
true crystallization. With multimode cavities, by contrast, self-
organization results in the breaking of continuous symmetries,
both in the collective choice of which mode(s) to populate with
photons and in the choice of relative phases between the modes.
For example, in the case of the ring cavity (which consists

of two counterpropagating traveling-wave modes [11]), the
atoms must collectively choose the (continuous) relative phase
between the two counterpropagating modes, thus setting the
location of the antinodes of the cavity field. As with real
solid-state crystallization, the breaking of this continuous
symmetry induces rigidity with respect to lattice deformations.
With larger families of modes, one can envision realizing
such characteristically crystalline notions as dislocations and
geometrical frustration.

In a previous article [17], we developed a field-theoretic
description of the interacting many-atom, many-mode system,
which we applied to the case of a transversely pumped con-
centric cavity. We observed (i) that a quasi-two-dimensional
atomic cloud undergoes a weakly first-order transition into
a spatially ordered state, and that this transition becomes
a quantum phase transition at 7 = 0; and (ii) that for the
case of a strongly layered three-dimensional cloud, interlayer
frustration precludes global ordering, and the system instead
breaks up into inhomogeneous, static domains. In addition,
we suggested that both fluctuation phenomena and signatures
of supersolidity may be observed via the spatial and temporal
correlations of the light emitted from the cavity. The formalism
developed in Ref. [17] assumed, however, that because the
flux of energy through the atom-cavity system is negligible in
the regime of interest, one could adopt a quasiequilibrium
description of this phase transition. One of our objectives
in the present work is to justify this assumption within a
general nonequilibrium formalism; furthermore, we compute
the leading corrections to the effective theory of Ref. [17] that
arise because of nonequilibrium effects.

In the present work, our approach toward meeting these
objectives is as follows: (i) we develop a fully nonequilibrium,
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field-theoretic description of the atom-cavity system, using
the Schwinger-Keldysh functional-integral formalism [19,20];
(i) we show that the nonequilibrium description can be
reduced, in the regime in which the cavity’s photon decay time
is longer than the time scales for atomic motion, to an effective
equilibrium description; (iii) we analyze this effective equilib-
rium theory using diagrammatic and renormalization-group
techniques to establish the nature of the self-organization
transition, in the specific case of a concentric cavity; and
(iv) we reintroduce the nonequilibrium effects, due to the
leakage of photons out of the cavity, using perturbation
theory, and account for their effects on critical behavior
near the self-organization transition. Our analysis of the
equilibrium theory extends that used in our previous work [17]
via an adaptation of Shankar’s renormalization-group treat-
ment of the Fermi liquid [21], as well as an analogy with
the O(p)-invariant vector model of magnetism, to establish
that for an interacting Bose-Einstein condensate (BEC) the
self-organization transition is always discontinuous in the
concentric cavity. Furthermore, we show that the chief con-
sequence of nonequilibrium effects is to decohere quantum
correlations on a time scale related to the linewidth of the cav-
ity; thus, the self-organization transition is always classical on
the longest time scales. (For sufficiently high-finesse cavities,
there should, however, be an extended crossover regime of
time scales on which the phase transition appears quantum.)
After presenting our analysis of the phase transition itself,
we turn to the properties of the ordered (i.e., self-organized)
state. We show that the ordered state has low-lying excitations,
associated with the continuous symmetry breaking, that resem-
ble the excitations of smectic liquid crystals. We also expand
on our previous observation [17] that, for a Bose-condensed
atomic cloud, the ordered state would be a “supersolid” (or,
more accurately, a “supersmectic”) in that it simultaneously
possesses emergent (liquid-)crystalline and superfluid order.
The properties and even the existence of supersolidity in
“He are much discussed topics in the condensed-matter
literature [6,22—-25]; the appeal of ultracold-atomic realizations
is that one can explore the characteristic phenomenology of
supersolids in contexts where it is less challenging to establish
that they do in fact possess supersolidity. In order to explore
the relevant phenomenology, it is necessary that the solidity
be associated with a broken continuous spatial symmetry;
for this purpose a continuum supersolid such as the one
explored in the present work should serve as a more suitable
setting than would, e.g., the lattice supersolids proposed in
Refs. [26,27]. The present scheme has the added advantage of
being more readily realizable. The self-organization of a BEC
in a cavity was, in fact, recently demonstrated experimentally
by Baumann et al. [16] for the case of a single-mode cavity;
generalizing this experiment to the multimode case, in which
one has continuous symmetry breaking, should be technically
straightforward. Continuing with the theme of supersolidity,
we propose a scheme for detecting such as state, and develop
a schematic phase diagram for the system (Fig. 11), which
exhibits three phases: the supersolid, the normal solid, and the
uniform superfluid. The phase diagram for a multimode cavity
differs from that for a single-mode cavity in that the multimode
case features a direct transition from the uniform superfluid to
the normal solid, whereas in the single-mode case there is
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always a supersolid regime separating the uniform superfluid
and the normal solid.

This paper is organized as follows. In Sec. II we describe
the microscopic model of the atom-cavity system that is
used in the rest of the paper, and in Sec. III we discuss the
qualitative behavior one might expect from this model. In the
next three sections we construct and analyze a nonequilibrium
field-theoretic formulation of this model: Sec. IV introduces
the relevant field-theoretic formalism, Sec. V applies this for-
malism to derive an atoms-only action, and Sec. VI describes
the quasiequilibrium limit of the atoms-only action. In Sec. VII
we derive an effective Ginzburg-Landau free energy, valid near
the phase transition, which realizes a version of Brazovskii’s
model [28] of ordering at a finite wavelength, and analyze
the effects of fluctuations on the self-organization transition
in both the classical (7 > 0) and quantum (7 = 0) cases. In
Sec. VIII we turn to the effects of departures from equilibrium,
both on the fluctuations near the transition and (following
the work of Hohenberg and Swift [29]) on the nucleation of
ordered states. In the next two sections we focus the properties
of the ordered state: Sec. IX reviews the properties and ele-
mentary excitations of the ordered state, and Sec. X discusses
the supersolid aspects of the ordered state. In Sec. XI we
discuss the experimental feasibility of the phenomena that we
are investigating, showing that most of them should be readily
detectable in the laboratory. In Sec. XII we briefly consider
the case of strongly layered three-dimensional systems, which
have the feature that geometrical factors tend to frustrate the
development of globally coherent long-range order. Finally, in
Sec. XIII we summarize the results of this work and discuss its
relationship with other problems involving phase transitions
and related collective effects in atom-light systems. Various
supplementary issues are addressed in four Appendixes.

II. MODEL

The system analyzed in this paper consists of N two-level
atoms confined in a multimode optical cavity, together with the
electromagnetic modes of the cavity. The system is pumped
by an external laser, which is oriented transverse to the cavity
axis, as shown in Fig. 1. In addition, the system is coupled to
a set of extracavity electromagnetic modes, which constitute a
bath for the system. The complete Hamiltonian H governing
the system and bath comprises three elements—viz., Hy, the
atoms-only Hamiltonian; H.y,, the light-only Hamiltonian;
and Hj,, the atom-light interaction Hamiltonian—which we
discuss in detail in the rest of this section.

A. Two-level atoms

The atoms are described by the Hamiltonian

Y P, hows . —
Hat:Z 2M+T(1+Gn) +U Z S(Xn_xn’),

n=1 I<n<n’< N
(1

where N is the number of atoms (indexed by n =1, ...,N),
each of which has mass M; the position and momentum
of atom n are, respectively, x, and p,. The operator o,
denotes the Pauli operator, which acts on the internal state
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of the atoms, which, for the sake of simplicity, we take to be
two-state atoms, with w4 being the energy splitting between
the ground (g) and excited (e) states. (Our conclusions do not
hinge in any essential way on this restriction to two states.)
We model the interaction between atoms via a repulsive
contact potential, which is parametrized in terms of the
(positive) parameter U. To ensure the correct handling of
the Bose-Einstein quantum statistics of the atoms, we employ
the framework of second quantization. Thus, H,; becomes

h2 d T 2 2
Hy = —m/d x[WIOVAE,(x) + ¥ (x) VW, (x)]

U .
+thfddej(x)We(x)+E/ddx (Wiwiw v,
+ WU, W, 20w, w), 2)

in which the pair of bosonic field operators, W,(x) and W,(x),
respectively represent the ground- and excited-state atoms. In
the last line of Eq. (2), all the coordinate indices are X, as the
interaction is taken to be local in space.

Next, we assume that the density of excited-state atoms
is sufficiently low that collisions between such atoms can
be neglected. This assumption necessarily holds in the low-
temperature regime, which is the regime of primary interest
to us, because the rate of spontaneous decay (which is
proportional to the number of excited atoms) must be kept
low in order to avoid the heating associated with it. With this
regime in mind, we approximate the interaction term as

Y[ axwiviv v, +20iwiv v 3

) X(W W WP, + 20, W, W, W ). 3)
In what follows we shall replace U by the frequency U = U /h,
in order that its magnitude be expressed in the same units
as those conventionally used to describe the atom-cavity
coupling.

B. Electromagnetic modes

Optical cavities typically consist of two or more mirrors
that support localized modes of the electromagnetic field
between them [30]. The modes might be standing waves, as
in the single-mode cavity, or the traveling waves that one can
have in the ring cavity. In general, we shall be concerned
with transverse electromagnetic (TEM) modes. The vector
character of the electromagnetic field can be absorbed into
the effective atom-mode coupling [7]; hence, such modes can
effectively be described in terms of harmonic solutions to
the scalar wave equation [30]. Furthermore, as the mirrors
are not perfectly reflective, these modes are in fact weakly
coupled to the extracavity modes, and thus cavity-mode
photons tend to “leak” out of the cavity at some nonzero
rate k (which sets the intrinsic linewidth of the cavity).
These considerations lead us to model the electromagnetic
field—both intracavity and extracavity—in terms of the
Hamiltonian

H., = Z hwaalaa—i— Z hngiAg

aincav. ginenv.

+ (Z fikcye Alay + Hc) (4)

a,E
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where a, and A, respectively represent the intracavity and ex-
tracavity photons, w, and w, are the intracavity and extracavity
mode frequencies, and «, . describes the coupling between the
intracavity mode « and the extracavity mode ¢. We assume that
the intracavity-extracavity coupling is weak enough (i.e., the
cavity is of sufficiently high finesse) that it is meaningful to
separate the modes into intracavity and extracavity ones.

The modes of a generic standing-wave cavity are not
frequency degenerate: the typical frequency spacing, or lon-
gitudinal “free spectral range,” is of order ¢/ L, where L is the
linear dimension of the cavity: e.g., for a 1 cm cavity,
the free spectral range is about 15 GHz. For such a cavity, the
frequency spacing between higher-order transverse modes
is an appreciable fraction of this number; thus there are no
degenerate modes. However, certain specific cavity geometries
do support degenerate modes. The simplest of these is the
ring cavity, which is a three-mirror arrangement that supports
two counterpropagating traveling-wave modes [see Fig. 1(a)].
Even larger degeneracies are possible, e.g., in confocal or
concentric cavities. Let us label the cavity-mode structure by
the integers (/,m,n), where n is the number of nodes along the
cavity’s axial direction, and (/,m) are the numbers of nodes
along the transverse directions; see Fig. 1. [The corresponding
mode functions are approximately sinusoidal in the axial
direction and Hermite-Gaussian (or Laguerre-Gaussian)
in the transverse directions, although this approximation
breaks down in the limit of a concentric cavity.] In the
confocal cavity, the condition for frequency degeneracy is
thatn + [({ + m)/2] = M (see, e.g., Ref. [30]) for some fixed
integer M; in the concentric cavity, the condition becomes
I + m 4+ n = M. Inprinciple, these conditions imply that there
are of order M? degenerate modes, where M is roughly the
number of optical wavelengths across the cavity, commonly
10* or more. In practice, higher-order modes are increasingly
lossy, because their profiles (i.e., spot sizes) are larger, and
therefore more of their light leaks out of the sides of the cavity
mirrors, which typically occupy only a modest amount of solid
angle. We approximately account for this effect by assuming
that M, of the modes have a common loss rate «, and that the
other modes are perfectly lossy (i.e., for them x = 00).

C. Atom-light interactions

In the dipole and rotating-wave approximations [7], the
atom-light coupling has the generic form i o_a) gn(x)— Hec.,
where the o operators raise or lower the atomic internal state;
ay, is either an intracavity or extracavity mode; and g,(x) =
gE,(x), in which g is the coupling between the atom and the
mode, and E,, is an appropriately normalized mode function.
Note that g is proportional to 1/+/V, where V is the system
volume [7]; hence g?N stays finite in the thermodynamic
limit. In the special case of the pump laser mode, we shall
treat the corresponding a, as a classical variable, so that the
atom-laser coupling takes the form Q(x,f)o_ + H.c., where
Q(x) = Q(x)e~t!, with Q(x) being the local Rabi frequency
(which is proportional to the local amplitude) of the laser. In
our analysis, we shall largely neglect the term that governs
spontaneous atomic emission into extracavity modes (i.e.,
spontaneous decay); this term is proportional to the linewidth
of the transition, which is denoted as y. The reason we can
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neglect spontaneous decay processes is not that such processes
are always weak. Rather, it is that their effects amount to the
heating up of the sample via the random impulses they give
to the atoms, and therefore the time scale for spontaneous
decay [which is given by 1/R, = A% /(y Q2%)] acts as an upper
limit on the duration of an experiment: quantum dynamics
on time scales slower than R, is likely to be washed out as
a result of spontaneous decay. Neglecting, then, spontaneous
decay processes, the Hamiltonian governing the atom-light
interactions is given by

Hiy = i / dx Wl (x)W,(x)

x ( > g.®al + Q(x.1) — H.c.) Q)

o ecav.

III. PHYSICAL EXPECTATIONS

A. Single-mode case: Semiclassical picture

As discussed in the Introduction, the atom-cavity system is
unstable toward crystallization when transversely pumped at
sufficient intensity. A more quantitative, albeit semiclassical,
picture of the crystallization is as follows. Assume that the
atoms are pumped by a pair of counterpropagating lasers
perpendicular to the equatorial plane of the cavity [see
Fig. 1(a)], so that the electric field due to the lasers is given
by E coskzy, and the field in the cavity mode, which is a
standing wave, is given by E¢ cos kx¥. The polarizations of
the two modes, being parallel, can be neglected for the present
purposes. Atoms in the plane z = 0 are subject to an effective
electric field of intensity E7 + 2E Ec coskx + EZ cos® kx.
The first term is spatially constant; of the spatially varying
terms, for small E¢/E} the second is the dominant one. The
potential energy of the (high-field-seeking) atoms in this field
can therefore be taken to be

E~ —ECEL/dx n(x)coskx. (6)

Furthermore, the magnitude of E. is set by the atomic
distribution, i.e.,

Ec ~Ep / dx n(x)coskxexp(iopt + ¢), @)

where ¢ is the pump-laser—cavity phase difference. From
Egs. (6) and (7) it follows that & ~ —[ [ dx n(x)coskx]* =
—n%. When & exceeds the kinetic-energy cost of self-
organizing, the atoms undergo self-organization. As £ depends
only on n% it is invariant under n; — —ny, i.e., under
translation of the distribution of atoms through half a mode
wavelength (e.g., from even to odd antinodes) along with a
change in the sign of the cavity field. This is the even-odd
symmetry (which is an inversion symmetry, provided the
cavity has an even number of total wavelengths) that is broken
when the atom-light system crystallizes. This crystallization
transition can be thought of in one of two equivalent ways:
either as a crystallization of the atoms or as a locking of the
phases of the laser and the cavity modes. This phase locking

is associated with the condensation of photons into a cavity
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mode; analogously, conventional crystallization can be thought
of as a condensation of phonons.

Note that, for a single-mode cavity, the presence of the term
in £ that varies as E % cos? kx does not qualitatively affect
the picture just outlined, unless E¢ is of the same order of
magnitude as E;. If E¢ > E|, the energetics would still favor
symmetry breaking; however, the dynamics of ordering would
then be complicated by the fact that there are local electric-field
minima at the “minority” antinodes—i.e., the ones at which the
atomic density is supposed to be low—and these local minima
can trap atoms, as discussed in Ref. [9]. We shall not discuss
this regime further in the present work.

B. Multimode case

The question that arises when one attempts to extend the
idea of atom-light self-organization to the setting of multimode
cavities is this: Which mode(s) do the atoms crystallize into?
In this section, we offer some heuristic general considerations
aimed at addressing this issue. We shall return to this question
in the specific context of the concentric cavity, once we have
developed the relevant field-theoretic techniques.

1. Traveling waves

The argument given in Sec. III A on self-organization
for a single-mode cavity proceeds similarly for the case of
multimode cavities, except that the individual mode function
cos kx must be replaced by the (as yet unspecified) set of
cavity mode functions [g,(x)]. There are, however, two crucial
differences. The first is pertinent whenever the cavity supports
traveling-wave modes (e.g., the ring cavity). In this case, the
potential energy is given by

£~ / d'x go(x)n(x) / g OnE),  ®)

and the dynamics of each mode is coupled to that of its partner
under time reversal. This has an important consequence, which
is easiest to illustrate in the case of the ring cavity. Here, g, =
exp(ikx), and £ is invariant under the transformation n(x) —
n(x + €), which involves shifting the atomic distribution along
the cavity axis (and adjusting the antinodes of the cavity
mode accordingly). Therefore, crystallization in multimode
cavities having traveling-wave modes necessarily involves the
spontaneous breaking of a continuous translational symmetry.

2. Mode selection

If two cavity-mode functions g, (x) and g, (x) are associated
with a pair of frequency-degenerate harmonic solutions of
the wave equation for the same (homogeneous) boundary
conditions, any linear combination C, g,(X) + Cy g4 (X) is also
a legitimate cavity mode. Therefore, it might seem that, in
an N-fold degenerate cavity, any normalized mode of the
form )", C,g«(x) would be an “equally good” arrangement
for crystallization, i.e., there is an N-dimensional degenerate
subspace. This is not generally true, as a result of terms in
the energy, omitted so far in the present section, that lift
this degeneracy, such as the interatomic contact repulsion.
Consider the extreme simplification involving two modes
having the respective mode functions coskx and cosky
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(as would arise, e.g., from two cavities, perpendicular to
one another and to the laser): any function of the form
(Cy,Cy) = Cy cos(kx) 4+ Cy cos(ky), with C§ + Cfl/ =1,isa
legitimate mode function. If the atoms are self-organized in the
state (Cy,Cy ), the expectation value of the atomic field is given
by (¥ (x)) ~ A + B[C, cos(kx) 4+ C, cos(ky)], and the inter-
action energy, Eq. (5), varies as [ d“x|W(x)|*. This can readily
be checked to be smallest when either C, = 0or C,, = 0, i.e.,
for a stripelike arrangement along either the x or the y axis.

A similar effect arises from the mode-mode scattering term
(i.e., the EZ term),

/ dx 13084 (x) g (). ©)

In the two-mode example discussed in the previous paragraph,
in which the modes are at right angles to one another, this term
is essentially diagonal in the mode indices for either of the
stripelike states. Suppose, however, that the two cavities lie at
a small angle 6 rather than at right angles to one another, so
that the modes are cos(k - x) and cos(K’ - x) with k ~ K’. In this
case, atomic density fluctuations of wave vector |k — K'| =
|k|6—which, for small 6, could be excited either thermally
or quantum-mechanically—would suffice to mix the cavity
modes. The effect of such mixing would be to lock the relative
phases of the two modes.

IV. FIELD-THEORETIC FORMULATION

Our objective in this and the subsequent two sections,
Secs. V and VI, is to construct a useful field-theoretic for-
mulation that will enable us to explore the quantum statistical
mechanics of correlated many-atom, many-photon systems in
multimode cavities. Having done that, in Sec. VII we employ
this formulation to address issues such as the emergence
and nature of the spatial structure and spatiotemporal atomic
and photonic correlation properties of such systems, focusing
on the vicinity of the transition to the self-organized state.
The atom-cavity systems of interest here are neither closed
nor in thermal equilibrium, because they are driven by an
external pump laser (which adds energy) and leak photons
into the continuum of modes that lie outside the cavity (hence
losing energy); thus, even in its steady states there is a
flux of energy through the system. For these reasons, the
structure and correlation properties must be computed within
anonequilibrium formalism. The one we employ is the closed-
time-path formalism, due to Schwinger [19] and Keldysh [20],
which enables the use of diagrammatic methods as well as
renormalization-group techniques to analyze fluctuations. (For
a discussion of the differences between the equilibrium and
nonequilibrium formalisms, see Sec. VI and Ref. [31].)

Although, as we have just discussed, a full analysis of the
problem demands a nonequilibrium approach, we find that, for
systems that are near the threshold for self-organization and in
the dispersive regime (i.e., the pump laser is far detuned from
the atomic resonance), an effective equilibrium description is
valid, to a reasonable approximation. As we shall see, e.g., in
Sec. VIII, the description of this regime can be improved, and
other regimes (such as the strongly organized regime) can be
analyzed, using the full machinery of the Schwinger-Keldysh
nonequilibrium approach.
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A. Schwinger-Keldysh functional integral

The quantities of interest in quantum many-body dynamics
are the expectation values of observables and their response
and correlation functions. Formally, the task of computing
these may be stated as follows: Suppose that we know the state
of the system in the infinite past, as described by its density ma-
trix p(t = —o0), when itis taken to be isolated and noninteract-
ing. The system is then coupled to an environment (or environ-
ments), which generically force(s) the composite of system and
environment(s) to be out of equilibrium, and the intrasystem
interactions are adiabatically switched on. The question then
becomes: What are the expectation values and response and
correlation functions of the various system observables, once
the system and environment have relaxed to a steady state?

Let us first consider the case of a single harmonic oscillator
with Hamiltonian H = hiwg b' b, i.e., a free bosonic degree of
freedom having the characteristic frequency wg. Suppose, as a
simple example, that we are interested in the expectation value
of some observable A(?) at time ¢, given that the system was
at some time #; < ¢ in a thermal state at temperature 7, i.e.,
governed by the density matrix p(t;) o< exp(—hwo b'b/kpT).
Thus, we wish to compute the quantity

(A(D) = Tr [p()A@)] . (10)

One can expand the trace in terms of bosonic coherent
states [32] at the times #; and ¢, > ¢, thus arriving at the
expression
1
Qn)*
xe w; | p (1))
X (Wi | W) (W g [Hw ) (w e[ A@) w;). (11

/ dw (dwdw; dw;dw, dwidw ;dw’

_ _ 2
—wa\z—lwflz—\wil‘—\w/|2<

Note that the primary motivation for inserting the complete set
of states |w ) is to make the above expression more symmetric
between initial and final times. (Note also that we have adopted
the normalization convention of Ref. [32], in which the norm
of a coherent state |z) is given by (z|z) = ¥ Inthe quantum-
optics literature, by contrast, coherent states are conventionally
normalized to unity. This difference in conventions leads to
some apparent discrepancies with standard quantum-optics
formulas.) The relevant matrix element of the initial density
matrix is given by exp(—Bhwow; W; ), the overlap (W ¢|1|w ) is
given by exp(—u?;iw ), and the two other expressions, which
are transition amplitudes, can be rewritten as coherent-state
path integrals:

D i Z+(tf):wf * i S| ]
(wilwf><wf|A(t)|wi>=/ D(zy,z%)e! St 2t

24 (t)=w;
z,(t/ ):w/' ) ;
x / D(z-,2")A(z—,z )e S, (12)
Zz_(tj)=w;

in which the =+ signs indicate whether the final state is the ket
(4) or the bra (—); the functions A(z,z} ) represent the matrix
elements (z4+|A|z+); and the action S is given by

ty
S[ze,2] = / dt 2.9, — w0)zs. (13)
t
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One can thus rewrite Eq. (10) as follows:

PHYSICAL REVIEW A 82, 043612 (2010)

D2 —lw; 12— 2 112 Km o
(AM) = / (i iy W w; w]w pwp)e ™I g ooy gy

z-(ty)=wy

24 (tp)=Wy
Z

+(t)=w; z-(ti)=w;

If we omit the functional derivative §/6£_(¢) from the right-
hand side of Eq. (14), the remaining formula is the quantity
commonly denoted as Z (by analogy with the partition
function). Z is a generating functional for the correlation
functions of the oscillator: it can be differentiated repeatedly
with respect to either of the two source functions &, (¢) in order
to generate all requisite correlation functions of A. By differen-
tiating with respect to the + and — sources appropriately, one
can compute expectation values that involve various orderings
of the operators, e.g., the time-ordered, retarded, and advanced
Green functions. By contrast, in the zero-temperature and
Matsubara nonzero-temperature equilibrium formalisms, the
only correlation functions that can be computed directly are
the time-ordered ones; the (physically relevant) retarded Green
functions are then to be inferred using identities that hold in
equilibrium or at zero temperature.

Because, in Eq. (14), the initial and final values of the
paths are integrated over (with an exponential measure), the
path integral in Eq. (14) is in effect an unconstrained path
integral over the two sets of paths z.. Moreover, these paths
are uncoupled from one another except at the two end points of
the path integrals. For the oscillator in question one can write

the action in the form
S Si_ Z
Y AR ). (15)
S7+ 577 -

in which integration is implied over time. We shall sometimes
denote as S the matrix comprising the four block matrices S....
The diagonal blocks S, and S__ are given by Eq. (13); the
off-diagonal blocks S;_ and S_, are zero, except at the time
end points; they cannot, however, be neglected, because the
presence of such off-diagonal terms changes the inverse of S,
denoted G, which contains the two-point correlation functions
and has the following structure:

G () = np@p)e ™™ = @0'("),  (162)
G_(t.1") = [np(wo) + e ™™ = (z*(1)z(1")), (16b)
Gt t)=0—-1tGi_ +06({ —HG_,, (16¢)
G__tth=0t—-1"G_+0¢ —HG,_, (16d)
where ng(wg) is the Bose-Einstein distribution function.
Evidently, G, and G__ are the time-ordered and anti-time-
ordered Green functions. It is convenient for our purposes
to rotate zy into its “classical” and “quantum” components,
defined as follows: z. = (z4 +2-)/2, z; = (z4 —z-)/2, in
Eq. (15). This has the advantage of reducing the number of
independent Green functions by 1:

_ [ Gk Gg
G_<GA O), 17)

S =(z%

D(z_,7%)

8

S50 eiS[Z+,1i]—iS[zﬂz’i]+fdtéf(t)Af(t)+E+(t)A+(t)' (14)
£4=0
|
where
Gk = (2} (Dz.(t") = —i[2np(wo) + 1)]e ™™, (18a)
Gr = (Zi(z,(t)) = —iO — t')e ", (18b)
Ga = (h(D)z.(t)) =iOF — )e ™~ (18c)

Gr and G 4 are the retarded and advanced Green functions—
which describe the response of the system to an external
perturbation—whereas Gg, the “Keldysh Green function,”
depends on the system’s initial density matrix and its correla-
tions. For a system in equilibrium with a bath, the correlations
and response are related by the fluctuation-dissipation theo-
rem; by contrast, for an isolated, noninteracting (and hence
nonequilibrating) system such as the harmonic oscillator, the
two properties—response and correlation—are independent.
In interacting systems that are away from equilibrium, there
is in general a complicated interplay between the correlations
and the response; therefore, all the Green functions contain
information about both correlations and response. The nature
of this relation, however, varies from system to system, and
hence the information contained in the three Green functions
is not redundant.

B. Application to atom-photon system

The prescription for proceeding from the second-quantized
Hamiltonian for a generic set of bosonic degrees of freedom
{¢: (1)} to the appropriate coherent-state path integral (in real
time) is as follows:

§= / dty o7 (Dididy (1) — H{[$] (1,9, (D]}
+ b (O = (+ < ). (19)

In this expression, w, is the chemical potential for field r—in
the present case, the chemical potential for the photons is zero,
whereas that for the atoms determines the atomic density—and
the symbol (4 <> —) indicates a formally identical set of terms
in which + fields are replaced by the corresponding — fields.
This prescription can be carried out for each of the terms in
the Hamiltonian H introduced in Sec. I and generates all
the ++4 and —— components of the action. The off-diagonal
(+— and —+) blocks in the bare (i.e., microscopic) theory
depend on the appropriate Bose-Einstein distributions of the
free photonic modes and the free atomic modes. Because
these blocks are infinitesimal (as they arise from the end-point
couplings discussed in the previous section), it is more useful
to write down the relevant blocks in the inverse action, viz.,
the bare Green functions G_ and G _... For the cavity photon
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modes these have precisely the forms in Egs. (16), i.e.,
Go_(1,1") = ng(wc)e et
G_,(t.1') = (ng(we) + 1)e =",

whereas for bosonic atoms (in their internal ground state) and
in a single-particle eigenstate of the kinetic energy having
eigenvalue E, these have the form

Gy (t,t') = np(E — pye " E-10=10/n,
Gy (1) = [ng(E — ) + 1]eET00OM,

Other degrees of freedom can be treated similarly.

(20)
2y

(22)
(23)

V. CONSTRUCTING THE ATOMS-ONLY ACTION

In this section we derive an effective action, involving
the ground-state atoms, which we shall use to determine
expectation values and correlators involving atoms and/or
intracavity photons. This is accomplished by integrating out all
other degrees of freedom—a task that is straightforward, owing
to the fact that they appear quadratically in the complete action.

A. Eliminating the atomic excited state

As we see from Egs. (19), (2), and (5), the complete action
involves the atomic excited state in the following terms:

d .yt ; hv?
drd'xW)  (x,0) | id, + S @A W, +(x,1)

+i (Z ga(x)\pg,:l:(x’t)\pj_i(x,l‘)aa,i(f) — H.C.)

— UV o (X, We 1 (X,0)]* + -

The functional integral over the quadratically occurring
W, + in Eq. (24) can be performed exactly. In the regime of
interest, the atom-laser detuning AA 4 = hw, — hwy, is much
greater than the energy scale associated with atomic motion;
therefore, one can simplify matters by dropping the gradient

(24)

wc + ik 0

10, —
3 f di(az (1) a;,_a))( e

—i0; + wc + ik
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term for W,. (Put heuristically, excited-state atoms, being short
lived and massive, “decay” before they have time to move, so
that the interactions they mediate are local in space and time.)
Thus, one can integrate out the excited state, determining the
necessary kernel via the standard technique of solving the

classical equations of motion for W, ;- and W] . to obtain

Z ga(x)aa(t)qjg +(x,1)
Ap+ UlWg 1(x,1)[?

where, for convenience, we have made the change of photon
variables a, — a,e 'L’ to enable us later to exploit the
approximate degeneracy of the laser and cavity modes. By
inserting the classical solutions, Eq. (25), into the action,
Eq. (24), we arrive at the following contributions to the action:

Ve +(X,1) = ; (25)

IAE
/dr dxW, L(x,1) (81 +—— — UV +(x,2)] +u> W, 1 (x,1)

2M
. (02
o Z Aa+ UV, (D

W(x,0)<Pal () + He.

> 2,08} (x)

v D2al (¢ 1.
: AA+U|‘IJg,:I:(X,t)|2| ex(X,D)|7a, L (t)ap +(t)

(26)

In what follows we shall approximate A4 + U |l11g,i(x,t)|2 by
A4, using the fact that the interatomic interaction is typically
many orders of magnitude weaker than A 4.

B. Eliminating the photon states

Next, we integrate out the photon states, doing so in two
steps: (i) by integrating out the environment modes to arrive at
an effective action for the cavity photons, and (ii) by integrating
out the cavity photon modes to arrive at an effective action for
ground-state atoms alone. To achieve step (i) we use the result
of Caldeira and Castro-Neto [i.e., Egs. (36) of Ref. [33] in
the limit hiwe > kpT] for the path integral over extracavity
modes, and thus we identify the following contributions to the
action that involve the cavity modes:

> <au¢,+(l) >
Gy, (1)

+ALA<2(X: / dt d*x[Qe'”" g, (n(x,1)a’ (1) + H.e.] + aXﬁ: f dtd’x @}  (Dag (1)8a(X)g5(X)n4(X,1) — (+ < —)>,

where n4(x,1) = Wi (x,1)¥L(x,t) is the local atomic density.
Note that we have dropped the atomic internal-state index g
(i.e., we have made the relabeling W, , — V).

To achieve step (ii), we observe that the action is quadratic
in the cavity photon modes, so they too can be integratedI

2

27

out, to produce the desired atom-only action which, for
convenience, we express in terms of the classical-quantum
(i.e., c-q) basis for the fields rather than the 4 basis (see
Sec. IV):

eff d * . Fi _ * * 2 2
S = [ dtd"xVi(x,t)|id; + M + ) Y, (x,1) U\IJC(X,I)\IJq(X,l‘)[\I—’c(X,t) + W, (x,1)°] + H.c.

1 d d 1
+§TrlnM+/d d'x dodw Z

go,( X)

A

2780 (1) (x,0) na(x,0)) M@, @, )] (”“"“‘"7) L@

ny (X', @)
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in which M is the matrix

M(w,o’; o, B)

w— wc + ik

0
= ) - /(Soz
<w—wc—i/c 2ik ) (@ = @)

0 Di(0' — w;a,B)
+ < *( / )’ (29)
Di(0" — w;a,8) Dy(o —w;a,B)

and the quantities D; are defined as follows:

D; = L / d?xgy(X)gp(Xn;(x,0 — w), (30)
Ay

where the Keldysh components of the atomic density are
given by

ni(xX,0) = /dw"llj(x,a)’)\llq(x,w — o)+ Hec., (31

ny(X,w) = /dw’[\llf(x,a)’)\lic(x,w — o)

+ WX, 0V (X0 — )], (32)

How one should proceed from here depends on the relative
magnitudes of x, A¢, and g2N/A4. Our objective in this
paper is to analyze the self-organization transition in a
multimode cavity. Physically, this transition is associated with
the laser-cavity interference term, as discussed in Sec. III,
and is most straightforward to analyze when E; > E¢
(i.e., when > g,); moreover, as discussed in Ref. [8]
(and as we shall show), the steady-state temperature of the
system is proportional to fik. Therefore, in order to explore
self-organization at low temperatures, it is natural to take
Ac > k,g*N/A 4 [34]. We may therefore expand InM and
M~ in powers of k/A¢ and g>N /(A Ac), thus arriving at
a simplified atom-only effective action:

Sett = So + S¢ + Se + Su + S, (33)

where the five terms—which are labeled by their
corresponding coupling constants—respectively account
for Sp, the kinetic energy of the atoms; S;, the A-periodic
interaction caused by the scattering of photons between
the laser and cavity modes; Sg, the interaction due to the
scattering of photons between cavity modes; Sy the contact
repulsion between the atoms; and S, dissipative processes
due to the leakage of photons through the cavity mirrors. The
terms have the following explicit forms:

So= | dod'xW} AR
0 = wd " xW] w+2M+;L v, +H.c.,

S, = ¢ Ac Z / dwd?x dx' 2y(x)Ey (X))

(n] (x,w)n, (X' ,w)
X

ni(x,w)ny(x', )
w— Ac+ik

w— Ac — ik
S = EAc Z/ddx dx' By (X)Ep(X) Eq(X) Eg(X')
op

y / do de ni(x,w)ny(x', )
(w+ o —Ac +ik)w— Ac —ik)’

Sy =U / dx diW} (xt)W) (xt)[We(xt)” + W, (xt)’] + Hee.,
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— ; d d ..’ ’
S = /dw(a)—wc)2+/c2 /da)d xdx'gu(X)go(X)
X i¢k Ac coth(hk/kgT)n;(Xw)n| (Xw). (34)

To streamline the notation we have introduced the coupling
constants ¢ = g>Q?/(A%Ac) and & = g*/(A%Ac). For
the regime in which A is large compared with the
other frequencies in the effective action (e.g., the typical
atomic kinetic energy), a further simplification is possible:
the integrals over @ and ' can be expanded in a gradient
expansion in terms of (1/A¢)d;. In what follows, we shall keep
only the zeroth-order term in this expansion, thus arriving at
the following “instantaneous” forms of S, and S, in which we
have expanded n| and 7 in terms of the atomic field operators:

Se=¢ Z / dtd’xd" x' Eo (%) o (X)W} (x0) W (X'1)
X [Wo(x) W (X'1) + W, (x1)¥, (x'1)] + H.c.,
Se=£) / dtd?xd?x' Eo(X) Eg(X) Eq(X) B (X)W (xt)
of

X \I/;(x’t)[\llc(xt)‘llc(x’t) + W, (xt)¥,(x't)] + H.c.
(35)

Note that if we neglect the effects due to S, , the nonequilibrium
character of the theory would apparently disappear: the
nonequilibrium laser- and cavity-mediated interactions S, and
S¢ have precisely the same form in terms of Keldysh and time
indices as the contact repulsion Sy; thus, an effective equi-
librium description of these terms should be possible. In the
rotating-wave approximation (see Sec. VI below and Ref. [7]),
the laser, although a nonequilibrium element, only influences
the density matrix by raising the system’s “apparent” energy
eigenvalues by Ziwy,. As explained in the following section, we
can use this fact to develop an effective equilibrium description
of the self-organization transition, to which the effects of a
nonzero S, can later be added as a perturbative correction.

VI. EFFECTIVE EQUILIBRIUM THEORY

In this section we offer some considerations on self-
organization in pumped cavities in general and, in partic-
ular, on the quasiequilibrium character of this transition in
the high-finesse limit. The fundamental difference between
the zero-temperature and nonequilibrium formalisms is the
assumption—valid in the former case—that the initial state (in
this case, the ground state) of the system without interactions
evolves adiabatically into a pure energy eigenstate (in this
case, the ground state) of the interacting system, provided
the interactions are switched on sufficiently slowly. This
assumption does not, in general, hold away from equilibrium,
but there are certain nonequilibrium systems—e.g., an atom
pumped by a far-off-resonant laser—for which it does hold:
in this example, Fermi’s golden rule implies that the laser
does not stimulate real transitions between the atomic levels
unless the laser is resonant with the atomic transition. (For a
broadened atomic level, Fermi’s golden rule implies that real
transitions are negligible as long as the laser-atom detuning
A 4 exceeds the linewidth y of the atomic transition.)
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In the present case, the excitation gap between the trivial
ground state (i.e., the photon-free cavity and a uniform
distribution of atoms) and the lowest excited state, which
has photons and a A-periodic atomic density modulation (a
“phonon”), consists of two parts: (i) the energy cost hA¢
of adding a cavity photon and (ii) the energy gain due to
the photon-phonon coupling, which in second-order perturba-
tion theory would have the form [1*(Qg/A4)*1/[R*K3/2M],
where Ky = 2w /A. Thus the total gap must have the form:

§=Ac <1 — const 36)

h2K2/2M> '

For the system at hand, the assumption of adiabaticity holds
as long as the cavity is of sufficiently high finesse, i.e., § > k.
As we shall see in Sec. XI, the self-organization transition is
weakly discontinuous, and the range of values of the control
parameter 2 over which the ordered and disordered phases
coexist can be made larger than «. Under these conditions, the
self-organization transition should be well described by the
effective equilibrium theory sketched in Ref. [17]. Only for
large values of « (i.e., bad cavities) would nonequilibrium
effects have a chance of playing a leading role. For an
alternative construction of such an equilibrium theory, which
illustrates the relation between its quantum phase transitions
and conventional equilibrium quantum phase transitions, see
Appendix A.

The assumption of adiabatic switching implies that if
interactions are turned on adiabatically in the distant past
and turned off adiabatically in the distant future, an initial
energy eigenstate will evolve into itself, up to a (physically
unimportant) phase factor [35]. This consequence in turn
implies that a single path integral can capture all the dynamical
information; the second path integral in Eq. (13), which was
demanded by the necessity of summing over all final states,
will be superfluous because the final state is known. In terms
of Green functions, this implies that the components G _ and
G_; become redundant; indeed, it can be proved directly, in
terms of Keldysh diagrammatics [36], that the expansion for
G4+ (and G__) is closed, containing all information about
correlations and response.

Formally, the case of nonzero temperatures is less straight-
forward because the adiabatic switching assumption is not
available for mixed states, and therefore the derivation of
the imaginary-time Matsubara formalism from the real-time
Keldysh formalism is, in general, nontrivial. In this case, we
are guided by the following consideration: If the fluctuation-
dissipation theorem holds for the exact Green functions, the
Matsubara formalism is valid; in the present case, we can use
the Keldysh diagrammatic technique (see Sec. VIII) to show
that violations of the fluctuation-dissipation theorem are small,
and hence that the Matsubara technique is approximately valid.
This is what one expects on physical grounds: the chief effect
of the laser photons is to mediate an effective atom-atom
interaction, rather than to cause an energy flux.

Our strategy in the next section, Sec. VII, will be to analyze
the equilibrium critical behavior of the system at both 7 = 0
and T # 0, using established results from statistical mechanics
and quantum field theory, and neglecting dissipative processes.
After that, we shall return to the Keldysh formalism, in

PHYSICAL REVIEW A 82, 043612 (2010)

Sec. VIII, to reinstate the dissipative processes and explore
their consequences.

VII. QUASIEQUILIBRIUM LANDAU-WILSON
DESCRIPTION

In this section we derive coarse-grained, Landau-Wilson
forms of the atom-only action, Eq. (33), for both zero and
nonzero temperatures, valid in the quasiequilibrium regime.
These Landau-Wilson actions are closely related to the one
first introduced by Brazovskii [28]; we exploit this relationship
in order to describe the impact of collective fluctuations on
self-organization in multimode cavities. Finally, we discuss
how the correlations of these fluctuations can be detected via
the light emitted from the cavity.

In an effective equilibrium theory, the prescription for
going from the Keldysh to the Matsubara or zero-temperature
formalism is to trace, in reverse, the steps one would have
taken to go from the equilbrium to the Keldysh formalism: i.e.,
keep the (++) component of the action and drop the Keldysh
indices [31]. It is, furthermore, convenient to reformulate the
action in terms of an order parameter, i.e., a quantity thatis zero
in the uniform phase and nonzero in the self-organized phase.
The considerations of Sec. III suggest that the appropriate
order parameter for detecting crystallization into cavity mode
« should be given by

Pult) = / d’x p(x)gq(x). (37)

The details of this procedure are dependent on the cavity
geometry; we shall focus in this work on the case of the
concentric cavity, as it is the most straightforward case.

A. Mode structure of the concentric cavity

A concentric cavity can be thought of as consisting of two
mirrors that cover antipodal regions of the same sphere. Its
mode structure is derived from the solutions of the Helmholtz
equation inside the sphere. The effects of the edges of the
cavity mirrors can be hard to compute accurately; the standard
technique is to solve the Helmholtz problem approximately, by
requiring the electric field to vanish at the the mirror edges. (As
with the subsequent approximations that we shall make, this
one works best for large cavities.) As the atomic distribution
is quasi-two-dimensional, being confined near the equatorial
plane, it breaks the spherical symmetry of the cavity, and it is
therefore convenient to employ cylindrical coordinates (7,6,7).
Thus, the planar dependence of the cavity modes takes the
form J,,(k,r)cos(m@), where J,, is a Bessel function, m is
quantized by the requirement that cos(m68y) = 0 (see Fig. 1),
and n by the requirement that the field should vanish at the
mirrors. The quantization of solutions along the z direction
(i.e., the pump laser axis; see Fig. 1) yields a third mode index
1. For large cavities, modes having a fixed value of / +m +n
are frequency degenerate. Because, as discussed in Sec. II, the
free spectral range of the cavity is larger than the energy scales
relevant to self-organization, we can restrict ourselves to cavity
modes having a certain fixed value of Ag =1+ m + n.

The atomic density, which is quasi-two-dimensional, can
be expanded over a similar set of mode functions, indexed by
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(m,n), provided one retains all such modes and not just those
satisfying m +n = Ay. In addition, the boundary conditions
on these mode functions are not in general the same as those
on the cavity modes, as the atoms are confined by an external,
confining laser field rather than by the cavity mirrors. For
sufficiently large traps, however, this distinction is not expected
to have important effects, and we shall neglect it.

The cavity modes for which/ = 0 are expected to be favored
for crystallization, as they have the highest amplitude in the
equatorial plane of the cavity, to which the atoms are confined.
However, as we shall see, modes having / > 0 are also of
importance in setting the range of the effective atom-atom
interaction, and thus in determining, e.g., the extent of the
fluctuation-dominated regime, as well as the size and stability
properties of droplets of the ordered phase [37].

In the (m,n) basis for the atomic density, the order parameter
Eq. (37) is given by p,,,. Note, also, that provided that the
atomic density is spread out over a large number of optical
wavelengths, the following asymptotic result holds:

/ AX [ Emn, (%) ~ 85,65, .- (38)

In this expression, we have introduced the sign-insensitive
Kronecker delta §gm; = 4 + 8y (—1y%m,. Equation (38) is
exact for the angular (m) component, and holds approximately
for the radial (n) component, if n > m; this is the regime of
interest because modes for which m > n have large diffractive
losses and do not couple to the atoms. Equation (38) is
closely analogous to momentum conservation, and simplifies
the structure of quartic and higher-order terms in the action.
It is useful, at this point, to specialize to two cases. The
first addresses an ultracold gas of bosonic atoms, without
contact interactions, which may or may not be Bose-Einstein
condensed. We have dealt with this case, which involves
the introduction of an auxiliary field, in some detail in the
Supplementary Information of Ref. [17]; we reconsider this
case below in Sec. VIIB. This approach can, in principle,
be generalized to the case of an interacting gas (whether
Bose-Einstein condensed or not), but is unwieldy for such
systems, in which there are non-cavity-mediated interactions,
as it involves the introduction of multiple auxiliary fields.
Thus, we treat the second case of interest, which is that
of an interacting Bose-Einstein condensate at temperatures
well below the condensation temperature, using an alternative
approach that does not involve introducing auxiliary fields.
Instead, we exploit the off-diagonal long-range order of the
BEC and use a correspondingly modified form of the order
parameter. In a BEC that is well below its condensation
temperature, the atomic density factorizes to leading order:
Wiy a)) ~ (i) (¥ @)). Itis clear that, at temperatures
much lower than the self-organization energy scale 2K g /2M,
the low-energy modes—near the self-organization transition—
are those corresponding to two widely separated regimes of
“momentum” m + n, viz.,m + n ~ 0andm +n =~ KoR/2x.
In the case where the system is Bose condensed, one can
use the presence of off-diagonal long-range order to exchange
the order parameter Eq. (37) for the condensate amplitude
(¥mn)—because self-organization then involves the macro-
scopic occupation of a mode with m +n = KoR /2w [38].
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This exchange considerably simplifies the structure of the
theory, and makes it possible to treat the effects of both the
contact interaction between the atoms and the cavity-mediated
interactions between them in a relatively transparent way. The
final structure of the theory is, as we shall see, the same in
both cases (i.e., the ultracold noninteracting system and the
Bose-Einstein-condensed interacting system).

B. Ideal Bose gas

In the ideal-gas case, we proceed as follows. We note
that the cavity-mediated interaction term can be written as
f dt Y, ConnPmn(T) Pma(T), Where g, is the cavity-mediated
interaction favoring atomic modulation at wave number
(m 4 n). As mentioned in Sec. VII A, the coupling ¢, is
to be considered as being peaked about modes obeying
m +n = KyoR/2m. Next, we perform a Hubbard-Stratonovich
transformation, which consists of introducing an additional,
Gaussian functional integral into the partition function via the
identity [32]

exp (/ dt{mnpmn(f)pmn(T))

k 2
:/Dﬁmn eXp <_/d7: (hfé' ) Pmn (T) Prun(T)

kgT
+ 237pmn<r>ﬁmn(r)> : (39)

in order to render the action quadratic in the W variables. The
partition function can then be rewritten

zzfp(\p*,\y)Dﬁe‘S/, (40)

where S’ is given by

S = /dr/ddxlb*(x,r)

rVZ
X{af—m—ﬁ ZZ

mn

x U (x,T) +/ Z( = ) Pmn(T) P (T)-

2
hmn

;Omn (7:) ~mn (X)

mn

Provided the laser strength is below the self-organization
threshold and the gas is Bose condensed, the field operators
W(x,7) can be expressed in terms of condensate and noncon-
densate parts as W(x,7) = +/No/A + ®(x,7), where Ny(T)
is the equilibrium condensate fraction at temperature 7' and
A is the area occupied by the atoms. Transforming the Bose
fields to the basis of (m,n) mode functions and Matsubara
frequencies, in which the kinetic energy is diagonal, one
has W, (@,) = v/No8u.081.080.0 + Ppun(w,). Integrating out
(®*, ), one arrives at the action
1 kgT
s = 2Tr1n(M) + Z

mny

1
N A A -1 N
X < PmnvPmn—v — NO/Omnv(M )mnv,m’n’v’pm’n/u’ P

mn

(41)
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where the (infinite-dimensional) matrix M is defined by

h(m + n)?

anv,m/n’v’ = (_lwv + 2MR2

5mn,m’n/> 31}1}’
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Below threshold, so that self-organization is not present
and (funv) =0, it is useful to expand M in powers
of p; the quadratic term in the action is then given
by

2kpT ~— .
h Z ppqv”8mm’+p8nn’+q8v+v”,v' (42)
pgv”
|
o kT NokpT (kpT)>? 1
Z Pmni P—mn—x - R 2 B c.— 2 Z _ n 2 . h _ 2 . (43)
mnJ. (hgm" —lwp + hz(ﬁgzl) Ry (iwy — (ZPJR%) —u)(—iw, - W )

The last term can be usefully rearranged if one recalls that

(kg T /B) Y poliy — S0 1 )=1 — N — N, for a Bose-
Einstein condensate [32]. (This statement also holds for a non-
Bose-condensed gas, if one sets Ny = 0.) We now use the fact
that the atoms in a Bose-Einstein condensate typically have
energies that are small compared with the recoil energy to
approximate the last term, and find that at low temperatures
the quadratic part of action is then given by
kgT .

pmnvpfmnfv

h

mn
) (

in which the vanishing of the coefficient for any (m,n,v)
signals, at the mean-field level, the instability of the gas
toward self-organization in the corresponding mode. (Note
that self-organization is therefore possible only in the v = 0
sector.) To enable an analytic treatment of the transition, we
replace the (analytically inaccessible) exact form of ¢,,,, by the
convenient approximate form &,,, = ¢[1 — x(m +n — Ao)?],

1 N
Con  —iw, +R(m +n)?/2M R?

+ Hc)

(44)

where the parameter 1/x represents the extent to which the
coupling to ! # 0 modes is suppressed (see Appendix B for
further discussion of this point). This approximation captures
the fact that the coupling of the atoms to the cavity modes is
strongest for the modes that obey m + n = A, and otherwise
simplifies the structure of the theory without making any
drastic modifications to it. (For y = oo the I # 0 modes
are entirely suppressed; for x = 0 the atoms couple equally
strongly to all cavity modes, in which case there is no preferred
length scale for self-organization.)

Continuing with the expansion of In(M) and M~ in powers
of p, assembling the two contributions, and retaining the
zeroth-order term in a gradient expansion, we arrive at the
following form for the quartic-order term:

(ksT)*N Z O
h4K4/4M2 Pminy Pmyns Pmsns pm4n482 miaz ni- (45)
0 min;

Finally, we make the rescaling p — p+/h¢/kgT x; in terms
of these rescaled fields, the action, to quartic order, assumes
the following Landau-Wilson form:

1 N¢ w? 2
Stw = — 11— + v +[m+n— (KOR/ZT[)] Pmnv P—mn—v
; [x ( nKg/2M (th/ZM)2>
=\ S A
W ﬂl;). Pminvy Pmanyvs Pmsnsvs Pmanivy 8 m; 085 v.08m 4nnstns - (46)

If T > 0, we can restrict ourselves to the v = 0 sector of the
order-parameter theory, as this is the only sector of the theory
that plays an important role for thermal phase transitions. In
this case, Spw is an instance of Brazovskii’s free energy [28].
We shall return to this “action” (which is, in effect, a free
energy rescaled by kpT) and discuss its implications for the
character of the self-organization transition in Sec. VII D, after
first deriving a closely analogous effective action in the case of
the BEC with contact interactions. The case of T = 0 requires
extending Brazovskii’s analysis to quantum phase transitions;
we discuss this case in Sec. VIIF.

C. Interacting BEC

For the interacting BEC, one begins with S [Eq. (33)], as
in Sec. VIIB, but proceeds differently. It would be inconve-
nient to apply the auxiliary-field technique to the present case

043612

because the action contains three quartic terms, each having a
different “momentum”-space structure; decoupling the action
would therefore require the introduction of three auxiliary
fields. Instead, we exploit the fact that the “momentum’-
space structure of the action simplifies considerably for the
low-energy modes, which are the modes of interest because
they are the ones that provide the critical fluctuations. This
simplification is analogous to that which arises in Fermi-liquid
theory owing to the constraint that all low-energy excitations
must have momenta that are approximately equal to the Fermi
momentum [21]. In the present case, the operative constraint
is that all values of m + n must be either approximately zero
or approximately Ag = KoR/2m. We denote the m +n ~ 0
components of the atomic field by ¢, and the m +n ~ Ag
components by ®. “Momentum conservation,” i.e., Eq. (38),
then implies that the following kinds of quartic terms are

-12
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admissible: (i) four ¢ fields; (ii) two ¢ and two & fields;
and (iii) four & fields. (Processes involving three & and one ¢
fields are suppressed because at least one of the ® fields would
have to have m > n, which would imply large diffractive
losses [30].) For terms of type (ii), it is clear that the only kinds
of processes that survive to arbitrarily low energies are those
in which the two ®’s and the two ¢’s have the same values
of (m,n). [In principle, terms involving pairs (P,¢) having
the same value of n/m should also survive to arbitrarily low
energies, but they can be shown to have negligible phase space,
compared with the other terms mentioned.] Similarly, for terms
of type (iii), the only sets of (m,n) that survive to arbitrarily low
energies are forward- and backward-scattering processes, viz.,
those for which (m,n;) = (my,n,) and (ms3,n3) = (mg4,ny).
The other processes are said to be “irrelevant at tree level,” [21]
because they become progressively less important at lower
energies. (This analysis ignores nesting-related effects, which
do not appear to be qualitatively important.)

Applying the arguments just given to the three quartic
terms in Se¢r, we find (1) that at low energies the mode-mode
scattering term S is irrelevant for ¢’s (except for the term
in which two of the incoming momenta are zero), whereas
it does survive for ®’s; and (2) that the contact repulsion
separates into three parts, and can be written as follows (note
that all interactions are local in time; for this reason we have
suppressed the time arguments):

Su * * ;%
7 = Z¢m|n1¢m3n3¢m2n2¢m4n482m/62ni

min;

+§ q)mlnl ms3ns m7n2q>m4n482ng):",

min;

+2 (Z ¢;‘;1n¢mn> (Z <I>m n' ¥ m'n )
+ |:<Z ¢:qn¢:1n> (Z qu/lI'qu/n’) + HC:| (47)

* — : h(m—+n)?
S[CD,CD*] = /dwz(q)mn(w) D ( CU)) iw+ SR +W+V
—W 4V

mn

where

an = UnO - EmnNO, (513)
mnUn
Wpn = U — ng) + / dw% (51b)
w? + U=t

with Ny being the total number of particles in the
condensate.

This action, Eq. (50), can, once again, be addressed by
means of a Bogoliubov transformation. Upon performing such
a transformation, we find that, for sufficiently low energies, the
quadratic term S in the action can be expressed as follows in
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As in Eq. (38), We have used the sign-insensitive Kronecker
delta, (ng, =7 Z + 8 1ym,;- We can now integrate out the
¢ modes, provided we first render the action quadratic in these
modes; this can be done either by making the Bogoliubov
approximation (see, e.g., Ref. [35]) or, more generally, by
exploiting the fact (which follows from Goldstone’s theo-
rem [32]) that the low-lying modes of a BEC are linearly
dispersing phonons. If this is done, the action for the ¢ fields
assumes the form

( wmn >kwmn :)’m/n’

—wmn
mn m'n’

(48)

This form of the action is, strictly speaking, appropriate only
for zero temperature; for 7 > 0 the integral over @ becomes
the discrete sum kg T Zwv. For compactness, we shall present
only the expressions for 7 = 0, except when the two cases
differ substantively. The blocks S and 7 are given as follows
[note that both are diagonal in the (m,n) index; the appropriate
§ functions have been omitted for compactness]:

h(m + n)?

4
2MR2 (49a)

Sun(w,0") = <iw + + Uno) Sww’

+ D WU A+ +mn’ + )@ — o),

7;,1,1(0),0)/) = Unpd_pw (49b)

+ Y WU A+ +mn' 4 ) (—0 — o),

where n denotes the number density of particles in the

condensate, and

@) = [ d0 @}, (@ + 01D,

(49¢)
Umn(Q) = /da) q>mn(Q - w)cbmn(w)

We now integrate out the ¢ fields to arrive at the following
effective action in terms of &:

-W+V mn(@) >
: ! e, (50
—iw + M) +W+V> <<1>mn( ) G0

terms of the real field ®(w) =

5= | @03 B

T4+ w? +
X

d(w) + P (—w):

TRLEN X (m 40 — Ao) ~
1(3/2MR2

. (52)

in which x again represents the coupling to modes having
[ > 0, but the control parameter 7 is now given by

_ "KG hK2+U N (53)
T 2M \2Mm ¢
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As for the term quartic in &, its leading-order gradient
expansion is a contact interaction among the ®’s, proportional
to

4
S4 =5-11_[/dwi Z a;M[,N,,w,(SEM,-(S):N,-(S(Ewi)- (54)
i=1

M;,N;

The coefficient Ll accompanying this term receives contribu-
tions arising in two ways: (1) from terms in S that are quartic
in @, and (2) via the integrating out of ¢. In principle, these
each give rise to three terms, one associated with each of the
quartic terms in the microscopic action Eq. (33). However,
owing to the “momentum”-space structure of this action, S;
contributes no terms of type 1, and S¢ contributes no terms
of type 2. On the other hand, Sy contributes both types of
term. Of these, the term of type 2 is proportional to the
above-the-condensate density, which is expected to be small
at the relevant temperatures; hence, this term is subleading,
compared with the term of type 1. Putting these facts together,
we find that the quartic term Eq. (54) has the coefficient

¢2(N — No)*
—

At nonzero temperatures and near the self-organization tran-
sition, the sum over Matsubara frequencies is dominated
by the w = 0 sector; under these circumstances, the action
S + S4 + -+ [Eq. (50)] has the same form as that for the
noninteracting case, and they are both variants of the free-
energy functional first analyzed by Brazovskii. At T = 0, the
situation is somewhat different; we shall return to this case in
Sec. VII'F.

That the actions have the same form is due to the phe-
nomenon of “universality” near phase transitions: the structure
of any theory sufficiently close to a critical point depends only
on the symmetries of the order parameter and the free energy
(or “action”). In the present case, there are two salient features:
(1) that there is a strip of degenerate, low-lying atomic density
modes around 27w (m + n) = KoR; and (2) that terms cubic in
the order parameter, which would be allowed by symmetry,
are forbidden because they would involve at least one mode
having m > n; such modes have high diffractive losses and
cannot, therefore, be effectively populated with photons. These
constraints are sufficient to force the action to have the above
form near the phase transition.

U=U—EN + (55)

D. Classical Brazovskii transition

In this section, we briefly outline our adaptation of
Brazovskii’s self-consistent analysis of the eponymous
model [28] to the present setting. Brazovskii’s analysis begins
with the following free-energy functional in terms of the real
order-parameter field ¥ (x) and its Fourier-space counterpart
Yk = [ dx exp(ik - X)P(x):

F= f dkyilR + (K| — k) Ty +U / dx[y 1%,

(56)

where the bare phenomenological parameters R and U/ are,
respectively, the control parameter for the transition and the
interaction parameter. At the mean-field level, F is minimized
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FIG. 2. Dispersion relation for low-energy atomic excitations,
i.e., those that approximately satisfy 2 (m + n) = Ky R; as discussed
in the text, the troughlike form of this dispersion enhances fluctuation
effects. The inset shows a top view of the dispersion: the black line
represents modes at the minimum of the trough, which exactly satisfy
2w (m + n) = KoR; self-organization results in the macroscopic
occupation of one of these modes.

for R > 0 by the uniform configuration ¥ (x) = 0, and for
R < 0 by v having the nonzero value /—7R /2l for any one
of the momenta k having magnitude k..

In order to adapt Brazovskii’s analysis to the present case,
we must replace all instances of the momentum k by the sets of
positive mode numbers (m,n). In particular, we must replace
the expression (|k| — k.)> by R~2(m +n — Ao)?, where R is
the radius of the concentric cavity. Therefore, the low-lying
excitations in the present geometry do not lie on a circular or
spherical shell in momentum space, as they do in the original
Brazovskii problem; instead, they lie on a linear ribbon along
m +n = Ap in mode space (see Fig. 2). This difference does
not affect Brazovskii’s argument, except for some numerical
factors of order unity, as we shall see below.

The primary consequence of order-parameter fluctuations,
to leading (i.e., one-loop) order, is to renormalize the bare
parameters R and U in the free energy Eq. (56); thus,
the fluctuation-corrected free energy has the same form as
Eq. (56), but with corrected parameters r and u instead of
‘R and U, respectively. For the former, one must evaluate the
Feynman diagram in Fig. 3(a); the result is that r is implicitly
given by

r=R+aKgr 2, (57)

in which the coefficient o in the “self-energy” term is a
geometrical factor that, in the present case, is approximately
given by the expression

o~ “'“/znmodes)\/l‘7 (58)

with ny0des being the number of modes having finesse high
enough to be populated. (As one might expect, fluctuation
corrections are more important in cavities having a larger
number of degenerate modes.) Note that, regardless of the sign
of R, the corrected value of r is positive; hence the apparent
second-order transition out of the disordered state is precluded
by fluctuations.

The leading corrections to U/ are given, for generic values
of m,n,m’,n’, by Fig. 3(b). For (m,n) = (m’,n’) one must also
consider the diagrams in Fig. 3(c). Summing up these series
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(a)
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+ + ...
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FIG. 3. (a) Dyson equation for the self-energy at one loop order
(i.e., the leading fluctuation correction to r). (b) A geometric series
of corrections to the vertex (i.e., to u), which constitute the primary
fluctuation corrections for (m',n’,w’) # (m,n,w). (For the classical
case, w = w =0.) (c) A geometric series of corrections to u that
contribute only when (m’,n’,0’) &~ (m,n,w). It is these contributions
that change the sign of u, thus causing a first-order transition.
(d) Higher-order vertices that emerge under coarse-graining.

of diagrams, one finds that the corrected value u, for (m,n) =
(m’,n’), is of the form

L — U/

=My )

Evidently, u turns negative for sufficiently small . Naively this
would mean that the free energy becomes unbounded below;
however, perturbative corrections encoded in diagrams such
as Fig. 3(d) generate a positive six-point coupling, associated
with a coupling denoted as w, which stabilizes the action and
gives it the profile with multiple minima shown in Fig. 4. This
profile for the free energy suggests that any phase transition
that the system undergoes is likely to be first order (i.e.,
discontinuous).

To determine when the transition becomes energetically
favorable in equilibrium, one should compare the free energy
of the uniform state with that of the possible self-organized
states. (We shall reconsider this point for the nonequilibrium
case in Sec. VIIL.) Let us consider, first, the state in which all
the atoms are self-organized in a single mode, so that (1,,,,) =
Ab,, 760 7, the coefficient A being the amplitude of the order
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below threshold
(mean-field)

below threshold
(with fluctuations)

Free energy

above threshold
(with fluctuations)

above threshold
(mean-field)

Order parameter

FIG. 4. Schematic form of the free energy as a function of the
order parameter, both above and below threshold, indicating how
fluctuations change the character of the phase transition.

parameter. If @ is the bulk free energy of the disordered state
and F) that of the ordered state, one can formally write

A HF
Fl—F():/ dA—:/dA
o 9A

The motivation for this rewriting is that h,,, = §F /Y, is
the biasing field that would render a certain order-parameter
configuration stable. Both the disordered and ordered states are
locally stable at zero field; therefore, i should go to zero at both
ends but should be nonzero between, so as to “drag” the system
from one phase to the other. The advantage of integrating #,
as opposed to computing the free energies directly, is that one
avoids having to compute terms in the free energy that are the
same in both phases. The leading contributions to 4 can be
written as follows:

o5 1 1
hom = cUA® = ZrA+ ZuA %jwmnwm,,). (61)

SF  0¢mn
mn 81//”," 8A ’

(60)

6 2

The last term should, in principle, be computed to the
same order to which fluctuations have been computed in the
disordered state, viz., to one-loop order. At this order there are
two diagrams that need to be computed: Figs. 3(a) and 3(b).
The corrections are substantially different for (m,n) = (m,n)
(i.e., the longitudinal component) and (m,n) # (m,n) (i.e., the
transverse, or Brazovskii’s anomalous, component). The longi-
tudinal corrections have essentially the same form as those we
computed in the disordered phase. The transverse corrections,
however, diverge with system size, as a consequence of the
Mermin-Wagner theorem (see the following section). Swift
and Hohenberg [39] have shown that for a finite system in
two spatial dimensions, these corrections are small as long
as KoR < u~?/3, a condition that is met for sufficiently weak
coupling [40]. Neglecting these contributions, one finds that
the free-energy difference between the disordered and ordered
states is given by

o 1
A® = Z(Jra - V) — ﬁ(rﬁ +r?), (62)
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where r4 is defined implicitly via

ald
=R+ — +UA?
ra m

(63)

and r is given via Eq. (§7). Solving this pair of equations,
one finds that A® changes sign—and the equilibrium phase
transition therefore occurs—when R &~ —(ald)*/3.

E. Relevance of the Mermin-Wagner theorem

A well-known result in the theory of phase transitions,
the Mermin-Wagner theorem (see, e.g., Ref. [41]), states
that long-range order is impossible in two dimensions for
any thermodynamic system with a continuous symmetry
(and short-ranged interactions). This result is a consequence
of the large phase space associated with long-wavelength
fluctuations of the direction of ordering—in the present case,
to fluctuations of the phase of the superfluid order parameter
and/or the direction of ordering (Sec. IX A). Therefore,
one would not expect an infinitely large sample to exhibit
true long-range order at finite temperatures. This result is
not, however, particularly relevant to the case at hand, for
the following reason. At 7 =0, the system is effectively
three dimensional rather than two dimensional, owing to the
additional dimension that corresponds to imaginary time;
at sufficiently low temperatures, therefore, one expects the
distances over which spatial fluctuations destroy long-range
order to exceed the system size for relatively small systems
such as a typical BEC [42]. Even at higher temperatures, one
can suppress long-wavelength fluctuations by using a system
having multiple layers, so as to increase the effective stiffness
against fluctuations of the order parameter.

F. Quantum BrazovskKii transition

The quantum case of the Brazovskii transition, which
occurs at T = 0, differs from the classical case in that the
quadratic part S, of the action governing it has the form given
in Eq. (52), viz.,

~ Am +n — Ag)*\ ~
S = /dwz D n (R—l- w? + %) D_ns

mn

(64)

in which the frequency integration variable w has been rescaled
to absorb certain dimensionful factors. The quartic term in
the action, Eq. (54), also includes frequency integrals. The
presence of these frequency integrals, absent from the classical
case, changes the spectrum of fluctuations. Qualitatively, this is
because there are now two dimensions transverse to the critical
surface; therefore, instead of a ribbon of critical modes, one
must consider a tube. If one suitably adapts the Brazovskii
diagrammatic procedure, one arrives at the following implicit
expressions for the fluctuation-corrected parameters:

r =R+ [aldIn(B/r)], (65a)
. 1—(ald/r)
= u—l QU (65b)

In these equations, B is a high-energy cutoff (which would be
of order A 4 in the physical system). It is tempting to interpret

PHYSICAL REVIEW A 82, 043612 (2010)

them as follows: as R — —oo, we have that r — 0; therefore,
r ~ Bexp(—|R|/alf), and thus r is always positive, although
it does become exponentially small in the R — —oo limit.
This would seem to suggest that criticality is not restored
at zero temperature. Furthermore, the fluctuation-corrected
vertex has the approximate form

B — all?> exp(|R|/ald)
B + alf? exp(|R|/ald)’

which suggests (cf. Sec. VII D) that metastability should set in
when |R| = alf In(B /ald?). As these results are cutoff depen-
dent, however, one should investigate the quantum Brazovskii
action using a more systematic scheme than Brazovskii’s, e.g.,
a renormalization-group scheme such as that developed for
the classical Brazovskii problem in Ref. [29]. We describe the
appropriate quantum adaptation of this renormalization-group
scheme in Appendix C. The corresponding renormalized val-
ues of the various (de-dimensionalized) parameters are shown
in Fig. 5 as functions of the (de-dimensionalized) bare control
parameter R. The fact that u first becomes negative for a
smaller value of —R than the value at which 7 goes to zero indi-
cates that the transition remains first order, and this is one of our
main results. This result can, however, be deduced on grounds
that are more physically transparent, as we shall now discuss.

u~

(66)

G. Analogy with O(p) vector model

At low energies, the only four-point couplings that are
relevant, and therefore survive under coarse-graining, involve
either forward or backscattering. (Note that this analysis
ignores effects related to nesting.) Consider order-parameter
modes (m,n) that satisfy 27 (m + n) = KoR; for these modes
the quartic term takes the following form, in which time indices
(which follow from locality in time) have been suppressed:

Z/{ (Z Ipmn 1pmn) (Z 1ﬁm’n’ Ipm’n’) (l + 8m,m’&l,n’)~ (67)

m'n’
It is convenient to introduce the notation 6 =n/m and n =
|Ag — (m + n)|, which together provide an alternative labeling

of the mode (m,n). In terms of these labels, the action takes
the form

S = /da) Z(R+0)2 + 772)1[5791/[7]0 +UZ (Z Wml/fanz>
[

no ni

X (Z Yo, 1/f9'n4> (1 + 80,6)8y ,.0- (68)
>

If one had ignored the contribution from terms having four
equal values of 6 (i.e., the 8¢ term), this action would
be an instance of the O(p) model in (1 4+ 1) dimensions,
with p being the number of cavity modes satisfying the
degeneracy condition 27 (m + n) = KoR. In the large- p limit,
terms having 6 = 6’ do not contribute to the renormalization
of R: the index 0’ (or 0) is summed over in the relevant
diagrams, and the single value & = 6’ contributes negligibly
to this sum. Therefore, the renormalization of r in the present
setting should be the same as that in the O(p) model at large
p. It is known that in (1 4 1) dimensions and for p > 2,
the parameter r is always rendered positive by fluctuations;
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FIG. 5. (Color online) (a)—(c) Dependence of coarse-grained, fluctuation-corrected parameters on the bare control parameter R, which is
related to the laser strength, for a fixed value of the bare parameter /. (The bars over the parameters signify that they have been rescaled as
described in Appendix C.) These results are obtained by integrating the renormalization-group equations derived in Appendix C. (a) shows the
flow of the effective “control parameter” 7 (which remains positive). (b) shows the flow of the effective interaction parameter %, which changes
sign as discussed in the text. (c) shows the flow of the emergent six-point coupling w. Finally, (d) plots the free energy as a function of the
order parameter A for three values of R, viz., —5.3 (thin solid line), —5.35 (dashed line), and —5.4 (thick line). The first-order phase transition
takes place at R ~ —5.36. These results are interpreted in terms of microscopic parameters in Sec. XI.

therefore, criticality is never achieved in the O(p) model, and
any phase transition that might occur in the O(p) model—and
hence the present model—must be first order. (This remark
also applies to the classical Brazovskii case; the absence of
criticality does not depend on the weak-coupling approxima-
tion that Brazovskii’s analysis employed, but follows from the
low-energy structure of the free energy.)

Unlike the O(p) model, which is isotropic in order-
parameter space, the present model does undergo a transition
(which s first order), owing to the additional contribution to the
quartic term involving all four 6°s being equal. In order to show
that such a transition is feasible free-energetically, one can turn
to the renormalization-group scheme outlined in Appendix C.

H. Fluctuation-corrected threshold: Summary of results

We now list the fluctuation-corrected values of the threshold
for self-organization, for the three cases discussed in previous
subsections, in terms of the physically relevant microscopic
parameters. In each case, the quantity listed is the fractional
change in the threshold pump laser strength, i.e., (24 —
Qmy/ QI for the regimes in which our analysis is valid,
this quantity is generally much smaller than unity.

(1) For the ideal gas at T > 0, the corrected threshold for
the Brazovskii transition is given by

o, K@Z)w

i 69
Qi 2\“Nyx (69a)

This expression is somewhat simpler than that given in
Ref. [17] for the absolute change in threshold, but is equivalent
to it. (In the present expression, we have explicitly included
a factor « that is related to the number of cavity modes that
couple appreciably to the atoms.) The fluctuation correction
can be thought of as consisting of two components: (i) « is
a geometric factor, introduced in Eq. (58); (ii) the other part
of the equation is a measure of the number of particles per
correlation area, in the sense that (as discussed further in
Sec. VIII B) the quantity ,/x /Ko is analogous to a (far-from-
criticality) correlation length.

(ii) For the interacting BEC at T' > 0, the shifted threshold
is given by

Q- QY 1 a {U—NVWETTR KZR>\ )
ot T 2\yx  GuN»2 N '

Note that this shift explicitly depends on temperature. At
sufficiently low temperatures this shift picks up further correc-
tions, and eventually crosses over to the quantum Brazovskii
result discussed in Sec. VIIF, which, in terms of microscopic
parameters becomes

Qy — aU,[h*K5/2M "
Q (TN ) (0%¢)
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‘We have not considered the fourth case (viz., that of an ideal
gas at T = 0) in the present paper; we plan to address its
properties and achievability in future work.

I. Signatures of criticality

The Brazovskii transitions, both classical and quantum, be-
ing first order, do not exhibit the power-law dependencies (e.g.,
of the fluctuation correlation length, the order parameter, and
its susceptibility) commonly associated with continuous phase
transitions. However, as the Brazovskii transitions are only
weakly first order (i.e., they involve small discontinuities in the
order parameter), the influence of fluctuations on the atomic
and optical correlations should be experimentally accessible.
In particular, the fluctuation corrections to the density-density
correlation function—i.e., Eq. (57)—should be experimentally
detectable in one of two ways. A straightforward way to
detect these correlations is to release the atoms from the
trap, and analyze the correlations in the noise of the spatial
density profile of the atomic system. These correlations can
then be related to the density-density correlation functions
of interest by means of the scheme described in Ref. [43],
which involves the post-processing of absorption images.
An alternative approach—unique to the cavity QED setting,
and preferable in that it does not automatically destroy the
BEC—is through the correlations of the light emitted from the
cavity. At weak coupling, the intracavity-photon correlations
are directly related to the atomic density correlations, as
follows. The full action (up to Gaussian order) is of the form
wata + (@™ + a)p + pGp, where G is the atomic correlation
function given by Eq. (57); one can in principle integrate out
p, thus arriving at the relation (ata) ~ 1/(w — G™"). The
fluctuation corrections to G are therefore manifest in the
correlations of the emitted light.

The weak-coupling approach, just given, has a serious
limitation when it comes to describing quantum fluctuations:
as discussed in the following section, 7ik acts, in some ways, as
an effective temperature for the atoms in the cavity. Therefore,
quantum effects are typically cut off by decoherence on a
time scale comparable to 1/«x. However, 1/« is also the time
scale on which photons leak out of the cavity. It would seem
to follow, therefore, that effects associated with coherent,
quantum fluctuations take place on time scales too rapid to
be detected via the leakage of light through the mirrors. This
analysis, however, neglects the existence of cavity modes that
couple relatively weakly to the atoms (so that they barely affect
the effective temperature) and have considerably lower finesse.
It is plausible, then, that the correlations of these modes can
be used to probe the dynamics of the quantum fluctuations of
the remaining degrees of freedom of the system.

VIII. NONEQUILIBRIUM EFFECTS AT THE
BRAZOVSKII TRANSITION

In this section we reinstate the dissipative effects due to the
cavity photon leakage rate k, and consider their impact on
the self-organization transition. As we shall discuss, the
departure from equilibrium implied by a nonzero value of k has
three kinds of consequences: (i) it cuts off critical fluctuations,
(ii) it affects the time scale on which the system is able to escape
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from a metastable state, and (iii) it modifies the dispersion
of long-wavelength excitations in the ordered state. In this
section we consider effects (i) and (ii); our discussion of effect
(iii) is postponed to the next section, in which we discuss the
properties of the ordered state.

To accomplish this reinstatement, we follow the standard
prescription for expressing an effective equilibrium action in
the nonequilibrium formalism (see, e.g., Sec. 4.7 of Ref. [31])
and then augment the theory with the term S, in Eq. (33).
Thus we arrive at a theory containing a copy of the equilibrium
Brazovskii action involving fields on the =+ contours, coupled
to one another via S, the consequences of which we shall now
address using perturbation theory.

A. Ciritical effects

In this section we focus on the case of the interacting BEC
at zero temperature (cf. Sec. VIIF), as the analysis is most
transparent for this case. We begin with the dissipative term,

_ [ de [ oa g /
S = / (0 — Ac)? + k2 /d xd X ga(X)ga(X')
X l.;KAC COth(hK/kBT)nl(XCl))nl(Xa)), (70)

and reexpress the atomic field W in terms of the condensate
and noncondensed parts, as follows:

W, (x) = v/No + (%), (71)
v, (x) = &4(x). (72)

In terms of this decomposition, the primary quadratic contri-
bution to the complete action arising from S, then becomes

{NAcK %
e Z do(29},,, ,®

+ cD:)mn qq)ia)mn q + q)a)mn,qq>—cumn,q)'

wmn,q

(73)

The most salient feature of this term is that its prefactor is
frequency independent. For a system to be at a quantum
critical point, it is necessary that the prefactor vanish as w — 0
(see, e.g., Ref. [44] and our Appendix D). When—as in the
present case—this condition fails, the collective dynamics on
sufficiently long time scales is classical. Indeed, the term
Eq. (73) is formally identical to the term

ikgT / do @} @, , (74)

that arises for an otherwise isolated complex field ® coupled
to an equilibrium thermal environment that is at temperature 7
[see, e.g., Eq. (66) of Ref. [31]]; one can therefore regard the
coefficient ik / kg = hx¢{ N /(Ackg)in Eq. (73) as an effective
system temperature. In particular, quantum correlations on
time scales longer than 1/& are washed out by the decoherence
arising via the leakage of photons from the cavity: this effect is
analogous to the decoherence due to a finite temperature that
is known to occur near to a quantum critical point.

This point is—in principle—immaterial, as interaction
effects preclude criticality regardless of the value of « (as
a consequence of Brazovskii’s argument); however, at 7 = 0
the fluctuation-corrected equilibrium control parameter is ex-
ponentially small, behaving as exp(—|R|/alf), and therefore
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FIG. 6. Contributions to the nonequilibrium vertex having exter-
nal indices ccqgq. For an introduction to the Keldysh diagrammatic
notation see Ref. [31].

it should be possible to tune the system close enough to
criticality that the nonequilibrium suppression of criticality
due to dissipation is observable.

We now turn to the issue of influence of the nonequilibrium
terms given in Eq. (73) on the effective quartic interaction
vertex. At tree level, the interaction vertex only couples
terms having Keldysh indices cgqq or cccq. However, the
nonequilibrium terms generate an effective ccqq vertex, via
the Feynman diagrams shown in Fig. 6. This vertex brings the

factor
2
i= (“Nu) , (75)

Ac

in which u is the fluctuation-corrected equilibrium vertex (see
Sec. VIID). The most notable feature of this vertex is that it
does not change sign when u does. In the regime considered in
the present work, we have that k << A¢, and hence @ provides
a subdominant correction to u and therefore cannot prevent
the net vertex from changing sign, signaling a first-order
transition. It is possible, however, that in the opposite regime,
in which x > Ac, this correction term would dominate; in this
regime, this term might be capable of preventing the Brazovskii
transition from taking place at all.

B. Nucleation and state selection

In this section we address the dynamics of the emergence
of self-organization associated with the Brazovskii transitions,
classical and quantal. As these transitions are first order, one
expects them to exhibit regions of two-phase coexistence,
in which some parts of the cloud have self-organized and
others have not. The time interval that the system takes
to approach the steady state, in which the entire system is
self-organized, depends on the energetics of critical droplets
of the minority phase, which determines their nucleation
rate. There are three regimes of interest, distinguished by
the primary mechanism responsible for fluctuations: (i) near
zero temperature in an isolated system (i.e., in the regime
where both the system temperature and & are smaller than
U), quantum tunneling is the primary cause of nucleation;
(ii) at temperatures that are high compared with U, in an
essentially isolated system (kg T > k), it is thermal activation
that is the primary cause; and (iii) near zero temperature in
the far-from-equilibrium regime (i.e., when & exceeds the
temperature and U), nucleation is primarily triggered by
extrinsic force noise that originates with fluctuations in the
photon population in the cavity. Owing to the formal analogy
between & and T, discussed in Sec. VIII A and Appendix D,
cases (ii) and (iii) can be treated by similar means.

In all three cases, an essential ingredient is the energy barrier
for thermal (or quantal) nucleation. In many settings this would
be easy to read off from the tree-level (i.e., mean-field) Landau
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free energy (or action); however, in the case at hand, the Landau
free energy does not predict a first-order transition at tree level.
On the other hand, it is not prima facie legitimate to use the
fluctuation-corrected free energy that was calculated above,
as this incorporates fluctuations on all length scales, including
those larger than the droplet itself. In general, therefore, one
must follow a procedure like that due to Hohenberg and
Swift [29], in which only fluctuations on length scales smaller
than the droplet diameter are self-consistently integrated out.

Motivated by the wish to obtain analytical results, we focus,
in the present work, on nucleation kinetics in the regime in
which the corrected free energies of the self-organized and
uniform phases are sufficiently similar that the critical droplet
size is comparable to the system size. In this regime, the error
incurred by using the fully renormalized bulk free energy is
expected to be relatively small (as, in this case, most of the
renormalizations should already have taken place), and one can
legitimately use the fully renormalized parameters computed
in Secs. VIID and VII'F.

1. Classical nucleation

In the classical case, one needs to compute the free-energy
barrier to the nucleation of a critical droplet, i.e., the smallest
possible droplet intrinsically capable of growing until it en-
compasses the entire cloud. The standard procedure for doing
this is to identify appropriate saddle-point configurations of
the effective free energy. As these saddle-point configurations
involve droplets of the ordered phase immersed in the uniform
phase, one is interested in spatially varying configurations
®(x), and the position coordinates are therefore the appropriate
ones to consider. In these coordinates, the Euler-Lagrange
equation corresponding to the Brazovskii free energy takes
the approximate form

&(V+ K§)2<D(x) + [r = 2|ul|Px)?
+3w| @) (x) =0, (76)

in which & ~ ,/x /Ky is an effective healing length for the
crystalline order parameter. In order to find the saddle-point
configuration, we look for solutions of the Euler-Lagrange
equation that obey the boundary conditions that ® = 0 near
the edge of the cloud and ®&(x) = AE;;7(X) near the middle

of the cloud, where A = :t\/(2u + V4u? — 12rw)/6w is the
value of the order parameter in the ordered state, and (/71,7)
is the mode into which the atoms are self-organized. In the
conventional Brazovskii problem, the difference in energy
between a configuration including a droplet of area .4 and
the uniform state is given by

Farop :(FO_FA)A+UJ_LJ_+J“L||, ()

in which Fy (= 0) and F4 are, respectively, the free-energy
densities of the uniform and self-organized states; o, (o)
is the energy cost of an interface perpendicular (parallel)
to the lamellae; and L; (Lj) is the length of the inter-
face that lies perpendicular (parallel) to the lamelle. The
concentric-cavity geometry differs from that considered in
Ref. [29] in that it is not translationally invariant in its radial
direction: both the atomic density and the mode functions
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(2) (b)
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FIG. 7. (a) Wulff droplets, corresponding to the TEM, mode (i),
and to a higher-order mode (ii), respectively. The droplets should
become less anisotropic (i.e., less “needlelike”) for higher-order
modes; it is, however, possible that the optimal droplets in these
cases have more complicated shapes. (b) Defected droplets, which
are favored for » & r,, as discussed in the text. For these, the energetic
cost of introducing defects inside the droplet is outweighed by the
increase in the fraction of the interface that is transverse.

depend on x and so, therefore, do the parameters in the
Brazovskii model. As our purpose in the present section is to
focus on order-of-magnitude estimates, we shall neglect this
complication. A further difference between the present case
and the conventional Brazovskii problem is that the modes are
checkerboard shaped rather than lamellar (see Ref. [17], and
also Sec. IX A). Thus, a generic interface has some aspects
of both transverse and longitudinal character, and the optimal
droplet shape varies from mode to mode. In what follows,
we focus on the (physically most relevant) modes for which
m < n, and consider droplets of the form sketched in Fig. 7.
Returning to Eq. (77), we see that the free-energy difference
per unit area, A F, is of order

Fe—r1 W
AF ~ ——— ——, (78)
re 27w?

in which r, is the value of the control parameter at which
the equilibrium transition occurs. As argued in Ref. [29], the
width of alongitudinal interface is approximately £y(Ko&o/2r),
whereas that of a transverse interface is &. Near the phase
transition, r & (af)*?, which is small relative to Ko&, for
weak coupling U/; hence, longitudinal interfaces are larger than
transverse ones. Furthermore, the interface energy cost per
unit area is given by the interface width multiplied by the
quantity fy = u®/(27w?), which is related to the curvature of
the free-energy landscape about the minimum corresponding
to the self-organized state. Thus, the total interface energy cost
is given by the expression

u’ Koo
L Ly). 7
27w2§0( S ”) (79)

Because transverse interfaces cost less energy at weak cou-
pling, the optimal droplet shape is needlelike, as shown in
Fig. 7.

To determine the free-energy barrier for droplet nucle-
ation, we use the well-known Wulff construction (see, e.g.,
Ref. [45]); in the present case, this amounts to considering
bubbles of dimension o o in the perpendicular direction and
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o« o, in the parallel direction. Thus, the free energy of a
configuration including a droplet is

Ko&o Fe—T u’

Faop = 78— (—y —+ 2) s (80
where y is a variational parameter that sets the overall scale
of the droplet. By minimizing Fy,,p With respect to y, we see
that the critical bubble is that for which y = r./(r. — r); thus,
the free-energy barrier for the thermal nucleation of droplets
of the ordered state is

Ko&o
2r
The nucleation rate follows directly, being given by
r exp(—Faop/ kpT) or, in the case that nucleation is due to
external noise [i.e., case (iii)], by r exp(— Farop/h). For a dis-
cussion of the relevant experimental parameters, see Sec. XI.

Faop = AFE (81)

2. Qualitative features of the defect morphology

Near coexistence (i.e., for r = r,), the critical droplet is
arbitrarily large and—even for a highly anisotropic droplet—
the energetic cost of the longitudinal interface (which scales
linearly with bubble size) becomes greater than that of
introducing localized defects, arranged so that the surface
of the bubble is made as transverse as can be. A possible
arrangement of such defects is shown in Fig. 7. It was argued
in Ref. [29] that such defects are energetically favorable only
for (R — Re)/Re| < (U/¢N)'?7, which is a narrow range
compared with the thermal-fluctuation-dominated regime,
which obtains for |(R — R.)/R.| < 1.

3. Quantum tunneling

In the case of quantum tunneling rather than thermal barrier
crossing, the argument of Sec. VIIIB 1 must be modified in
two ways. First, the expression for the tunneling rate should
be given by the form wg exp(—Sp), where wy is a characteristic
collective frequency (e.g., being proportional to the value of the
renormalized control parameter r in the disordered phase) and
So is the appropriate instanton action (see, e.g., Ref. [32]). A
crude approximation to Sy is the product of the width (which is
of order A) and height of the energy barrier; thus the difference
between the initial and final values of the order parameter
would act as an effective inverse temperature. Second, one
must use the coarse-grained values of r, u, and w from the
quantum rather than the classical model, i.e., from Sec. VIIF
rather than Sec. VIID.

IX. PROPERTIES OF THE CRYSTALLINE STATE

In this section we examine various properties of the
crystalline state exhibited by the coupled atom-light system,
including its basic structure, elementary excitations, and
topological defects.

A. Basic properties
1. Concentric cavity

Soft condensed-matter systems that undergo the Brazovskii
transition commonly exhibit one-dimensional, lamellar pat-
terns. The present realization does not, owing to the influence
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FIG. 8. (Color online) Elementary excitations of the self-
organized state in the concentric cavity. (a) Domains that have
self-organized into distinct modes can be separated by analogs of
grain boundaries (left half of panel) or by continuous textures (right
half of panel). (b) Excitations that are analogous to the splay mode in
smectic-A liquid crystals (see Sec. IX B). Lines indicate nodes of the
cavity electromagnetic field. The curved wave fronts along the radial
direction have been drawn as flat lines to emphasize that the sketched
feature is small scale, relative to the size of the cavity.

of boundary conditions on the optical mode structure, and
therefore on the possibilities for atomic crystallization. In-
stead, in the concentric cavity, the ordered states follow the
two-dimensional optical mode patterns, which may be visu-
alized as distorted checkerboard patterns, as shown in Fig. 8.
Locally, the atomic density selects amongst the cavity modes
by crystallizing into the “odd or even squares” of the selected
mode (cf. Fig. 8 and the discussion in Sec. III). In physical
realizations, the corresponding states of crystallization would
not be exactly degenerate, as optical modes having stronger
angular variation (i.e., larger m) are of lower finesse; on the
other hand, repulsive interactions have a stronger impact on
atoms that are crystallizing into modes of lower m [46]. Such
effects can readily be accounted for within our model, via
the introduction of fictitious fields that would bias the system
toward crystallizing into certain modes. In practice, the most
straightforward way to include such effects is by adding the
terms

Sict =Y _ hniopy, (82)

to the Brazovskii action, which would raise (or lower) the
threshold laser power in a mode-dependent way.

2. Other multimode cavities

A well-known example of a multimode cavity is the
confocal cavity, in which all the even TEM modes
are degenerate [30]. (It is also possible to make multimode
cavities in which every pth TEM mode is degenerate.) These
cavities have the practical advantage over the concentric
cavity that their stability criteria are easier to satisfy (e.g.,
their mode structures are more robust with respect to mirror
misalignment). To the extent that it is legitimate to think of
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such cavities as each having a continuous family of degenerate
modes (i.e., provided they possess a large number of modes that
are both degenerate and not heavily suppressed by diffractive
losses), the self-organization transition in these cavities should
belong to Brazovskii’s universality class, and our analysis of
the transition itself should extend to these models. Where
confocal cavities are likely to differ from concentric ones is in
the geometry of the ordered states and of their defects, which
is much more involved in the confocal case because of its less
evident symmetry structure.

A feature common to most multimode geometries is that it is
possible to tune the system across the point at which the modes
are degenerate by gradually changing the mirror spacing. Thus,
one can explore the crossover between the multimode physics
discussed in the present work and the single-mode physics
realized in Ref. [16].

B. Phonons and nonequilibrium elasticity

Manifestly, the concentric cavity geometry does not possess
translational invariance in the radial direction; hence, there are
no translational Goldstone modes in the radial direction. The
geometry that we have primarily considered in this paper does
not possess translational invariance in the angular direction
either, because of the hard-wall boundary conditions that we
imposed on the mode functions at the edge of the cavity, when
computing the mode structure (see Sec. VII A). For the usual
experimental situation, in which the cavity mirrors cover a
relatively small solid angle, this is the relevant case. In the
opposite regime, in which each cavity mirror occupies most
of a hemisphere, one would essentially recover translational
invariance in the angular direction; concomitantly, there would
be phonons, corresponding to the “rippled” atomic arrange-
ment shown in Fig. 9. For large cavities, such excitations
would have a linear, phononlike spectrum, with a speed of
sound related to the order parameter for crystallinity.

The concentric cavity geometry does, however, possess an
analog of rotational invariance, in that the energy is unchanged
if one reorganizes the crystallization of atoms in mode (m,n)
into crystallization in a degenerate mode (m',n”). For a large
cavity, having many modes, this symmetry is effectively
continuous. Consequently, there are low-energy excitations

FIG. 9. Case of the large-solid-angle concentric cavity, in which
the atom-light system possesses a continuous symmetry associated
with the relative phase between the +m and —m components of each
mode function. This symmetry, when broken by the self-organized
atomic cloud, leads to the existence of both phonon excitations (shown
in the left panel of the figure) and true edge dislocations (shown in
the right panel of the figure).
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involving the gradual variation of m and n across the cavity;
an example of such an excitation is sketched in Fig. 8. The
physics of these layer-wandering excitations is analogous to
that of the splay mode of smectic liquid crystals [41]; as in
the liquid-crystal case, the effective elastic energy for these
excitations takes the Landau-Peierls form:

Fy =K, /dzx(vie)z N (83)

where 6 (= n/m) parametrizes the macroscopically occupied
mode, and the ellipses indicate terms involving higher powers
of the gradient operator. Near the transition, the wandering
rigidity K, is proportional to the square of the equilibrium
order parameter and also to the fourth power of the healing
length & in Eq. (76).

We note in passing that the nonequilibrium character of
the phase transition affects the spectrum of phonon and
wandering excitations at very long wavelengths. For example,
the effective retarded Green function for phonons, which in
general has the form

1
@? — Kege(m + n)? + 2iwk’

Gr(w,m,n) ~ (84)

has purely imaginary poles when /K¢g(m + n) < &; modes
satisfying this criterion are diffusive rather than propagating.
This idea, which was discussed in Refs. [47,48] in the context
of excitonic condensates, has nontrivial consequences for, e.g.,
the spatiotemporal decay of correlations in sufficiently large
systems.

C. Defects

In addition to the low-energy splay excitations (which are
analogous, in some ways, to phonons), the ordered state can
also have gapped excitations or defects, which in the present
case are analogous to grain boundaries (see left panel of
Fig. 8). When the ordered states on the two sides of such a
boundary are of opposite parity, as in the figure, the boundary
wipes out a fraction of a row of crystalline order. Its energetic
cost is therefore approximately Lo, where L is the length
of the boundary and o, is the interface energy discussed
in Sec. VIII B. These defects are analogous to conventional
topological defects in the sense that, for certain configurations
of the order parameter at the boundary of some region in the
cavity (e.g., at the edges of the cavity), the system is forced to
have at least one defect somewhere inside this region. These
defects are not, however, directly related to the existence of
continuously broken symmetries in the system.

Other kinds of topological defects might also be realizable.
For instance, in the large-solid-angle case discussed above in
Sec. IX B, genuine edge dislocations, of the kind illustrated
in Fig. 9, may arise. Another possibility is a texture of the
kind sketched in the right-hand panel of Fig. 8: such a texture
would be analogous to a closed lamella in the conventional
Brazovskii case. It is not clear, however, that such textures
are experimentally feasible, as they would require that the
system self-organize into a high-m mode in some region of the
cavity.
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X. SUPERSOLID ASPECTS OF THE
SELF-ORGANIZED STATE

The spatially ordered state of a BEC in a multimode
cavity is a “supersolid” in the following sense. It possesses
emergent forms of both crystalline and superfluid order:
i.e., it spontaneously breaks two continuous symmetries, the
rotational invariance of space (to the extent that the cavity
admits an effectively continuous family of modes) and the
U(1) invariance associated with the phase of the condensate
wave function. The properties, and even the existence, of su-
persolids have recently been active issues in condensed-matter
research [6,22,23,25,49]. Among traditional condensed-matter
systems, the primary candidate for exhibiting supersolidity is
solid “He, which was conjectured to have a supersolid phase
in the late 1960s [50,51]. Shortly thereafter, Leggett [52]
predicted that a supersolid would exhibit “nonclassical ro-
tational inertia” when rotated sufficiently slowly, owing to the
quantization of angular momentum of a rotating superfluid.
Evidence for this phenomenon was reported in Ref. [6]; the
interpretation of this and subsequent experiments is, however,
still controversial. It has been proposed, for instance, that rather
than indicating bulk supersolidity, the missing moment of iner-
tia arises because of superfluidity in dislocation cores [22,23],
because of elastic effects arising from the presence of 3He
impurities [24], as a by-product of glassiness [25], and so on.

One must distinguish between two types of question
regarding supersolids: (i) whether solid “He, or any other
neutral substance having “realistic” interparticle interactions,
is supersolid in the sense defined above, and (ii) what
properties a supersolid would possess, should one exist. In
the condensed-matter context, attempts to address question
(i) have been vitiated by the uncertainty about whether
the substance being studied is in fact supersolid, whereas
attempts to address question (i) have been hampered by
imperfect understanding of the characteristic phenomenology
of supersolids. The advantage of ultracold atomic realizations
of supersolidity, such as the present one, is that one can
explore question (ii) without first addressing question (i),
as the existence of both superfluid and crystalline order is
relatively easy to establish. The existence of crystallinity
can be deduced via the superradiant emission of light (see
Sec. VIII), whereas that of superfluidity may be explored
using a range of standard techniques (see, e.g., Ref. [16]).

Furthermore, it is in principle possible in the present setting
to test for supersolidity in a manner that enables one to
distinguish between scenarios in which the bulk of the sample
is a supersolid, and those that involve phase separation of
some kind—e.g., scenarios in which BEC is restricted to, e.g.,
dislocation lines. This can be accomplished via an analysis
of the spatial correlations of the light emitted from the cavity.
Such a technique is an adaptation of that developed by Ref. [53]
to explore the superfluid-insulator transition in an optical
lattice. It uses the fact that the number of particles per site
is not fixed in a superfluid; therefore, even if the emission
into a particular cavity mode is zero on average because of
destructive interference between the contributions from even
and odd sites, local atomic number fluctuations would render
this destructive interference imperfect and would lead to a
nonzero photon population, which can be detected in the light
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FIG. 10. Proposed scheme for detecting supersolid order.
(a) Profiles of two cavity modes: mode 1 (into which the atoms
self-organize) and mode 2 (which can be used to detect phase
coherence, as discussed in Sec. X). The two modes are degenerate;
mode 2 possesses more nodes along the z direction (i.e., perpendicular
to the plane of the figure). The + signs describe the phases of the
electromagnetic fields in the two modes relative to some reference
(e.g., the pump laser) in various regions of the cavity. (b) Atomic
configuration in which the atoms emit constructively into mode 1
and destructively into mode 2. In the insulating phase, this is the
typical configuration, as the number of atoms per site is fixed; hence,
there is suppressed emission into mode 2. (¢) Atomic configuration
in which the atoms emit constructively into both mode 1 and mode 2.
Such configurations, which involve multiple occupancy, occur in the
superfluid phase but are suppressed in the insulating phase; hence,
the amount of light emitted into mode 2 is a measure of superfluidity.

leaking out of the cavity. This idea is sketched in Fig. 10; for
calculational details, we refer to Ref. [53].

A. Coupling the superfluid order parameter to the solid
order parameter

A well-known manifestation of supersolidity is the nonclas-
sical behavior of the the moment of inertia [52], which results
from the requirement that the macroscopic wave function be
single valued. This effect can be explored directly in the present
setting, e.g., by imparting angular momentum to the BEC via
an auxiliary laser beam that carries orbital angular momentum.
Furthermore, one can study the implications of the presence of
crystalline order for the superfluid transition [54] by increasing
the density of the atomic cloud in the cavity until it undergoes
Bose-Einstein condensation. A third possibility is to displace
the superfluid from the center of the overall dipole trap and
observe its relaxation [55]; this should provide information
about the coupling between the Anderson-Bogoliubov mode
of the superfluid and the excitations (both phononlike and
topological) of the crystal. In particular, it should be possible
to tune the cavity geometry across a multimode geometry by
adjusting the mirror spacing, as discussed in Sec. IX A, thus
altering the spectrum of crystalline excitations.

It should be emphasized that all these experiments depend
crucially on the cavity’s being a multimode one, and on
the broken spatial symmetry being at least approximately
continuous. In a single-mode cavity, in which the broken
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symmetry is of the discrete (i.e., even or odd) type (and,
moreover, the interactions are effectively infinite ranged), the
“solidity” is of a different kind; in particular, there can be
neither Goldstone modes nor topological defects in the solid.

B. Supersolid-insulator transition

As discussed in, e.g., Ref. [52], the “normal solid” state
that competes with a supersolid is analogous to a Mott
insulator with regard to its transport properties. In the setting
of self-organized atom-light crystals, for laser intensities well
above threshold one expects the emergent lattice potential
to be sufficiently deep to cause the supersolid state to have
undergone a transition into a nonsuperfluid state. This state
can be either a Mott insulating state (which would be a normal
solid) or a Bose glass state (which, too, would have many of the
properties of a normal solid, particularly a nonquantized mo-
ment of inertia). The latter possibility arises even in the absence
of extrinsic disorder because vacancies and dislocations in
the self-organized lattice might dynamically generate disorder.
The Mott insulator state (which is incompressible) and Bose
glass state (which is compressible) should be distinguishable
via, e.g., their large-scale spatial density profiles.

The BEC-to-Mott insulator transition has recently been
addressed—tfor the case of a single-mode cavity—in Ref. [14].
The case of the concentric cavity has several features in
common with the single-mode cavity case; there is, however,
one key difference, which follows from the difference in
the character of the self-organization transitions in these
two cases. Consider the phase diagram in terms of the two
physically adjustable parameters, viz., the pump laser strength
2 (or, equivalently, the effective coupling constant ¢) and the
scattering length of the atoms, a (which can be tuned, e.g., by
approaching a Feshbach resonance). In the case of a single-
mode cavity, the self-organization transition is continuous;
therefore, by tuning the laser to sufficiently near threshold,
the emergent lattice depth can be made arbitrarily small.
Accordingly, regardless of how large the scattering length
might be, there is always a region in which the self-organized
lattice is too shallow to support a Mott insulator. Put differently,
there is always a region of the supersolid phase between
the liquid (i.e., the uniform BEC) and the normal solid. By
contrast, self-organization in a concentric cavity occurs by
means of a first-order, Brazovskii transition. The emergent
lattice depth therefore jumps discontinuously to some nonzero
value at the self-organization transition; if this minimum lattice
depth is greater than that required to support a Mott insulator,
it is possible to have a direct liquid-to-Mott transition, without
an intermediate supersolid phase [56]. The phase structure
of our atom-cavity system that results from the foregoing
considerations is summarized in the schematic phase diagram
shown in Fig. 11. Curiously, it has the same morphology as
that predicted for the corresponding liquid-to-solid transitions
of “He [57] (but with temperature and pressure serving as the
control parameters in the *He case).

XI. EXPERIMENTAL FEASIBILITY

In this section we discuss typical parameter values for which
the Brazovskii transition, and the resulting self-organized state,
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FIG. 11. Schematic zero-temperature (i.e., quantum) phase dia-
gram for a BEC in a concentric cavity, with the control parameters
being the atomic scattering length a and the inverse effective
atom-cavity coupling ¢ ! (or equivalently the inverse laser intensity
Q72). For weak, repulsive interactions, the superfluid first undergoes
self-organization via the Brazovskii transition, thus forming a
supersolid. If the laser intensity is increased further, the supersolid
undergoes a transition into a normal solid (i.e., a Mott insulator).
However, for strong, repulsive interactions, the uniform BEC can lose
phase coherence concurrently with the first-order self-organization
transition. This situation is to be contrasted with that for the case
of a single-mode cavity (inset), in which there should always be a
supersolid (SS) region separating the uniform fluid (SF) and normal
solid (S) regions. First- and second-order transitions are marked (1)
and (2), respectively.

should be observable in a multimode cavity. Recently, the
self-organization transition was observed in a single-mode
cavity using Bose-Einstein-condensed 3"Rb atoms. The cavity
was characterized by the cavity QED parameters (g,k,y) =
27 x (10,1,3) MHz; and the pump laser was detuned from the
atomic resonanceby A4 ~ 2 x 10'3 Hz[16]. An appreciable
photon population was observed in the cavity for A¢ up to
2m x 40 MHz. For these parameters, the mean-field value of
the self-organization threshold Q¢ is approximately 2w X
2 GHz. For a concentric cavity having these parameters, the
range in frequency space of the fluctuation-dominated regime
for the classical self-organization transition is approximately
27w x (2-20) MHz. (The precise value depends on the healing-
length parameter x, but only as x ~!/3; hence these results
are not very sensitive to the choice of x.) As previously
noted [17], this range is greater than the frequency width
associated either with spontaneous decay or with the intensity
noise of a typical laser (converted to frequency units). For
the quantum transition, the fluctuation-dominated regime (for
87Rb at unit filling far from a Feshbach resonance) would be
of order 0.1-1 MHz; the width of this regime can, however,
be extended by tuning the interparticle interaction through a
Feshbach resonance.

The nucleation rates, both thermal and quantal, can
be expressed—for the case of the interacting system—as
U exp[—R(Q2um — Q{Ef)/(Q — Qu)]. In this expression, Q2 is
the pump laser strength and £ is a number of order unity; the
expression is only valid when the exponent exceeds unity, i.e.,
for Q sufficiently near Q2¢,. For U far from a Feshbach reso-
nance, this expression implies that, for the regime discussed
in this work, in which nucleation proceeds via the formation
of large, well-defined droplets, the average nucleation time
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scale should typically exceed the lifetime of the experiment
(discussed in the next paragraph). It might therefore prove
necessary to enhance U by means of a Feshbach resonance in
order to explore the physics of nucleation. Note that this does
not imply that the self-organized state is inaccessible away
from a Feshbach resonance: rather, one expects that the laser
strength would have to be increased (decreased) well past
threshold before the system entered (left) the self-organized
state. In other words, the process of self-organization should
exhibit significant hysteresis.

For the experimental parameters just given, Baumann
et al. [16] found that the lifetime of the self-organized BEC
(i.e., the time scale on which atom loss destroys the BEC)
was approximately 10 ms. For detunings A¢ > «, atom loss is
largely due to spontaneous scattering, which occurs atarate R,
proportional to y Q2/ Ai. The corresponding time scale is long
enough to enable the observation of the family of phenomena
discussed in the present work. In order to perform a similar
experiment with cavities in the weak-coupling regime (i.e.,
for smaller g), one would have to ensure that the spontaneous
decay rate R,, stays below 1 kHz. This would involve satisfying
two conditions: g2N/A¢ > 10° andx < A¢.One could do so
by increasing the number of atoms in the BEC or by increasing
the finesse of the cavity mirrors (which would reduce «).

XII. SYSTEMS OF COUPLED LAYERS AND THE
ORIGINS OF FRUSTRATION

We have discussed how an equilibrium atomic cloud,
confined by the pump laser to a plane near the equatorial
plane of the cavity, spontaneously crystallizes globally into one
of a family of degenerate quasicheckerboard arrangements.
Now let us consider an atomic cloud confined to a single
plane away from the equator of the cavity. In this case,
spontaneous crystallization still occurs but, as we shall now
explain, the particular checkerboard arrangement into which
the atoms crystallize varies statically across the plane—
energetics demands, e.g., that the center and edge of the cloud
crystallize in distinct arrangements. This is a consequence of
frustration: satisfying local energetic preferences introduces
“fault zones” between locally ordered regions.

In our analysis of equatorial-plane atomic distributions (see
Fig. 8), we were able to focus on the family of degenerate
modes TEM,,, having [ = 0. To generalize our analysis
beyond the equatorial plane, we must consider all modes that
meet the degeneracy condition [ + m + n = KyR. Consider
the situation illustrated in Fig. 12(a), first focusing on the
nonequatorial sheet marked (i). Near the center of this sheet,
crystallization into modes with / = 1 is suppressed because
such modes have low intensity, whereas crystallization into
I = 2 modes is favored because they have maximal intensity;
away from the center, the opposite is true. The change in
| forces a change in m or n, owing to the degeneracy
condition, so the mode functions in the sheet must change
across an interfacial zone between the / = 1 and / = 2 favored
regions. Therefore, either a dislocation, associated with a
change in m, or an abrupt change in lattice periodicity (i.e.,
a discommensuration), associated with a change in n, is
expected. (This picture assumes that, as is always the case
near threshold, the self-organized lattice is not strong enough
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FIG. 12. (Color online) Schematic illustration of the implications
of frustration. Atoms are loaded into sheets (i) and (ii), shown
as thick lines in (a), which are an integer number of pump-
laser wavelengths apart. The dashed and dashed-dotted curves are,
respectively, antinodal regions of the modes TEM,,,, which have
low intensity near the centers of sheets (i) and (ii), and TEM,,,,
which have low intensity away from the centers of sheets (i) and
(ii). Near the center of each sheet, atoms crystallize into the TEM,,,
modes; away from the center, they crystallize into the TEM,;,,, modes.
Within a sheet, regions may be separated by faults in the ordering, as
illustrated in (b). For example, on the left side the fault has the form
of a discommensuration (see Sec. XII). By contrast, the fault on the
right side is a grain boundary. Between layers, the opposing parity of
adjacent modes leads to frustration, which precludes ordering, as in
the regions indicated by a A and a (. Grain boundaries (denoted by [J)
are more localized faults, and are therefore less costly, energetically,
than discommensurations (A).

to trap the entire atomic distribution at the center or the edge
of the sheet. The kinetic energy cost of localization, as well
as the cost in repulsive energy, will act to spread the atomic
cloud out.)

Now consider a situation in which two symmetrically
disposed sheets on opposite sides of the equator are populated
with atoms, as in sheets (i) and (ii) of Fig. 12. Atoms in
sheet (i) and those in sheet (ii) are coupled via the cavity
modes. Because [ = 2 (I = 1) mode functions are symmetric
(antisymmetric) about the equatorial plane, the atoms in the
[ =2 (I =1) arrangement in sheet (ii) occupy the same
(opposite) checkerboard as those in sheet (i). If there are no
dislocations, atoms in the interfacial zone remain disordered,
because it is impossible for the atoms to satisfy both desiderata
[or, equivalently, because the corresponding cavity modes
interfere destructively in sheet (i) and constructively in sheet
(@i1)]. The introduction of dislocations enables the system to
order in part of the interfacial zone, as shown in the right-hand
side of Fig. 12(b), and is therefore preferred.

The full many-layer, many-mode system is expected to
experience the same kinds of disordering effects as the
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idealization sketched above: i.e., one expects systems slightly
above threshold to develop locally crystalline phases separated
by zones riddled with faults.

XIII. CONCLUDING REMARKS

In this work, we have shown that the self-organization of
BECs in multimode cavities is accompanied by a range of
effects, such as fluctuation-driven nonequilibrium first-order
transitions (both classical and quantal), topological defects,
rigidity, frustration, and supersolidity. We have developed both
a nonequilibrium formalism for exploring such systems in
general, and an effective equilibrium description valid in the
regime of greatest interest, viz., the quantum phase transition
undergone by a Bose-Einstein condensate. We have outlined,
moreover, how these formalisms may be used to compute the
correlation functions of the photons emitted from the cavity,
as well as those of the atoms, and how such correlations
may be detected experimentally. Finally, we have suggested
realistic values of experimental parameters that might be used
to realize self-organization and its attendant phenomenology
in the laboratory.

A major outstanding question that we hope to address in
future work is whether the self-organized state in the layered
three-dimensional geometry described in Sec. XII exhibits
glassy dynamics. We also see three other promising avenues
for future work extending the ideas developed in this paper. The
firstis to consider pumping with light sources that exhibit either
thermal or quantum noise, instead of considering classical laser
light. Such light sources are likely to lead to nontrivial effects
because of the interaction between the input noise and the
environmental noise due to photon loss. The second avenue is
to apply the current formalism to related instabilities of atoms
in cavities: e.g., the phenomena of collective atomic recoil
lasing [58] and “excess noise” [59]. Such phenomena are well
understood at the mean-field level, but the present formalism
makes it straightforward to address the effects of fluctuations.
Finally, it might be of interest to explore the physics of
many fermions trapped in multimode cavities, especially the
prospects for their Cooper pairing. There are two possible ways
to arrange this: the first is to exploit the previously mentioned
analogy (see Sec. III) between photons and phonons in order
to achieve photon-mediated Cooper pairing; the second is to
use the phonons of the emergent crystalline phase as the “glue”
that would bind the Cooper pairs.
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APPENDIX A: TOY EQUILIBRIUM MODEL

In this appendix we elaborate on the connection between
quantum phase transitions in quasiequilibrium cavity QED set-
tings and the conventional theory of quantum phase transitions
as level crossings (as discussed, e.g., in Ref. [60]), by means
of a toy model. This model has the following components:
(1) a laser mode a; of frequency w;, (ii) a cavity mode ac
of wave vector k and frequency we = wy + A, and (iii) an
anharmonic atomic phonon b of wave vector k and frequency
w,. The Hamiltonian for the model is given by

H =Tho,ala, +hogala. +hw,b'b + 1(b'b)

+hl(a)a. +He)®d! +b), (A1)
where I" is the photon-phonon coupling constant, and A is
a parameter describing the strength of the anharmonicity of
the phonon. In what follows we shall rescale all energies by
hw, in order to de-dimensionalize them; the dimensionless
parameters will be denoted as @, etc. As H commutes with
the total number of photons N (= azaL +aia0), one can
diagonalize it in a space of fixed total photon number N .
(For sufficiently large A, the difference between number and
coherent states is irrelevant.) Let us attempt to find the ground
state for a particular value of N. It is helpful to simplify
further and treat the phonons as being “classical” by taking
the commutator [b,b] = 0; this is equivalent to rewriting
b = /mw/2h[x +i(p/mw)] and taking the m — oo limit.
In this limit, all terms depending on p in the Hamiltonian are
suppressed; thus the Hamiltonian can be rewritten, in terms of
x o (b + b'), as

H = d)L(aZaL + aTCaL) + ALaZaL

+x? + ix* + 29x(ala, +He). (A2)
In this expression the prefactors accompanying x have been
absorbed as appropriate into the various coupling constants.
The first term is simply a constant times ', and can be ignored
for our purposes. As x is also now a good quantum number,
it is now possible to diagonalize H in a manifold of fixed N’
and x. This can be achieved via canonical transformation from
from a; and ac to A; and A,:

a; =aA; +vV1—a?A,, (A3a)
ac = —vV1 —a2A; +aA,, (A3b)
where
A
=1 ——=5 . (A4)

1
2 J472x2 4+ AL

In terms of A; and A,, the Hamiltonian H has the form

2

H=AcN + x>+ ix* + (AlA, — AlAy).

(AS5)
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Expanding in powers of x, one finds that the coefficient of x>
in the Hamiltonian is now given by
67 2
1+ (AlA; — Alay~L-.
Ac
For a fixed N, the smallest value that the last term can
attain is

(A6)

——=N. (A7)

Thus, when 672/A¢ < 1/N, the coefficient of x? is always
positive; hence, the ground state always lies in the x =0
manifold. However, for 677%2/A¢ > 1/N, the ground state is
that in which A} A, = A/, and
6~2
N
2%
Hence, as 7 is increased, the ground-state value of x (for fixed
N) becomes nonzero, singularly. In other words, the lowest
level of the x = 0 manifold and that of an x # 0 manifold cross
at the critical value of 7: such a level crossing is known as a
“quantum phase transition” [60]. Although the phenomenon of
self-organization in a multimode cavity involves substantially
more than a single photon and a single phonon, its essential
character in the equilibrium limit, for a classical laser, is also
that of a ground-state level crossing occurring at some fixed
photon number N

(A8)

APPENDIX B: DETERMINING THE HEALING-LENGTH
PARAMETER x

The parameter 1/y, which sets the healing length for
crystallinity, is a measure of the weakness of the atomic
coupling &, to I # 0 modes, relative to the coupling to/ = 0
modes. The value of y is determined by the following effects:
(1) the atoms, being confined near the equatorial plane of the
cavity, couple most strongly to modes that have the highest
amplitude there, and thus to the lowest-order modes along the
z direction [i.e., g is in effect a function of / once E(X) is
projected onto the equatorial plane]; (2) higher-order modes
along the z direction have lower finesse and hence couple
more weakly to the atoms (i.e., k is a function of /); (3) the
effective laser-cavity detuning, Ac — g?N/A,, is a function
of [ because g is; and (4) for a nearly concentric (or confocal,
planar, etc.) cavity—the experimentally relevant case—A¢ isa
function of / because higher-order modes have lower resonant
frequencies. Thus, ¢ is in general a complicated function of /.

For the specific case of a concentric cavity, one can
generalize the mode structure given in Sec. VII A by imposing,
e.g., finite-well rather than hard-wall boundary conditions
on 6. In this case, it is clear that both g;/go and k;/k¢ (in
which the subscripts denote the appropriate value of /) must
vary approximately as (1 — const x /), where the constant is
approximately 1/12,, i.e., the number of higher-order modes
that are of sufficiently high finesse to couple significantly to
the atoms. Thus, x can be taken to be approximately 1/12_,up
to a factor of order unity; the physically relevant quantities &,
and Q, which depend on x!/3 and x !/# respectively, should
not be sensitive to this neglected factor.
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Note that this analysis ignores effect (4). According to
Eq. (19.24) of Ref. [30], this term would lead to a frequency
shift Ac(l)/Ac(0) x —I, with a proportionality constant
depending on the distance from concentricity. Thus, ¢ should
have a positive linear term in [, in addition to the negative
quadratic term; the potential effect of such a term is to favor
some family of [ = [y # 0 modes, even at the equator, over
[ = 0 ones. Similar considerations apply to other geometries,
such as the confocal or planar cavities.

APPENDIX C: RENORMALIZATION-GROUP FLOW
EQUATIONS FOR THE QUANTUM BRAZOVSKII MODEL

In this appendix we outline our derivation of the
renormalization-group (RG) flow equations for the quantum
Brazovskii model discussed in Sec. VIIF. Our procedure
parallels that discussed in Appendix A of Ref. [29] for the
classical Brazovskii model; that work, in turn, was based on
techniques developed by Shankar [21] for the Fermi liquid.
The objective of the renormalization-group procedure is to
arrive at a spatially coarse-grained effective theory in terms of
modes for which m 4+ n ~ Ay. This is done by progressively
integrating out modes for which |m +n — Ag| > B, where
B is referred to as the renormalization-group “scale.” The
microscopic, or “bare,” theory has an RG scale that is
associated with the physical high-energy cutoff (e.g., A4 in
the cavity QED case); this scale is progressively decreased by
the integrating out of “shells” of modes, i.e., modes for which
Bhew < |m 4+ n — Ag| < Bog, thus yielding effective theories
involving progressively fewer modes. As one integrates out
these shells of modes, the theory maintains its basic structure,
but the various coupling constants flow; therefore, the coupling
constants are functions of B. For example, the microscopic
values of the parameters R and U/ are their values at a value
of B determined by A,4, whereas the fully coarse-grained
parameters » and u are those corresponding to B = (. At each
step in the RG procedure, we integrate out all the frequency
components associated with that spatial shell; in making this
choice [which has the advantage of preserving the causality
structure of the microscopic theory (as mentioned in Ref. [44])]
we are following Refs. [21,44].

We begin with the observation that the action can be written
as follows:

where
d
S = (@) /dlr(l)q>(1)cp(1),
Qn)!
Sy = 0 fdl d2d3d4u(1234) (1) ©(2) (3) ©(4)
x8(1+24+3+4), (€2)

and notation of the form d1 is to be interpreted in the following
way:

1 o.¢]
dl= —— Ad_'dn/ dwfd@, (C3)
/ (27-[)41 |m+n—Ay|<B 0 —00

where 1 and 6 are, respectively, the quasiradial and quasian-
gular variables discussed in Sec. VIIG, and are treated here
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as continuous. We now perform the RG transformation, which
involves two steps: (i) integrating out all modes satisfying
B/b<|m+n—Ay <B for b=14+1 with [ <€ 1; and
(ii) rescaling the spatial coordinates and the fields in the action
so that the new action is similar in form to its predecessors
under the RG transformation. Under this rescaling, n — bn
and ® — ®/b. Under the combined effects of integrating
out the shell of modes (at one-loop order, via the diagram
in Fig. 3) and the rescaling, the coefficient of the quadratic
term transforms as follows:

r(B) —> r(B/b) = b*(r(B) + A,), (C4)

where
B

dn———.
s T(B)+n?

By setting b = 1 4 [ and differentiating with respect to [, we
arrive at a differential version of the RG equation for 7, viz.,

d_r _ 2r(B) 4 Baul(B)
dl Jr(B)+ B

We have introduced the notation u; instead of u because,
as we shall now see (and as we anticipated in Sec. VIID),
the renormalized value of u depends on whether the four 6°s
entering the vertex are identical or not. The generic vertex, in
which the four values of 0 are not all identical, is associated
with the coupling u;; the special vertex, in which the four
values of 0 are all identical, is associated with the coupling u5.
Similarly, we shall denote the six-point vertices respectively as
wi, wy, and w3, depending on whether two, four, or all six of
the incoming propagators have identical values of 6. The RG
equations for (u1,u,) can be derived via the same procedure
as those for r; they read as follows:

Ay = aui(B) (&%)

(Co)

duy — 2 — au’B n aw B , 7
dl rB)+ B Jr(B)+ B

A _ppy g B awB g
di (B + B /(B + B

Similar equations can be derived for the three w couplings;
these involve the diagrams in Fig. 3(d) and Fig. 13. Before
writing these down, however, we introduce the following con-
venient changes of variables, which serve to de-dimensionalize
the RG equations (following Ref. [29]):

B = B(ald)™"?e ™, (C9)

7(B) = r() () e 2, (C10)
u12(B) = ui(DUe™, (C11)
W123(B) = wy23(DU L ae™. (C12)

In terms of the new variables, the full set of RG equations is
as follows:

dr u

BTGB (12
di, w W)
dB T T+ B (F+BHY (€19
dit, 2u? Wy
dB T F+ B G+ B) (1)
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FIG. 13. Feynman diagrams involving the six-point vertices
associated with the couplings w; (i = 1,2,3), to one-loop order. The
six-point vertices are denoted as gray squares. The diagram shown
on the left renormalizes the four-point vertices; that on the right
renormalizes the six-point vertices.

dw, 2u; 3u,w,
— , Ci6
dB TR B (10
dw, 415 ww, 4w,
Y C17
dB (7+B2)3/2+7+62+7+62’ (17
dw; 12u3 81,
— = : CI8
B~ G B Ty (C18)

The appropriate microscopic values (i.e., initial conditions for
these equations) are as follows: ((00),u; 2(00),w; 2,.3(00)) =
(R,1,0). Numerical integration of the equations yields the
coarse-grained parameters, which are plotted in Fig. 5 and
discussed in the main text.

APPENDIX D: EFFECTIVE TEMPERATURES

In this appendix we briefly explain why, and for what
purposes, £ in Sec. VIII behaves as an effective temperature.
The basic result we shall review is as follows: consider a
quadratic Keldysh action that has a g-g component of the
(low-frequency) form

i1, [ dody@ b -0 1)

for some real set of parameters I". (The generic set of indices
parametrized by v can describe positions, momenta, mode
indices, etc.) The long-time dynamics of such a theory can
then be described by a Langevin equation, having a white
noise term of strength I.

In what follows, we shall suppress the v index; the
argument, which is adapted from Ref. [31], can be made
independently for each v. First, note that Eq. (D1) is expressed
in the time domain as

ir / do ¢, (1) ¢, (1). (D2)
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This term appears in the system’s partition function Z =
[ D¢y (t)Dé (1) expiS, in the form

Z = / D¢, (1) exp (—F/dt¢q(t)¢q(t)> -+, (D3)

in which the ellipsis denotes factors resulting from other terms
in the action. Equation (D3) above can be rewritten, by means
of a Hubbard-Stratonovich transformation, as

2
/D¢q(t) DE&(1) exp |:—/dt (% — 2,'5(;)@(;))}

(D4)

Once this is done, the full partition function, which also
includes terms linear in ¢, (from the retarded and advanced
components of the Keldysh action) can be written as follows:

Z= / DE(t) Dé.(t) exp (—% / dté(t)z)

X / D¢, (1) exp (i / dtdt/[aﬁc(t’)G(tCt)—é(t)]¢>q(r)>,
(D5)

where G represents some (unspecified) integral kernel that
couples ¢, and ¢, . Note that the c-c term in the action is absent,
via causality, as discussed in Ref. [31]. If one now integrates
out ¢, one finds that the partition function is given by

Z= / DE() D (1) exp (—% / dté(t)z)

x 8[p.()G(t,t") — E(t)]. (D6)

Accordingly, the dynamics of the system is described, at long
times, by a sum over classical histories in the presence of a
Langevin white-noise term &, the fluctuations of which are
given by

(EMEM)) =T8(t —1). (D7)

It follows that the long-time dynamics of the system is
classical rather than quantal; thus any phase transition that the
system undergoes is a thermal rather than a quantum phase
transition. By contrast, for any system that undergoes a true
quantum phase transition, the coefficient of the g-¢g component
of the Keldysh action vanishes at low frequencies, typically
as a power law, |w|* (see, e.g., Ref. [44]). This corresponds to
power-law decay of noise correlations in the time domain.

A closely analogous argument (see, e.g., Ref. [31]) shows
that, assuming the g-¢ component of the action is frequency
independent as w — 0, the rate of escape from a metastable
state is given by an effective Arrhenius formula with a
temperature proportional to I".
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