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The dynamics, appearing after a quantum quench, of a trapped, spin-orbit coupled, dilute atomic gas is studied.
The characteristics of the evolution is greatly influenced by the symmetries of the system, and we especially
compare evolution for an isotropic Rashba coupling and for an anisotropic spin-orbit coupling. As we make the
spin-orbit coupling anisotropic, we break the rotational symmetry and the underlying classical model becomes
chaotic; the quantum dynamics is affected accordingly. Within experimentally relevant time scales and parameters,
the system thermalizes in a quantum sense. The corresponding equilibration time is found to agree with the Ehren-
fest time, i.e., we numerically verify a ~ In (') scaling. Upon thermalization, we find that the equilibrated dis-
tributions show examples of quantum scars distinguished by accumulation of atomic density for certain energies.
At shorter time scales, we discuss nonadiabatic effects deriving from the spin-orbit-coupled induced Dirac point.
In the vicinity of the Dirac point, spin fluctuations are large and, even at short times, a semiclassical analysis fails.
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I. INTRODUCTION

The physics of ultracold atomic gases has greatly advanced
in recent years [1]. The high control of system parameters,
together with the isolation of the system from its environment,
have made it possible to use such setups to simulate various
theoretical models of condensed matter physics [1,2]. Of
significance in many condensed matter models is the response
to external magnetic fields. Since atoms are neutral, there is no
direct way to implement a Lorentz force in these systems. Early
experiments created a synthetic magnetic field via rotation [3].
While simple theoretically, these methods are impractical for
certain setups, and they are limited to weak, uniform fields. The
first experimental demonstration of laser-induced synthetic
magnetic fields for neutral atoms [4], on the other hand, paves
the way for an avenue of new situations to be studied in
a versatile manner [5-7]. Owing to numerous fundamental
applications in the condensed matter community [8,9], maybe
the most important direction appears when the laser fields
induce a synthetic spin-orbit (SO) coupling. Indeed, a certain
kind of SO coupling for neutral atoms has already been
demonstrated [10], and it is expected that more general SO
couplings will be attainable within the very near future [11,12].

While SO couplings can in principle bear identical forms in
condensed matter and cold-atom models, there is an inevitable
difference, often overlooked, between these two systems. The
presence of a confining potential for the atomic gas can
qualitatively change the physics [1,3], and has only recently
been addressed [13—-17]. Furthermore, most of these studies
are concerned with ground- or stationary-state properties of
the system [13-15], while few works discuss dynamics or
nonequilibrium physics. Notwithstanding, the experimental
isolation of these systems suggests that they are well suited
for studies of closed quantum dynamics [18].
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Historically, some of the finest experiments regarding
dynamics of closed quantum systems have been performed
in quantum optics [19,20]. An early example proved quanti-
zation of the electromagnetic field by making explicit use of
quantum revivals [21]. Such quantum recurrences, in general
connected to integrability or small system sizes, are now
well understood. The situation becomes more complex for
nonintegrable systems [18] or systems with a large number of
degrees of freedom [22]. One particularly interesting question
is whether any initial state relaxes to an asymptotic state,
and if so, what are then the properties of this “equilibrated”
state and the mechanism behind the equilibration. Both these
questions have inspired numerous publications during the
last decade, both theoretical [23,24] as well as experimental
[25-27]. A rule of thumb is that in order for a closed
quantum system to thermalize, i.e., all expectation values
can be obtained from a microcanonical state, its underlying
classical Hamiltonian should be nonintegrable [18]. While true
in most cases studied so far, exceptions to this hypothesis have
been found [28]. Moreover, the behavior near the transition
from regular to chaotic dynamics, classically explained by
Kolmogorov-Arnold-Moser theory [29], is not well understood
for a quantum system [30]. It is therefore desirable to study a
system where these two regimes can be explored by tuning an
external parameter, and for which the experimental methods in
terms of preparation and detection are already well developed.

Motivated by the above arguments, in this paper we consider
dynamics of a trapped SO-coupled cold dilute atomic gas. The
SO coupling is assumed tunable from isotropic (Rashba type)
to anisotropic, and hence the system can be tuned between
regular and chaotic. Note that even though this crossover is
generated by a change in the form of the SO coupling, the
confining trap causes the system to become nonintegrable.
We distinguish between short- and long-time evolution, where
by “long time” we mean times similar to the Ehrenfest time.
In fact, the corresponding time scale for the thermalization

©2013 American Physical Society


http://link.aps.org/viewpoint-for/10.1103/PhysRevA.87.013624
http://dx.doi.org/10.1103/PhysRevA.87.013624

JONAS LARSON, BRANDON M. ANDERSON, AND ALEXANDER ALTLAND

is found to agree with the Ehrenfest time, and thereby scale
as In (A~")/A where A is the maximum Lyaponov exponent.
This scaling for the thermalization has been conjectured in
Ref. [31], but was not numerically verified in these works. At
shorter times when the wave packet remains localized, we es-
pecially study the rapid changes in the spin as the wave packet
evolves in the vicinity of the Dirac point (DP). For energies
below the DP (E < 0), we utilize an adiabatic model derived
in the Born-Oppenheimer approximation (BOA) [32]. Aside
from some special initial states, we encounter thermalization
in all cases. These exceptions correspond to states evolving
within a regular “island” in the otherwise chaotic sea. Among
the thermalized states, the equilibrated distributions are found
to show quantum scars originating from periodic orbits of
the underlying classical model. The experimental relevance
of all our theoretical predictions are discussed and put in a
state-of-the-art experimental perspective.

The paper is outlined as follows. The following section
introduces the system Hamiltonian and discusses its symme-
tries. Section I B derives the adiabatic model by imposing the
BOA. A semiclassical analysis, demonstrating classical chaos
for anisotropic SO couplings, is presented in Sec. III. The
following section considers the full quantum model at short
times, Sec. IV A, and long times, Sec. IV B. Section IV C
contains a discussion regarding experimental relevance of our
results. Finally, Sec. V gives some concluding remarks.

II. SPIN-ORBIT-COUPLED COLD ATOMS

A. Model spin-orbit Hamiltonian

Several proposals exist for implementing spin-orbit cou-
plings in cold atoms [33-35]. In general, these synthetic
spin-orbit fields are generated through the application of
optical and Zeeman fields to produce a set of dressed states that
are well separated energetically from the remaining dressed
states [5]. We denote these states as pseudospin, but emphasize
that there is no connection to real-space rotations. Spatial
variation of the dressed states will couple the pseudospin to the
orbital motion of the atom. An atom prepared in a pseudospin
state will therefore see an effective Hamiltonian, provided the
atom is sufficiently cold.

For a specific configuration of optical fields, one can induce
the effective Hamiltonian [35]

)
Hso = 5+ %ma)zrz + vy PprGy + ) PyGy, (1)
where p = (P, py) is the momentum operator, F = (£,)) is
the position operator, m is the mass of the atom, and w the
frequency of a harmonic trap. The operator 6; is the ith
Pauli matrix in pseudospin space, and the velocities v; couple
pseudospin to an effective-momentum-dependent Zeeman
field B(p) = (v, px,vypy). This momentum-dependent Zee-
man field can simulate any combination of the Rashba [36] and
Dresselhaus [37] SO couplings experienced in semiconductor
quantum wells and systems alike.
In the absence of a trap, w = 0, the spectrum of (1) is

1
Eu(prp) = 5= (P24 pD) + 1 @ip? + up,? @)
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with the corresponding eigenfunctions

|wu,p) — eim(vxx+vvy)|(pu>’ (3)

where

1 . .
lou) = —=(e211) — ne?|1) 4)

V2
is a spinor with helicity u = %1 and ¢ = arctan (v, p, /v, p,).
These states have well-defined momentum, but have no
velocity since (F) = (V, H) = 0, provided the optical fields are
maintained. Note further that the eigenstates are parametrically
dependent on p, and p,.

We remark that for an isotropic SO coupling v, = v,, the
Hamiltonian (1) is equivalent to the dual E x ¢ Jahn-Teller
model, frequently appearing in chemical or molecular physics
and condensed matter theories [38,39]. With a simple unitary
rotation of the Pauli matrices, the SO coupling attains the more
familiar Rashba form [36] (or equivalently Dresselhaus form
[37]). For v, # v,, i.e., when the SO coupling is anisotropic,
the model becomes the dual E x (8, + B,) Jahn-Teller model
[39] In partlcular the Z projection of total angular momentum,
J.=1L, + 5 is a constant of motion for the isotropic but not
for the amsotroplc model. More precisely, breaking of the SO
isotropy implies a reduction in symmetry from U(1) to Z,.

Throughout, we will use dimensionless parameters where
the oscillator energy E, = hw sets the energy scale, [ =
Jh/mw the length scale, and the characteristic time is
T = w~'. We note that for typical experimental setups [4],
w ~ 10-100 Hz and m(v)% + v%)/h ~ 1-10 kHz. Moreover, in
what follows, we will refer to pseudospin simply as spin.
When necessary, we introduce a parameter s serving as
a dimensionless Planck’s constant, i.e., h%. In this way, h
controls the strength of Planck’s constant and by varying it
we can explore how the dynamics depends on 7.

B. Adiabatic model

The large ratio of the SO energy to trapping energy,
typically mv?/hw ~ 10-1000, suggests that a BOA [32] will
be valid for experimental implementations. The separation of
time scales of the spin and orbital degrees of freedom implies
that in some regimes we can factorize the wave function as the
product of spin and orbital wave functions. A spin initially
aligned with the adiabatic momentum-dependent magnetic
field B(p) will remain locked to that field at future times,
provided the center-of-mass motion avoids the DP. We then
solve for the spin wave function at an instantaneous orbital
configuration and use this answer to find an adiabatic potential
for the orbital motion. This is in analogy with the traditional
BOA, where the electronic and nuclear wave functions are
approximated as a product, and the electron degrees of freedom
instantaneously adjust to the adiabatic potential given by the
nuclear degrees of freedom.

In our BOA, we have chosen the adiabatic states [32] for
the orbital motion to be the spin-helicity states, given by (4).
If we project the Hamiltonian into the basis |¢,,), we arrive at
the adiabatic potential

=N

A A2
H(M) p

£ 2 p
ad—E—i-?—i-y—kjy—i-yﬁ/vpx—i-vpy (5)

013624-2



CHAOS-DRIVEN DYNAMICS IN SPIN-ORBIT-COUPLED ...

] Y
w u///,,'?} 7

4
N
N

FIG. 1. Adiabatic potentials of the isotropic (a) and anisotropic
(b) SO-coupled models. In both figures, the £ = 0 plane is the one
including the DP at p, = p, = 0. A necessary, but not sufficient,
condition for the validity of the BOA is that £ < 0. In (a), the lower
adiabatic potential V_(py, p,) has the characteristic sombrero shape.
By considering an anisotropic SO coupling, the rotational symmetry
is broken and V_(p,, p,) possesses two global minima at (p,, p,) =
(0, £vy).

The trap thus takes the role of kinetic energy and (5) can be
pictured as a particle in a (dual) adiabatic potential

A2 52
A p Dy N N
Viu(px,Py) = f-l—f—kqufpf—f-vﬁpf (6)
shown in Fig. 1 for both the isotropic (a) and anisotropic
(b) cases. We have neglected nonadiabatic corrections arising
from the vector potential and the Born-Huang term [40]. For
example, an additional scalar potential

vy (P2 + p})
(v3p2 +03p3)°

will emerge from the action of the SO coupling on the spinor
|¢.). This term is order Viaa ~ (¢|V,|p) ~ 1/p*. There will
also be an additional vector potential term A ~ 1/p. The
nonadiabatic corrections diverge near the DP, but then fall
off rapidly at finite p. The adiabatic approximation, i.e., BOA,
will be valid if the particle avoids p = 0. We will show later
that this condition is met if the particle is in the lower band
@ = —1 and has energy E < 0.

Imposing the BOA, any state propagating on the lower

adiabatic potential will be denoted ®(py,p,,?), and it is
understood that

D(px,py.t) = d(pr,py.Dle-). (®)

The real-space wave function W(x,y,t) is given as usual
from the Fourier transform of ¢(p,, py,t). The time evolution
follows from @(p,,py.t) = exp (=i H ' 1)p(ps, py,0). It is
also clear that the state ®(p,,p,,t) determines the spin

Vnad(pmpy) ~ @)
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orientation which is inherent in the ket-vector |¢;). More
explicitly, the time-evolved Bloch vector

R(t) = (R:(#), R, (1), R (1)) = ((6x),(6y),{62) )
takes the form

Ru(t) = / dpsdp, 16(px. pyD)I cos (9),

Ry(1) = / dpedp, 16(pespy D sin(@),  (10)
R.(1)=0

in the BOA, and it is remembered that the parameter ¢ depends
on p, and p,. Note that the Bloch vector precesses in the
equatorial spin xy plane. If the wave packet ®(p,,py,t) is
sharply localized, a crude approximation for the Bloch vector
is given by

Rx([) — vxﬁx(t) , (11)
JIwe P + [v,5,(0] 2
_ vy iy (1)
Ry(t) = St , (12)
’ Vs (O + [0y 5, (O
R.() =0, (13)

where po(t) = [ dpidpy |®(py, py,1)|*pe With e = x, y.

III. CLASSICAL DYNAMICS

Quantum chaos is often defined by having an underlying
chaotic classical model. For the full model (1), the spin degrees
of freedom can not be eliminated in a straightforward manner
in the vicinity of the Dirac point and as a consequence it
is not a priori clear what the underlying classical model
would be in this regime. On the other hand, in the BOA, the
adiabatic Hamiltonian ﬁa(;) can serve as our classical model

Hamiltonian. Still, it should be noted that we assume (H, ;;)) <
0, such that the spectrum contains a sufficiently large number
of energies below E = (. Furthermore, we point out that
justification of the BOA does not necessarily imply approval
of a semiclassical approximation which depends on the system
energy and the actual shape of the dual potential V_(py,p,).
Nevertheless, as we will demonstrate in the following, for the
chosen parameters, the agreement is indeed very good.

The classical equations of motion of the Hamiltonian A ;;)
are

2
PR ] ¢ — (14)
JUips tuipg
px = —X, (15)
v2p
y=py - —— (16)
J Vi +vip3
Py = —. (17)

For the Rashba SO coupling v, = v, = v, there is one
unstable fix point (px,p,) = (0,0) and a seam of stable fix
points p? + p§ = v? [see Fig. 1(a)]. For the anisotropic case
v, > vy, there are three unstable fix points (p,,p,) = (0,0)
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FIG. 2. Two examples of classical trajectories (x(z), P, (t)) for
regular (a) and chaotic (b) dynamics. In (a), typical for regular motion
the trajectories evolve upon a tori. Contrary, in (b) the trajectory is
much more irregular, which is characteristic for the chaotic evolution.
The regular motion is calculated for the SO-coupling strengths v, =
v, = 30, and the chaotic motion with v, = 20 and v, = 30. In both
cases, the energy is £ = —192.

and (py,py) = (Fv,,0), while there are two stable fix points
(Ps.py) = (0, v,) [see Fig. 1(b)].

The classical energy E(x,py,y,p,) = p2/2+ p?/2+
x*/2 4 y*/2 = ~vip; 4 v} p; determines a hypersurface in
phase space for any given energy E(x,p,,y,p,) = Eo. The
semiclassical trajectories (x(t), px(t),y(t), py(t)) live on this
surface. For the integrable case v, = v,, these surfaces form
different tori characteristics for quasiperiodic motion. As
the rotational symmetry is slightly broken, v, # v,, the tori
deforms and the motion loses its quasiperiodic structure [29].
This is the generic crossover from regular to chaotic classical
dynamics. As an example of this generic behavior, we show
in Fig. 2 two randomly sampled trajectories in the xp, plane
for regular (a) and chaotic (b) evolution. For all results of this
section, we solve the set of coupled differential equations (14)
using the Runge-Kutta (4, 5) algorithm modified by Gear’s
method, suitable for stiff equations. We have also numerically
verified our results employing different algorithms [41]. As
will be discussed further below, even in the chaotic regime,
periodic orbits may persist and will greatly affect the dynamics,
both at a classical and a quantum level [42]. Such orbits are
not, however, visible from Fig. 2.

The semiclassical behavior of classical dynamical systems
is favorable visualized using Poincaré sections [43]. Corre-
sponding sections for the system (14)—(17) are depicted in
Figs. 3 and 4. In Fig. 3, we display the Poincaré sections in the
xpy plane for the intersections determined by y = 0 (a) or p, =
0 (b) of the isotropic model with the SO-coupling amplitudes
vy = vy = 30. The initial energy is taken as £ = —192, well
below the DP, consistent with the BOA. In Fig. 3(b), the section
defined by p, =0, the evolution results in ellipses in the
Poincaré section, characteristic of quasiperiodic motion. The
structure of the Poincaré section for y = 0 (a) is somewhat
more complex. This can be understood from the sombrero
shape of the adiabatic potential V_(py, py); for given x = x/,
px = P, y =0, and energy Ey, there are four possible values
of py, and this multiplicity of possible p,’s allow the “curves”
in Fig. 3(a) to cross. It should be noted that any single curve
does not cross itself. Furthermore, by adding the p, values
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FIG. 3. Poincaré sections of the Rashba SO-coupled adiabatic
model (5) for the intersections y = 0 (a) and p, = 0 (b). The initial
energy is E = —192, the SO-coupling strengths v, = v, = 30, and
the number of simulated semiclassical trajectories 18.

to Fig. 3, we have verified that neither of the corresponding
three-dimensional curves cross.

Figure 4 presents two examples for anisotropic SO cou-
plings, both with v, =20 and v, = 30. The quasiperiodic
evolution is lost and the dynamics become mixed, with regions
of both chaos and regular dynamics. The same conclusions
were found in Ref. [45] where a related Jahn-Teller model
was studied. The two lower plots consider the same energies
as in Fig. 3, i.e., E = —192, while for (a) and (b) E = —88.
Expectedly, the higher energy increases the accessible volume
of phase space. For both energies, we find islands free from
chaotic trajectories. As will be demonstrated in the next
section, within these islands the evolution is regular and the
system does not thermalize. The plots also demonstrate clear
structures also appearing in the chaotic regimes of the Poincaré
sections in which the density of solutions changes.

IV. QUANTUM DYNAMICS

The idea of this section is to analyze how the correspond-
ing quantum evolution is affected by whether the classical
dynamics is regular or chaotic. Of particular importance is the
long-time evolution in which the system state may or may not
equilibrate. However, we study also the short-time dynamics
arising for a localized wave packet traversing the Dirac point.
In this regime, clearly the classical results of the previous
section do not hold.

To study the system beyond the classical approximation, we
solve the time-dependent Schrodinger equation, represented
by the Hamiltonians (1) or (5), to obtain the corresponding
wave function W(x,y,?) at time 7. Note that for the full model
(1), the wave function contains the spin degree of freedom
Y(x,y,t) = ¥(x,y,011) + ¥ (x,y,0)l}). The nonequilib-
rium initial state appears after a quench in the center of the trap.
We prepare the system in a quasi-ground state for a shifted trap,
and at t = 0 suddenly move the trap center to x; = y, = 0,

(x —x) | (V=)
Vix,y) = > 5
xs # 0 and/or y; #£0, t <0 (18)
Xx=ys=0, f>0

By “quasi-ground state” in an anisotropic SO-coupled system,
we consider an initial state predominantly populated in one
of the two minima of the adiabatic potential V_(p,, p,). This
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FIG. 4. Poincaré sections of the anisotropic SO-coupled adiabatic
model (5) for y = 0 [(a) and (c)] and for p, = 0 [(b) and (d)]. The
initial energies are £ = —88 [(a) and (b)] and E = —192 [(c) and
(d)], and the SO-coupling strengths v, = 20 and v, = 30 for both
cases. The corresponding maximum Lyaponov exponets have been
derive, using the method out lined in Ref. [44], to A & 0.12 and 0.090,
respectively. The number of semiclassical trajectories is the same as
for Fig. 3, namely, 18.

seems experimentally reasonable where small fluctuations
will favor one of the two minima. For the isotropic case, the
phase of ®(p,,p,,t =0) is taken randomly in agreement
with symmetry breaking. Given the evolved states W (x,y,t),
we are interested in the Bloch vector (10) or its components,
and the distributions |®(p,, py,1)|* and [W(x,y,1)|>.

The numerical calculation is performed employing the
split-operator method [46], which relies on factorizing, for
short times §¢, the time-evolution operator into a spatial and
a momentum part. For small SO couplings v, and v,, the

PHYSICAL REVIEW A 87, 013624 (2013)

method is relatively fast, while as v, and/or v, are increased the
time steps 8¢ must be considerably reduced and the necessary
computational power rises rapidly. In addition, for large v,
and v, the grid sizes of position and momentum space must
be increased, which also increases the computation time.
Thus, we will limit the analysis to SO couplings v,, v, < 30.
Furthermore, we have found by convergence tests that the
full model (1) requires much smaller time steps §¢ than the
adiabatic one (5), and most of our simulations will therefore
be restricted to energies E < 0 for which the BOA is justified.

The full quantum simulations are complemented by the
semiclassical truncated Wigner approximation (TWA), which
has turned out very efficient in order to reproduce quantum
dynamics [47]. The TWA considers a set of N different initial
values (x;,y;, Pxi, Pyi) randomly drawn from the distributions
|W(x,y,0)|* and |®(py,py,0)|>. These are then propagated
according to the classical equations of motion (14). The prop-
agated set (x;(¢),yi(t), pxi(t), pyi(t)) gives the semiclassical
distributions, from which expectation values can be evaluated.

A. Short-time dynamics

Before investigating the prospects of thermalization, we
first consider short-time dynamics, by which we mean time
scales where the wave packet remains localized. In this respect,
it is tempting to think of the dynamics as semiclassical.
However, in the vicinity of the DP, any classical description
would fail. Equivalently, the spin degrees of freedom will show
large fluctuations which are difficult to capture classically.
The short-time dynamics is consequently most interesting for
situations with energies £ > 0 where both the semiclassical
approximation and the BOA break down, implying that the
simulation is performed using the full model Hamiltonian
(1). For these energies, the wave packet can traverse the DP
and population transfer between the two adiabatic potentials
V. (Px, Py) typically occurs. It is known that such nonadiabatic
transitions can play important roles for the dynamics, and that
the actual transition probabilities between the two potentials
may be extremely sensitive to small fluctuations in the
state [31,48]. In this section, we especially address such
nonadiabatic effects.

There are indeed several relevant time scales in the
dynamics: (i) The spin precession time 7§, gives the typical
time for spin evolution and is proportional to the effective
magnetic field |B(p)|, (ii) the classical oscillation period
T., = 2m, and (iii) the thermalization time 7};,, which estimates
the time it takes for the system to thermalize, i.e., when
expectation values become approximately time independent.
Normally, the magnitudes of these times follow the list above
(in growing order), except in the vicinity of the DP where
Ty, ~ T, or even Ty, < T very close to the DP. While the
first two are well defined, defining the last one is nontrivial.
We can say that (i) and (ii) characterize short-time scales, and
(iii) long-time scales. As will be numerically demonstrated,
the thermalization time turns out to scale as In (A ") /A, where
h is the effective dimensionless Planck’s constant and A
the maximum Lyaponov exponent. This suggests that the
thermalization time agrees with the Ehrenfest time

Ty = In(V/h)/A, (19)
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0 5 10 15 20 25 30

FIG. 5. Bloch vector components R, (dashed lines) and R, (solid
lines). For the upper plot (a), the trap has been displaced in the y
direction, x;, = 0 and y, = 28, while in the lower plot (b), the displace
direction is the perpendicular, x; = 28 and y, = 0. In both figures,
v, = 10 and v, = 15, and the average energy E ~ 280.

with V the effective occupied phase-space volume. Ty is
also the typical time scale where semiclassical (TWA) ex-
pectation values no longer agree with quantum expectation
values, which can be seen as a breakdown of Ehrenfest’s
theorem [49].

From the form of the nonadiabatic coupling (7), it follows
that transitions between the adiabatic states (4) are restricted
to the vicinity of the DP. These nonadiabatic transitions are
manifested as rapid changes in the Bloch vector (10). In Fig. 5,
we present two examples of the Bloch vector evolution [in
both examples, R,(¢) ~ 0]. In Fig. 5(a), the trap has been
shifted in the y direction. For short times, the shift of the trap
induces a buildup of momentum in the opposite y direction as
a consequence of the Ehrenfest theorem. This adds with the
nonzero y component of momentum before the quench. The
average momentum in the x direction remains zero and as a
consequence R, (t) ~ 0 [see Eq. (11)].

These dynamics change qualitatively if the trap is shifted in
the x direction instead of the y direction. For sufficiently large
shifts of x,, the wave packet will set off along the adiabatic
potentials and encircle the DP. The spin dynamics should
therefore not display the same type of “jumps” that appear
when the wave packet traverses the DP. Moreover, since the
average momentum in the x direction is in general nonzero,
R, (¢) will also be nonzero. The results are demonstrated in
Fig. 5(b). Compared to the first example in (a), the wave
packet does not spend much time near the DP so the wave
packet delocalization occurs more slowly. To a large extent, the
evolution is driven by harmonicity, in contrast to the example
of Fig. 5(a) where the anharmonicity of the Born-Huang term,
and the nonadiabatic transitions near the DP, push the system
away from semiclassical evolution. The figure demonstrates
how the dynamics can depend on the initial conditions, in both
(a) and (b), E ~ 280 but the wave packet broadening starts
earlier in (a) than in (b). This type of state dependence has been
discussed in Ref. [50]; generically, there is a period #; where
the width of the wave packet stays nearly constant, followed
by a rapid broadening. The time scale #; depends strongly on
the initial conditions, while the proceeding evolution after #,
seems pretty generic for chaotic systems.

PHYSICAL REVIEW A 87, 013624 (2013)

B. Long-time dynamics; thermalization

Whenever we consider an anisotropic SO coupling v, #
vy, from Figs. 3 and 4 it is clear how the adiabatic classical
model becomes chaotic. Beyond the adiabatic model, it has
been shown [51] that the full anisotropic model, i.e., E X
(Bx + By) Jahn-Teller model, is chaotic in the sense of level
repulsion [52] of eigenenergies. For the isotropic E x ¢ Jahn-
Teller model, on the other hand, the level repulsion effect is
not as evident, however, a weak repulsion also in this model
signals emergence of quantum chaos [53].

The goal of this section is to study the long-time dynamics
of the system; specifically if equilibration occurs, and if
so, does the equilibrated state mimic a thermal state. A
distinguishing property of thermal states is, for example,
ergodicity, i.., the distributions |W (x,y,?)|? and | ®(py, py,1)[?
spread out over their accessible energy shells. Moreover, for a
thermally equilibrated state, the distributions show seemingly
irregular interference structures on scales of the order of
the Planck cells, which normally become even finer in the
Wigner quasidistribution [54-56]. Nonthermalized states, on
the contrary, typically leave much more regular traces of
quantum interference in their distributions. While such often
symmetrical structures are absent for thermalized states, we
will demonstrate that thermalized distributions may still show
clear density fluctuations on scales larger than the Planck cells.
These are examples of quantum scars and they are remnants
of classical periodic orbits [42].

We begin by considering the adiabatic isotropic model with
vy = v, = 30, and trap shifts x; = y, = 16. After a quench
of the trap position, the initial energy is £ = (H 5?) ~ —192.
This energy corresponds to the energy of the Poincaré section
presented in Fig. 3. The resulting distributions are shown in
Figs. 6(a) and 6(b) after a propagation time 7; = 400. The
final time f; approximates 60 classical oscillations. Both
the real-space density |W(x,y,t)|> and momentum density
|®(py, py,1)|* reveal clear interference patterns as anticipated.
The DP at the origin (p,, p,) = (0,0) repels the wave function
forming a “hole.” The lack of zero-momentum states induces
a mass flow in real space and a similar “hole” in its distri-
bution. The classically energetically accessible regions are
given by

x4y < 2B + v,

5 5 (20)
Py + py - 2\/ v;%p;% + U%P% < 2EmaX7

where E.x is the maximum energy component noticeably
populated by the state.

The quantum results are compared with the TWA distribu-
tions displayed in the lower plots (c) and (d) of the same
Fig. 6. The same kind of ring shape is obtained, and the
concentration in density appears at the same locations for
both the quantum and classical simulations. Expectedly, the
quantum interference taking place within the wave packet
is not captured by the TWA. This follows since single
semiclassical trajectories are treated independently, i.e., added
incoherently, while a quantum wave packet must be considered
as one entity. For a TWA approach of the full isotropic E X &
Jahn-Teller model (1), we refer to Ref. [57].
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-20 0 20 -50 0 50

FIG. 6. (Color online) Distributions |W(x, y,tf)l2 [(a)and (c)] and
|D( px,py,tf)l2 [(b) and (d)] at ¢ = 400 for the Rashba SO-coupled
model. At time ¢ = 0, the trap is suddenly displaced from xy = yp =
16 to xo = yo = 0. The initial ground state is then quenched into
a localized excited state. The upper two plots (a) and (b) display
the results from full quantum simulations of the adiabatic model (5),
while the lower plots (c) and (d) show the corresponding semiclassical
TWA distributions. The average semiclassical energy E ~ —192
with a standard deviation § E ~ 22. The dimensionless SO-coupling
strengths v, = v, = 30.

The situation is drastically changed when we break the
rotational U(1) symmetry by assuming v, # v,. The result
for low initial energy is depicted in Figs. 7(a) and 7(b). The
energy is comparable to the potential barrier separating the
two minima in the adiabatic potentials and, as a consequence,
the wave packet is predominantly localized in the left minima.
The density modulations seem now much more irregular in
comparison to Fig. 6. In the seemingly random density distri-
bution, some clear density maxima emerge, both in momentum
as well as in real space. These density accumulations derive
from periodic orbitals of the underlying classical model and
are termed quantum scars [42,58,59]. The appearance of scars
is an example of the classically chaotic model leaving a trace
in its quantum counterpart. The scars are also captured in the
semiclassical TWA, shown in Figs. 7(c) and 7(d), supporting
their classical origin.

When we shift the trap for larger values on x; and yy, the
energy is increased and at some point the BOA breaks down.
An example, obtained from integrating the full model (1), is
presented in Fig. 8. For these higher energies, there are no signs
of quantum scars. As for the situation of Fig. 7, the spread of
the wave packet and the irregular interference patterns indicate
thermalization.

This far, we have demonstrated thermalization for the
anisotropic SO-coupled model, but not discussed correspond-
ing time scales. One related question is how the evolution
of various expectation values scale with # (dimensionless
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-20 20 -50 0 50

0

X p
FIG. 7. (Color online) Same as Fig. 6, but for the anisotropic

SO-coupled model with v, = 20 and v, = 30. The largely populated

regions are so-called quantum scars and derive from properties of

the underlying classical model, i.e., they are not outcomes of some
coherent quantum mechanism.

Planck constant). It has been argued that the Ehrenfest time,
Eq. (19), can be a measure of the thermalization time [31]. We
will now explore how the phase-space area A,(f) = AaApy
(¢ = x, y), where Aa and Ap,, are the variances of & and p,
respectively, evolves for different values of A. Since A, (f)
and A (t) behave similarly, we focus only on A,(¢). For
thermalization, A,(f)A,(t) is an effective measure of the
covered phase-space volume, and for large times ¢ it should
more or less approach the accessible phase-space volume as
the distribution spreads over the whole energy shell. We have
chosen to study A, (¢) since it fluctuates relatively little before
reaching its asymptotic value. In Fig. 9(a), we display A,(f)
for 10 different values on A ranging from 2 = 1 to 10. The
arrow in the plot shows the direction of increasing h’s. As
is seen, by increasing &, the wave-packet broadening starts
earlier and the state equilibrates faster. If the Ehrenfest time

30 4Opy

20
20
>~ Q_>‘
-10
20
20
-40
30720 0 20 -50 0 50
X Py

FIG. 8. (Color online) Same as Fig. 7, but for an initial energy
E > 0. The dimensionless SO couplings v, = 14 and v, = 21, while
the shifts x, = y, = 16 giving an average energy £ = (Hso) ~ 36.5.
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300
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A (0

100[

FIG. 9. Examples of the phase-space area A,(¢) for different &
values (h = 1,2, 3,...,10). The upper plot (a) gives A, (t) without
shifting the time, while for the lower one (b), time has been shifted by
8 = In (h)/X. The arrow indicates increasing 4 values. It is clear how
the spread in A, (7) between different 4 values is suppressed when
we shift the time. The trap shifts x; = y, = 19, resulting in an energy
E ~ —88. The maximum Lyaponov exponent A = 0.18.

T sets the typical time scale in the process, by shifting the
time with § = In (h)/A we should recover a “clustering” of the
curves. This is indeed verified in Fig. 9(b) where the curves
have been shifted in time by §. The corresponding Lyaponov
exponent A has been optimized in order to minimize the spread
in the curves. The obtained value A = (.18 is somewhat larger
than the numerically calculated one A = 0.12 but still of the
same order. The picture also makes clear that the wave-packet
broadening kicks in after some time ¢, as anticipated above.
The route to thermalization can typically be divided into
(1) a classical drift and (ii) quantum diffusion [31]. The role
of the quantum diffusion for thermalization was analyzed
in Ref. [31], where it was found to “smoothen” the phase-
space distributions preventing sub-Planck structures. For the
classical drift, there is no lower bound on the fineness of density
structures that can form, and characteristic for classical chaotic
dynamics is that ever finer formations build up as a result
of the typical “stretching-and-folding” mechanism. However,
in a quantum chaotic system, when the structures reach the
Planck-cell regime, the quantum pressure becomes too strong
and the quantum diffusion then prevents any further structures
to form. Thus, Planck’s constant sets a lower bound for the
fluctuations in the distributions. This quantum smoothening
is demonstrated in Fig. 10, where we plot a section of
| (x,y = 0)| for different values on the scaled dimensionless
Planck’s constant i (=1, 2, 3 for black, blue, and red lines,
respectively). The effect is clearly seen in the figure. A
similar pattern is found (not shown) also for the momentum
distributions. For the classical system, corresponding to & = 0,
there is no lower limit on how fine the structures can be. We
indicate this by also plotting the TWA results in the same
figure as a green line (note that the green line has been shifted
downward in order to separate it from the quantum results).
The number of trajectories used for the figure is 250 000, and
if we would like to produce finer structures (by propagating
the system for longer times), we would need many more
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0.04

0.03¢

0.02f

0.01F

FIG. 10. (Color online) Sections of |{(x,y = 0)| for different
values on the dimensionless Planck’s constant 4: & = 1 (black solid
line), h = 2 (blue dotted line), and & = 3 (red dashed line). The
final time ¢, = 80, x, = y;, = 16, and v, = 14 and v, =20. As a
comparison between classical and quantum results, we also include
the TWA results as a green solid line, calculated for &z = 1. The green
line has been shifted downward with 0.02 for clarity.

trajectories and the simulation would rapidly become very
time consuming.

Related to the above discussion, a note on quantum phase-
space distributions is in order. It is well known that sub-
Planck structures are common in the Wigner distribution [54].
This is not contradicting any quantum uncertainty relation.
After all, the Wigner distribution is not a proper probability
distribution, despite the fact that its marginal distributions
reproduce the correct real- and momentum-space probability
distributions. The Husimi Q function, while not possessing the
proper marginal distributions, is positive definite and lacking
singularities, and it is indeed found that the Q function does
not support sub-Planck structures [60].

We finish this section by analyzing the dynamics in the
islands of the Poincaré sections of Fig. 4 where the classical
theory predicts regular evolution. From Fig. 4(c), we have that
for p, &~ 20 and x & y ~ 0, the evolution should be regular.
We can achieve such a situation by using the quench shifts
x; = 20 and y; = 0. As for the examples above, we propagate
the state for a time ¢y = 400, and the resulting distributions
are given in Fig. 11. The striking difference with Figs. 7 and 8
is evident; no irregular structure is apparent, but clear regular

40
35

FIG. 11. (Color online) Same as Fig. 7, but for the shifts x; =
20 and y, = 0. For the given dimensionless parameters, the initial
state is such that its dynamics should be regular according to the
corresponding Poincaré section (Fig. 4). The energy E ~ —250.
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interference patterns are. We have verified that the interference
structure prevails also after doubling the time 7 = 800.

C. Proposed experimental realization

Much of the above dynamics can be observed in a system
of cold atoms with synthetic SO coupling, for example, a
system of 3’Rb with a synthetic field induced by the four-level
scheme [33]. In this system, the recoil energy E, = mv?>
h x 50kHz. The synthetic field limits the lifetime of the
experiment to # ~ ls [4,10]. To push the experiment into
the long-time regime, we will use a trapping frequency of
w/2m = 30Hz. These parameters will give a dimensionless

value of v, = «/% ~ 11, with v, tunable between 0 and 11.
The large trapping frequency will provide a sufficient number
of oscillations for thermalization to occur. We could consider
values of v, ~ 30 by decreasing the trapping frequency to
10 Hz, but then the lifetime of the system may be at the border
for thermalization.

The condensate can be adiabatically loaded to one of the
two states at the bottom of the momentum-space potential,
defined by p = £mv, . The quench can then be preformed
by shifting the minimum of the real-space trapping potential.
We then let the system evolve until we reach either the
thermalization time, or the lifetime of the experiment. The
momentum distribution can be measured with a destructive
time-of-flight (TOF) measurement [4,10], which should re-
veal thermalization as well as signatures of quantum scars.
Repeated experimental measurements allow for time-resolved
calculation of expectation values. Similarly, the quantum spin
jumps near the DP, as discussed in Sec. IV A, can be observed
using a spin-resolved TOF measurement.

As afinal remark, for a weakly interacting gas, we work near
a Feschbach resonance [61]. However, for realistic parameters
[62], we estimate a scattering length a; ~ 3 x 10° m, N ~
5 x 10° atoms, and a transverse harmonic trapping frequency
w, ~ 100 Hz. For these parameters, the characteristic scale
of the nonlinearity is u ~ h x 1 kHz, which is smaller
than the recoil energy above, suggesting the nonlinear term
will play only a minor role. We have numerically verified
that the results do not change qualitatively by solving the
corresponding nonlinear Gross-Pitaevskii equation. Indeed,
we find the deviations with a nonlinearity are not large enough
to be seen by eye.

~

V. CONCLUSIONS

In this paper, we studied dynamics, deriving from a
quantum quench, in anisotropic SO-coupled cold gases,
focusing primarily on aspects arising from the fact that the
underlying classical model is chaotic. The evolution of the
initially localized wave packet on its way to equilibration
has been analyzed, and we have shown how a classical
period of limited spreading is followed by a collapse regime
dominated by rapid spreading. After the collapse period, the
wave packet is maximally delocalized, but still possesses
quantum interference structures. At the Ehrenfest time, the
state has approximately equilibrated as is seen in the decay
of expectation values, as well as seemingly irregular density
fluctuations both in real and momentum space. We showed that

PHYSICAL REVIEW A 87, 013624 (2013)

the fine structure of these fluctuations is limited by the quantum
diffusion, and thereby the size of the Planck’s constant /. For
the isotropic model, after the collapse no thermalization is
found, as is expected from the integrability of the underlying
classical model.

For smaller energies, when the wave packet predominantly
populates one of the dual potential wells, thermalization is
again seen. Here, however, an additional phenomenon appears
in terms of quantum scars. These density enhancements
emerge along classically periodic orbits. They are classical in
nature and long lived. Quantum scars have also been studied
in different cold-atom settings: atoms in an optical lattice and
confined in an anisotropic harmonic trap [59]. The results
on thermalization presented in this work are most likely also
applicable to the setup of Ref. [59]. We also demonstrated that
for certain fine-tuned initial states, the dynamics stays regular
even in the anisotropic model. In the classical picture, these
solutions correspond to the ones belonging to regular islands
in the otherwise chaotic Poincaré sections.

We argue that the present system is ideal for studies of
quantum chaos and quantum thermalization for numerous
reasons. The system parameters can be tuned externally
by adjusting the wavelength of the lasers inducing the SO
coupling, and as we discussed in Sec. IV C the SO-dominated
regime is reachable in current experiments. Moreover, both
state preparation and detection are relatively easily performed
in these setups. Equally important, the system is well isolated
from any environment and coherent dynamics can be estab-
lished up to hundreds of oscillations which is well beyond
the thermalization time. The energy of the state is simply
controlled by the trap displacement, and it should for example
be possible to give the system small energies such that the
atoms reside mainly in one potential well where quantum scars
develop.

We finish by pointing out that the present model is also
different from most earlier studies on quantum thermalization
[18,24] in the sense that the dynamics is essentially “single
particle” and not arising from many-body physics. Related
to this, we have numerically verified that adding a nonlinear
term g|W(x,y,t)|> to the Hamiltonian does not change our
results qualitatively for moderate realistic interaction strengths
g. In order to enter into the regime where interaction starts to
affect the results, one would need a condensate with a large
number of atoms (~millions of atoms) or alternatively exter-
nally tune the scattering length via the method of Feshback
resonances.
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