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Classical approaches to prethermal discrete time crystals in one, two, and three dimensions
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We provide a comprehensive account of prethermal discrete time crystals within classical Hamiltonian
dynamics, complementing and extending our recent work [A. Pizzi, A. Nunnenkamp, and J. Knolle, Phys.
Rev. Lett. 127, 140602 (2021)]. Considering power-law interacting spins on one-, two-, and three-dimensional
hypercubic lattices, we investigate the interplay between dimensionality and interaction range in the stabilization
of these nonequilibrium phases of matter that break the discrete time-translational symmetry of a periodic drive.
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I. INTRODUCTION

Many-body systems made of a large number N � 1 of
interacting elementary constituents can exhibit emergent col-
lective phenomena, in which the whole can behave very
differently from the sum of its parts [1]. Some of these phe-
nomena can only be described by a quantum theory, whereas
others can also be captured by a classical treatment. Examples
of the former are quantum phase transitions like that between
a Mott insulator and a superfluid (captured by a quantum
Bose-Hubbard model) [2,3], whereas examples of the latter
are finite-temperature phase transitions like the one between a
ferro- and a paramagnet (captured by a classical Ising model)
[4]. The same distinction holds away from equilibrium: phe-
nomena like many-body localization (MBL) necessitate a
quantum theory, whereas others like thermalization can al-
ready be accounted for classically [5,6].

Thermalization can occur in many-body systems undergo-
ing nondissipative dynamics after a sudden quench (that is,
change) of their Hamiltonian. According to this phenomenon,
local observables [7] take under very general circumstances
a steady-state value uniquely determined by the (conserved)
energy of the system. Although classical and quantum me-
chanics can capture different flavors of the phenomenon, the
rough physical intuition behind it is the same in the two de-
scriptions: scrambling and energy redistribution among many
interacting elementary constituents make the system act as a
large bath for its own small subparts.

If the physical intuition and phenomenology of ther-
malization are similar in classical and quantum dynamics,
the two respective underlying mathematical mechanisms are
not. Classical dynamics consists of O(N ) nonlinear ordinary
differential equations (ODEs) and can account for thermaliza-
tion through chaos and ergodicity in phase space. Quantum
dynamics consists instead of O(eO(N ) ) linear ODEs, and

captures thermalization through a peculiar spectral structure
according to the so-called eigenstate thermalization hypothe-
sis (ETH) [5].

Understanding how the same phenomenon can be ex-
plained by theories with so strikingly different mathematical
structures is very insightful. In this sense, the major credit of
the ETH is perhaps to have resolved the seemingly paradoxi-
cal emergence of thermalization from a linear theory, rather
than having discovered the phenomenon of thermalization
itself [8]. This is in line with the natural way forward of
science: phenomena are generally first described/discovered
within the simplest theoretical framework that can account for
them, and their understanding is later refined with more and
more accurate and complicated theories.

Curiously enough, if this natural course from a classical
to a quantum description was followed for thermalization,
it was not followed for prethermalization. The latter is the
phenomenon for which, under a drive at high frequency ω,
a many-body system takes an exponentially long time ≈ecω,
with c a constant, to heat up to an infinite-temperature state
[9–16]. Such a slow heating emerges from the mismatch be-
tween the large drive frequency ω and the smaller local energy
scales, which provides an intuition for prethermalization both
for quantum and classical systems. In the prethermal regime,
before the ultimate heating, the system undergoes an approx-
imate (almost energy conserving) thermalization with respect
to an effective static Hamiltonian. Perhaps because of the
literature on quantum Floquet engineering, prethermalization
has first been discussed within a quantum framework, and
only recently within a classical one [17–20].

This unusual order of developments also holds for the ap-
plication of prethermalization for the realization of prethermal
discrete time crystals (DTCs), exotic extensions of the notion
of phase of matter to the nonequilibrium domain [21–24].
Prethermal DTCs are systems that break the discrete time-
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translational symmetry of a high-frequency drive throughout
the whole prethermal regime, and represent one of the many
connotations of DTCs that, after the first original proposals
[25–29], have been put forward in various theoretical and
experimental settings [30–44]. More specifically, prethermal
DTCs respond with a periodicity multiple of that of the drive,
in a way that is to some extent robust to perturbations of the
Hamiltonian and initial conditions, and up to an exponentially
long time ≈ecω.

In our accompanying paper [45], we have shown that
these phenomena, first studied within a quantum-mechanical
approach [21,22], can already be captured by classical Hamil-
tonian dynamics (as also studied in Ref. [46]). Although it
may appear as a step back in the hierarchy of available the-
oretical frameworks, going classical has the big advantage of
lifting most of the complexity that constrains the numerics of
quantum many-body systems, and that might be unnecessary
for understanding prethermal DTCs, thus opening the way to
the numerical simulation of systems with virtually no limits
on dimension, geometry, system size, or interaction range.

Indeed, in Ref. [45] we were able to study a large sys-
tem of N = 503 spins in three dimensions, showing instances
of prethermal DTCs in short-range interacting systems. Re-
markably, the achievable large system size enabled us to
study higher-order and fractional DTCs that, characterized
by a period exceeding that of the drive by integer and frac-
tional factors n > 2, go beyond the period-doubling paradigm
of MBL DTCs (in their spin-1/2 realizations) [47]. These
dynamical phenomena are mostly elusive to exact quantum
approaches on small systems, but became finally easily acces-
sible in classical many-body dynamics [45,46].

In this paper, we build on Ref. [45] and give a detailed
presentation of a generalization of the model to hypercubic
lattice geometries in dimension 1,2, and 3 and with tunable
long-range interactions. With a comprehensive exploration
of the parameter space, we aim at providing an exhaustive
account of classical approaches to prethermal DTCs, and in
particular at studying the interplay between dimensionality
and interaction range.

The remainder of the paper is organized as follows. In
Sec. II we describe the model, including its Hamiltonian,
dynamical equations, observables, and initial conditions. In
Sec. III we present our main results. After presenting the basic
phenomenology of a prethermal DTC, we compare our clas-
sical model with its quantum counterpart, and find qualitative
agreement. We then showcase numerics for an array of pos-
sible parameters (specifically, drive frequency ω, power-law
interaction exponent α, and strength W of the noise in the ini-
tial condition) and in dimension 1,2, and 3. A brief summary,
discussion, and outlook on future research are presented in
Sec. IV.

Finally, let us make a remark on nomenclature. Strictly
speaking, the concept of “higher order” as introduced in
Ref. [47] only makes sense in relation to a system of spin 1/2,
for which the DTC period nT has n larger than the size 2 of
the local Hilbert space.. Here, we extend this notion of higher
order to classical spins (for which one might say that the size
of the Hilbert space is infinity) under the assumption that our
findings are relevant for systems of quantum spin 1/2, an idea
that we support with numerics and discussion.

II. MODEL

Here, we present the model that generalizes our work on
short-range interacting systems in three dimensions [45] to
any dimension and interaction range. This section is organized
in four subsections, discussing the systems’ Hamiltonian, the
respective dynamical equations, the observables of interest,
and the initial condition.

A. Hamiltonian

Consider a hypercubic lattice with linear size L and in
dimension D = 1, 2, or 3. Each of the N = LD lattice sites,
henceforth indexed with an index i = 1, 2, . . . , N , hosts a
classical spin Si = (Sx

i , Sy
i , Sz

i ). The spins undergo driven
Hamiltonian dynamics, according to the following periodic,
binary, classical Hamiltonian:

H (t ) =
{

1
Nα

∑N
i, j=1

Sz
i Sz

j

(ri, j )α
+ h

∑N
i=1 Sz

i if mod(t, T ) < T
2

2ωg
∑N

i=1 Sx
i if mod(t, T ) � T

2 ,

(1)

with

Nα =
N∑

i=1

1

(ri,1)α
(2)

a Kac-like normalization factor ensuring that the magnitude of
the interaction term in Eq. (1) does not depend on α. To avoid
an unphysical self-interaction of the spins we set ri,i = ∞,
whereas for i �= j we take

ri, j =
√ ∑

ν=x,y,z

L

π

∣∣∣tan
[π

L
(νi − ν j )

]∣∣∣2
. (3)

For |xi − x j | � L, |yi − y j | � L, and |zi − z j | � L, the dis-
tance in Eq. (1) reduces to the familiar Euclidean one, ri, j ≈√

(xi − x j )2 + (yi − y j )2 + (zi − z j )2. When one among |xi −
x j |, |yi − y j |, and |zi − z j | is close to L

2 , instead, the tangent
makes ri, j artificially diverge, which we expect to reduce
finite-size effects, while accounting for periodic boundary
conditions. A schematic of the system and drive is shown
in Figs. 1(a) and 1(b). Spherical coordinates are defined with
Si = (sin θi cos φi, sin θi sin φi, cos θi ).

The power-law exponent α controls the range of the in-
teractions. As a limit case, α = ∞ corresponds to contact
(nearest-neighbor) interactions. Henceforth, we shall consider
values of α larger than the lattice dimensionality D, so that
the sums in Eqs. (1) and (2) converge in the thermody-
namic limit N → ∞. Indeed, even though the two divergences
would compensate in Eq. (1), ensuring a well-defined ex-
tensive Hamiltonian [48], one might expect that for α � D
fluctuations are suppressed, rendering the physics effectively
single-body. In turn, this might prevent the explicit observa-
tion of the prethermal to thermal transition, that is of prime
interest for our paper.

B. Dynamics

The system undergoes classical Hamiltonian dynamics.
This is obtained from the Poisson brackets between the
spin components and the Hamiltonian, Ṡα

i = {Sα
i , H (t )},
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FIG. 1. Prethermal time crystals of (classical) spins on a hypercubic lattice. (a) Schematic of the system for dimensionality D = 2.
The spins are accommodated on a hypercubic lattice and subject to intermitting power-law interactions with characteristic exponent α and
longitudinal and transverse fields. (b) The Hamiltonian ruling the system dynamics is binary: the zz interaction and longitudinal z field
(red) are alternated with the longitudinal x field (blue). (c) Initially (t = 0), each spin is moved away from the north pole by a random
Gaussian polar angle θ with zero mean and standard deviation 2πW . The perturbed copy of the system {S′} differs from {S} of an amount
≈� � W, 1. (d) Phenomenology of a prethermal 4-DTC. With a one-to-one sphere-to-color mapping, we unambiguously represent the
state of a two-dimensional grid of N = 2002 spins at some representative times. With a period four-tupled response, the spins are mostly
polarized along +z, −y, −z, y,+z, . . . at times t/T = 4k, 4k + 1, 4k + 2, 4k + 3, 4k + 4, . . . , respectively. This is visualized by alternating
predominant colorations red, yellow, green, blue, red, etc. This subharmonic response holds across a long prethermal regime that extends
beyond the timescale characterizing chaos, τpreth ∼ 1

λ
, with λ the Lyapunov exponent. Only at a very long time t = 105 ∼ τth does the system

order break, with the nucleation and proliferation of domains of opposite magnetizations. The infinite-temperature state with random spin
orientations is reached at later times t = 107T � τth. Here, g = 0.255, h = 0.1, ω = 3.14, α = ∞, R = 1, and W = 0.1.

straightforwardly computed from {Sα
i , Sβ

j } = δi, jεα,β,γ Sγ
i ,

with δi, j the Kronecker delta, εα,β,γ the Levi-Civita antisym-
metric symbol, and α, β, and γ in {x, y, z}.

The resulting set of 3N , coupled, nonlinear, ordinary dif-
ferential equations reads

dSi

dt
=

{
κiz × Si if mod(t, T ) < T

2

2ωgx × Si if mod(t, T ) � T
2 ,

(4)

where κi is an effective field along z accounting for both the
original longitudinal field h and the interaction of Si with the
other spins:

κi = h + 1

Nα

N∑
j=1

Sz
j

(ri, j )α
. (5)

Generalizing the one-dimensional short-range model con-
sidered by Howell and collaborators [20], we can integrate the
two halves of Eq. (4), getting

Si(nT + T ) =
⎛
⎝1 0 0

0 c2,i −s2,i

0 s2,i c2,i

⎞
⎠

⎛
⎝c1,i −s1,i 0

s1,i c1,i 0
0 0 1

⎞
⎠Si(nT )

(6)

with c1,i = cos(κiT/2), s1,i = sin(κiT/2), c2,i = cos 2πg, and
s2,i = sin 2πg. The matrix on the right in Eq. (6) accounts
for the first half of the period and performs a rotation around
the z axis under the action of the effective field κiz. The left
matrix performs instead the rotation around the x axis due
to the field 2ωgx. Iteratively applying the map in Eq. (6)

we can efficiently evolve the system for stroboscopic times
t = 0, T, 2T, . . . .

C. Observables

The first observable of interest is the energy averaged over
one period, that is,

HT = 1

2Nα

N∑
i, j=1

Sz
i Sz

j

(ri, j )α
+

N∑
i=1

(
h

2
Sz

i + ωgSx
i

)
. (7)

Since the dependence on HT on ω might be disturbing when
performing scaling analysis on ω itself, it is convenient to also
consider a ω independent Hamiltonian. The obvious choice in
this direction is that of H (t ) during the first half of the drive,
that is,

H1 = 1

Nα

N∑
i, j=1

Sz
i Sz

j

(ri, j )α
+ h

N∑
i=1

Sz
i . (8)

Further, we consider the magnetization of the system along
the z direction,

m = 1

N

N∑
i

Sz
i , (9)

and its Fourier transform,

m̃(ω′) = 1

M

M−1∑
n=0

m(nT )e−iω′nT , (10)
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computed over a number of periods M. The choice of M will
stem from a tradeoff between having the desired frequency
resolution (M high enough) and not sampling the beyond
prethermal regime (M small enough). Furthermore, being in-
terested in diagnosing chaos in the dynamics, we introduce
a measure of the distance between two initially very close
copies of the system, {Si} and {S′

i} with Si(0) ≈ S′
i(0):

d (t ) =
√√√√ 1

N

N∑
i

[Si(t ) − S′
i(t )]2

. (11)

This measure, that we shall henceforth call “decorrelator”
[49,50], directly probes the hallmark of chaos: sensitivity to
the initial condition. In spherical coordinates, the copy of the
system {S′

i} is initialized as

θ ′
r(0) = θr(0) + 2π�δθ,r, (12)

φ′
r(0) = φr(0) + 2π�δφ,r (13)

with δθ,r and δφ,r Gaussian random numbers with zero mean
and standard deviation 1. The parameter � � W, 1 therefore
controls the initial distance between the two copies of the
system {Si} and {S′

i} [see also Fig. 1(c)].
The initial value of the decorrelator is small and set by

the perturbation strength, d (0) ∼ �. At short times, d is ex-
pected to grow exponentially, d ∼ d (0)eλt , with the rate of the
growth being controlled by some Lyapunov exponent λ. At
very long times, d is expected to take its infinite-temperature
value d∞ = √

2, corresponding to completely random spin
orientations for the two system copies. The focus of this paper
is the intermediate times, at which 1 ∼ d < d∞.

To reduce the temporal fluctuations in the results, these
global observables are possibly averaged over R � 1 indepen-
dent realizations of the initial condition. Note that, anyway, we
expect the fluctuations in the global observables of interest to
vanish in the thermodynamic limit N → ∞, even for a single
realization.

D. Initial condition

The initial condition is schematically shown in Fig. 1(c),
and built as follows. We start from spins all aligned in the z
direction, corresponding to polar angles θi = 0. To bring the
many-body character into play, we perturb the polar angles
with Gaussian noise with zero mean and standard deviation
2πW , while the azimuthal angles φi are taken as uniformly
distributed in the entire range from zero to 2π . In formulas,
we have

θi(0) ∼ Gauss(0, 2πW ), p(θ ) = e− 1
2 ( θ

2πW )2

2πW
√

2π
, (14)

φi(0) ∼ Unif(0, 2π ), p(φ) = 1

2π
1[0�φ<2π] (15)

with p denoting the probability density function and 1[0<φ�2π]

the indicator function equal to 1 when 0 < φ � 2π and to zero
otherwise. Because the perturbation has an axial symmetry
with respect to the z axis, for N → ∞ we have 1

N

∑N
i Sx,y

i =
0. The magnetization m = 1

N

∑N
i Sz

i along z instead goes from

1 for W = 0 to zero for W = ∞. In this sense, W can be
thought of as a sort of temperature of the initial condition.

III. RESULTS

This section is organized as follows. First, in Sec. III A
we present in qualitative terms the key dynamical behavior of
interest: the prethermal DTC. Second, in Sec. III B we focus
on one-dimensional systems to perform a close comparison
between the phenomenology of a prethermal DTCs obtained
in the classical and quantum domains, show that the two are
remarkably similar, and suggest that prethermal DTCs can
be studied regardless of quantum fluctuations. With the latter
idea in mind, in Sec. III C we present a comprehensive study
of prethermal DTCs for various interaction ranges and in
dimension 1, 2, and 3.

A. Prethermal discrete time crystals

The phenomenology of a prethermal DTC is illustrated
in Fig. 1(d) for a single realization of a two-dimensional
lattice of spins with short-range nearest-neighbor interactions
(α = ∞, R = 1). To unambiguously visualize the state of all
the spins at a given time, we perform a one-to-one mapping
between the unit sphere and a colormap, so that every possible
spin orientation corresponds to a unique color. In particu-
lar, the principal spin orientations +x,−x,+y,−y,+z, and
−z correspond to the colors white, black, blue, yellow, red,
and green, respectively. For g = 0.255 ≈ 1/4, the spins are
rotated at every period of an angle ≈π/2. At short times
t = 0, T, 2T, 3T, 4T, · · · � τpreth, this intuitively results in a
sequence of spin orientations ≈ + z,−y,−z, y,+z, . . . re-
sulting in predominant red, yellow, green, blue, red, . . .

coloration, respectively. What is more remarkable is that this
period four-tupled subharmonic response persists for very
long times τpreth � t � τth: a prethermal 4-DTC. The times
t = 1000T, 1001T, 1002T, 1003T, and 1004T are shown as
representative for the prethermal regime. At a longer time
t/T = 105 ≈ τth, the spins start depolarizing with the forma-
tion of domains with opposite magnetizations, giving rise to
a speckled coloration. At very long times t = 107 � τth, the
system has reached the infinite-temperature state in which
each spin has a completely random orientation.

More generally, a prethermal n-DTC is characterized
by two well-separated prethermalization and thermalization
timescales, τpreth ∼ 1/λ and τth ∼ ecω, respectively. For t �
τpreth, the system exhibits a subharmonic response but has not
yet equilibrated to the effective Hamiltonian Heff that governs
the dynamics at stroboscopic times t = T, nT, 2nT, . . . . This
is witnessed by a d � 1, meaning that the sensitivity to initial
conditions has not been expressed yet. For τpreth � t � τth,
the system at stroboscopic times t = nkT has equilibrated
to the effective Hamiltonian Heff while the dynamics has
remained subharmonic with periodicity nT , the distinctive
feature of the prethermal n-DTC. Sensitivity to initial con-
ditions has now fully come into play (d ∼ 1), and yet the
system remains correlated with its initial condition (d < d∞)
thanks to the time-translational symmetry breaking. At later
times t � τth, the system has ultimately reached the infinite-
temperature state, in which the spins have completely random
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FIG. 2. Quantum vs classical: phenomenology of a prethermal discrete time crystal. We show that the phenomenology of a prethermal DTC
is essentially the same in classical and quantum systems by drawing a close analogy with Fig. 1 in Ref. [22]. As observables, we consider (a) the
energy HT averaged over one period, (b) the decorrelator D measuring the distance between two initially very similar copies of the system
(renormalized by its infinite-temperature value D∞ = √

2), and (c) the magnetization m = 〈sz
i 〉i,runs. By making the association decorrelator ↔

entanglement entropy, the full phenomenology of the quantum prethermal 2-DTC described in Ref. [22] is recovered: (i) for a short-range model
(α = ∞, left column) heating occurs—over an exponentially long (in frequency) timescale—the signature of “standard” prethermalization;
(ii) for a long-range model and “cold” initial condition (α = 1.5 and W = 0.1, central column), prethermalization comes with the realization
of a nontrivial time-crystalline (subharmonic) response of the magnetization m; (iii) with long-range interactions, standard prethermalization is
recovered for a “hot” initial condition (α = 1.5 and W = 0.2, right column). Here, we used N = 100, R = 100, h = 0.1, g = 0.515, � = 0.01.

orientations and memory of the initial condition has been
completely lost (d = d∞).

We emphasize that a key element for a prethermal DTC
is that the separation between the timescales τpreth and τth

can be increased by simply increasing ω. We also note that
similar arguments hold in the case of fractional n-DTCs with
fractional n.

B. One-dimensional chain: Quantum vs classical

In this subsection we wish to answer the question to what
extent prethermal DTCs are due to quantum fluctuations.
To this end, we consider the phenomenon that is the most
accessible to numerics: a 2-DTC in dimension D = 1. In
one dimension, a model analogous to that in Eq. (1) but for
quantum spins 1/2 and focusing on 2-DTCs has indeed been
analyzed both numerically and analytically in Ref. [22]. In
that work, the key phenomenology of the quantum prethermal
2-DTC is perhaps best exemplified in Fig. 1. Thus, we build in
Fig. 2 here the classical analog of Fig. 1 in Ref. [22]. We show
that the main qualitative features of the prethermal 2-DTC
almost do not change when going classical, suggesting that

these nonequilibrium phenomena should be thought as robust
to quantum fluctuations, rather than dependent on them.

The core idea for the investigation of prethermalization and
prethermal phases of matter is, almost by definition, to check
how the dynamics of observables changes as a function of the
drive frequency ω. In Fig. 2, we perform this analysis for the
average energy HT , magnetization m, and decorrelator d , in
the top, middle, and bottom rows, respectively. One might
think of the latter in analogy to the entanglement entropy
considered in Ref. [22], although entanglement is of course
a quantum concept with no strict classical counterpart. To
target the 2-DTC, we set g = 0.515 ≈ 1/2. Furthermore, in
each column we consider three different combinations of in-
teraction range (controlled by α) and temperature of the initial
condition (controlled by W ). The scenarios of interest are the
following.

(i) Short range. For nearest-neighbor interactions in one
dimension (α = ∞, D = 1) we observe standard prether-
malization. This is observed in the scaling with ω of the
average energy HT , that takes a time τth ∼ ecω to decay
to its infinite-temperature value zero. Prethermalization also
leaves its signature in the decorrelator d , that plateaus to
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prethermalization and thermalization can be well appreciated for a broader range of α � 6. In three dimensions, crucially, the separation of
timescales extends all the way to α = ∞. Here, we used N = 200, 400, 343 in D = 1, 2, and 3, respectively, and ω = 2.2, h = 0.1, g = 0.26,
and � = 0.01. Solid lines and errorbars are obtained as averages and standard deviations over R = 50 independent runs.

a finite-temperature value ≈0.94%d∞ before reaching the
infinite-temperature value d∞ at times t ∼ τth (to see the
plateau more clearly, in the inset we show a closeup of
the data and average them over a moving time window that
is short compared to the timescales of interest). This prether-
malization is however of standard type, meaning that it does
not realize a nontrivial prethermal DTC. Indeed, the period-
doubled subharmonic response of the magnetization m has
a short lifetime that does not scale with ω, as the thermal-
ization time does. Rather, m reaches the infinite-temperature
value zero before the infinite-temperature state is reached, and
discrete time-translational symmetry is not broken, not even
in a prethermal fashion. As long as the interactions are short
ranged, this fate of trivial prethermalization is true regardless
of the temperature of the initial condition, including the con-
sidered low temperature (W = 0.1).

(ii) Long range, cold. For long-range interactions (α =
1.5) and a “cold” initial condition (W = 0.1) we observe
a prethermal 2-DTC. Prethermalization is again diagnosed
by the energy HT needing a time τth ∼ ecω to decay to its
infinite-temperature value zero, as well as by the decorre-
lator d correspondingly plateauing at a finite-temperature
value ≈0.65%d∞. In contrast to (i), however, prethermaliza-
tion now comes along with a subharmonic response of the

magnetization m. Discrete time-translational symmetry is bro-
ken for exponentially long (in ω) times: a prethermal 2-DTC.

(iii) Long range, hot. For long-range interactions (α = 1.5)
and a “hot” initial condition (W = 0.2) we observe standard
prethermalization. Indeed, the increase in temperature in the
initial condition is sufficient to reestablish the discrete time-
translational symmetry already at times ≈102 � τth, in a way
similar to (i) and despite the long-range interaction. Indeed, a
necessary condition for a prethermal DTC in the absence of
disorder is that the temperature of the initial condition is low
enough [22], which is not the case here.

Making the association decorrelator ↔ entanglement en-
tropy, we have therefore shown that the phenomenology of a
prethermal 2-DTC barely changes when going from quantum
to classical. This leads us to conjecture that the core underly-
ing physics of prethermal DTCs is not “genuinely quantum,”
in analogy with many finite-temperature phase transitions in
equilibrium statistical mechanics, that are captured by clas-
sical physics while describing systems that are intrinsically
quantum (e.g., the magnetic transition of the Heisenberg
model). In fact, this analogy is more than an evocative spec-
ulation, because of the strong one-to-one correspondence
between prethermal DTCs and equilibrium finite-temperature
transitions outlined in Refs. [21,22].
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FIG. 4. Scaling with frequency. (a–c) We investigate the dependency of the prethermal 4-DTC on the frequency ω by means of the same
diagnostics as in Fig. 3. For an interaction range α = 1.5, 4, and ∞ in D = 1, 2, and 3, respectively, the observed phenomenology is the
same: prethermalization occurs over a timescale τpreth ≈ 1/λ that barely depends on the frequency ω, whereas the full thermalization to an
infinite-temperature state occurs at a much later time τth ∼ ecω. (d) The two timescales τpreth and τth are extracted as the times at which the
decorrelator crosses the 10 and 90% of its maximum value D∞, that is, the times at which its prethermal plateau can be considered to start and
end. For this figure we used the same parameters as in Fig. 3.

If it is true that the essence of prethermal DTCs is cap-
tured by classical mechanics, the way forward is then clear:
use the Hamiltonian dynamics in Eq. (6) to study scenar-
ios that are numerically hardly accessible with a many-body
quantum-mechanical approach. Let us therefore identify the
most ambitious setting for the application of this paradigm.
On the one hand, in Ref. [47] we showed that, in contrast to
2-DTCs, quantum higher-order n-DTCs with n > 2 are sub-
ject to very stringent finite-size constraints, as their signatures
emerge only for system sizes exceeding by a factor ≈2 those
within the reach of exact diagonalization techniques. On the
other hand, a major open challenge for quantum many-body
systems is higher dimensionality D > 1, for which finite-size
effects become even more severe. This sets the goal for the
following subsection: the study of higher-order DTCs in di-
mension D = 1, 2, 3.

C. Interplay of interaction range and dimensionality

We now study the interplay between dimensionality D
and interaction range (controlled by α) in the stabilization of
prethermal DTCs. With focus on the higher-order 4-DTC ob-
tained for g ≈ 1/4, we showcase a comprehensive exploration
of the parameter space.

To begin with, in Fig. 3 we investigate the effect of the
interaction range by varying the power-law exponent α for

a fixed drive frequency ω = 2.2. As observables of interest,
we focus on the Hamiltonian H1 (first row), magnetization
m (second row), and decorrelator d (third row). The first
two are measured at stroboscopic times t = 4kT according
to the periodicity of the 4-DTC (note, this is in contrast to
Fig. 2, where stroboscopic times t = kT have been considered
instead). In the fourth, bottom row we instead plot the times
τth and τpreth, defined as the times at which the decorrelator d
crosses the values 10%d∞ and 90%d∞. In dimension D = 1
(left column), we observe that the separation between these
two timescales is more prominent for α � 2, for which the
prethermal plateau of the decorrelator at value ≈60%d∞ sig-
naling a 4-DTC starts to emerge, accompanied by a plateau
of the stroboscopic m(4kT ). This is in agreement with the
equilibrium phase transition at α = 2, that we expect to be
dual to the prethermal DTC [21,22]. In dimensions D = 2
and 3 (mid and right columns, respectively), we again observe
that a longer-range interaction (that is, smaller α) facilitates a
prethermal time-crystalline response. In contrast to the D = 1
case, however, this persists all the way to α = ∞, that is,
for a short-range (nearest-neighbor) interaction as, again, one
would expect from the duality with equilibrium. The prether-
mal 4-DTC for α = ∞ is actually not fully appreciated here
for D = 2, but this is just because the considered frequency
is not large enough, and a clearer time-crystalline response
appears for the parameters considered in Fig. 3(d).
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FIG. 5. Phase diagrams. We investigate the stability of the prethermal 4-DTC for dimensionality D = 1 (left), 2 (center), and 3 (right).
As a diagnosis for the 4-DTC we use the subharmonic spectral function, that is, the Fourier transform m̃ of the magnetization at frequency
ω/4, computed over the first 104 periods. (a–c) Phase diagrams in the plane of the transverse field strength g and power-law exponent α.
In one and two dimensions (a, b) the 4-DTC is stable for interactions that are sufficiently long range, that is, for α < αc, with αc ≈ 2 and
6 for D = 1 and 2, respectively. In striking contrast, in D = 3 dimensions (c) the 4-DTC extends all the way up to α = ∞, that is, to the
short-range (nearest-neighbor) limit. (d, e) Phase diagrams in the plane of transverse field g and drive period T = 2π/ω. The phase diagram
looks qualitatively the same in all dimensions: the frequency should be large enough for the 4-DTC to be stable (in a prethermal fashion), but
the larger the frequency and the smaller the range of g over which the 4-DTC is stable. Here, we used N = 150, 144, and 216 in D = 1, 2, and
3, respectively; T = 2.5 in (a)–(c); α = 1.5, 4, and inf in (d)–(f), respectively; R = 50; h = 0.1; and W = 0.1.

For the same set of observables, we then move on to
consider in Fig. 4 the scaling with ω for a fixed interaction
range α. For the considered α = 1.5, 4, and ∞ in D = 1, 2,
and 3, respectively, we observe the defining features of a
prethermal 4-DTC. The energy H1 does not decay to its
infinite-temperature value zero for a very long prethermal
regime (a), during which the magnetization exhibits a period
four-tupled subharmonic dynamics (b), and the decorrelator d
plateaus at a finite-temperature value ≈60%d∞. The increase
of the separation between the timescales τpreth and τth, within
which the prethermal 4-DTC lives, is fully appreciated in the
bottom row of Fig. 4(d).

In Fig. 5 we use the subharmonic spectral response
|m̃(−ω/4)| + |m̃(+ω/4)| at subharmonic frequency ω′ =
ω/4 as an order parameter to sketch some representative phase
diagrams for the 4-DTC. Again, dimensionalities D = 1, 2,
and 3 are considered in the left, mid, and right columns. In the
top row we explore the plane of the magnetic field strength
g and the power-law exponent α. For D = 1, the stability
region of the 4-DTC embraces g = 1/4 and extends up to
α ≈ 2, that we have already noted as the likely upper critical

value in agreement with the analog equilibrium transition. To
be more precise, the critical α is likely slightly smaller than
2, because the initial condition is at finite (rather than zero)
temperature, being W = 0.1. For D = 2 and 3 we expect the
prethermal 4-DTC to be stable all the way to α = ∞, that is,
for short-range (nearest-neighbor) interactions. As in Fig. 3,
the persistence of the 4-DTC to α = ∞ for D = 2 is actually
not easily appreciated just because the considered frequency
ω = 2.51 is too low. In the bottom row we consider instead the
plane of magnetic field strength g and drive period T = 2π/ω.
Again, the stability region of the 4-DTC develops around
g = 1/4. For too large periods T (too small frequency ω),
the subharmonic response lasts for a time much shorter than
the time window used to compute the Fourier transform m̃
(first 104 periods of the drive), and the order parameter does
not detect the 4-DTC. This changes for T � 3, correspond-
ing to a high-enough frequency for the prethermal regime
to extend over a range larger than that used to compute m̃,
thus allowing the emergence and detection of a prethermal
4-DTC. For increasing large frequencies (T → 0), we observe
that the region of stability of the 4-DTC decreases, while
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FIG. 6. Stability against perturbation of the initial condition. We
investigate the stability of the prethermal 4-DTC with respect to per-
turbations of the initial condition, for dimensionality D = 1, 2, and
3 and for power-law exponent α = 1.5, 4, and ∞, respectively. As in
Fig. 5, we compute the subharmonic spectral function at frequency
ω/4 over the first 5000 periods, and use it as an order parameter for
the 4-DTC. We observe a phase transition at a certain finite critical
value of the noise strength Wc ∼ 0.18, above which the prethermal
DTC disappears in favor of trivial thermalization. Note, the observed
fluctuations are a finite-size effect. Here, we used N = 2000, 2500,

and 8000 in D = 1, 2, and 3, respectively, whereas T = 2.5, R = 20,
g = 0.25, and h = 0.1.

remaining centered around g = 1/4 (the final disappearance
of the 4-DTC for T → 0 is an artifact of the relatively poor
resolution in g).

Finally, in Fig. 6 we again use the subharmonic spectral
response |m̃(−ω/4)| + |m̃(+ω/4)| at subharmonic frequency
ω′ = ω/4 as an order parameter to verify the stability of the
4-DTC against perturbations of the initial condition. To effec-
tively change the temperature (that is, energy) of the initial
condition, we vary the strength of the initial noise W [see
Eq. (15)]. As expected, we find a finite critical Wc > 0 above
which the subharmonic response disappears, which confirms
the expectations on the relation between prethermal DTCs and
equilibrium finite-temperature transitions [21,22].

We note that, for both Figs. 5 and 6, a more careful analysis
should have actually focused on the scaling properties of the
subharmonic response: for each point in the parameter space,
one should repeat the simulations at various frequencies ω and
fit the resulting thermalization times τth ∼ ecω to extract the
scaling coefficient c, which should then itself be used as an
order parameter. This analysis would however require some
intensive numerics that goes beyond the scope of this paper.
As well, we emphasize that the results shown here are not an
artifact of the finite system size, as can be verified with simple
scaling analysis [45].

IV. DISCUSSION AND CONCLUSION

By simulating the many-body Hamiltonian (nondissipa-
tive) dynamics of interacting classical spins on hypercubic
lattices, we provided a comprehensive account of prethermal
DTCs in dimension 1, 2, and 3. By varying the exponent
α of the power-law coupling, we investigated the interplay
of interaction range and dimensionality. We found that the

duration of the prethermal time-crystalline response increases
with frequency as ≈ecω but also with interaction range. We
provided numerical evidence that prethermal DTCs are pos-
sible for α � 2 in dimension 1, and for any α in dimension
2 and 3, including the short-range limit α = ∞. Our paper
puts forward classical Hamiltonian dynamics as a prime tool
for the numerical investigation of prethermalization-related
phenomena, with virtually no constraint on the system’s ge-
ometry, size, and underlying Hamiltonian, and therefore of
direct applicability to experiments.

The lesson that a rich structure of eigenstates in an ex-
ponentially large Hilbert space can account for complex
scrambling phenomena even in a linear quantum theory had
first been appreciated in the context of thermalization with
the ETH [5], but naturally extended to prethermalization and
prethermal phases of matter [21,22]. Having learned this im-
portant lesson, our paper now suggests that, to describe many
key aspects of these phenomena, we can take a step back and
adopt the much simpler classical models. Indeed, the compar-
ison between Fig. 2 here and Fig. 1 in Ref. [22], together with
physical intuition, suggests that the phenomena studied here
should be thought of as robust to quantum fluctuations, rather
than dependent on them.

For this reason, we expect that the higher-order prethermal
DTCs described here should be observable in a wide range
of experimental platforms, both inherently quantum and not.
In the first group are the setups already adopted to investi-
gate time-crystalline behaviors, such as nitrogen-vacancy spin
impurities in diamond [42], trapped atomic ions [43], or 31P
nuclei in ammonium dihydrogen phosphate [44], whereas the
second group should be relevant in the context of spintronics
and magnonics [51,52].

We would like to make a remark on nomenclature. To
convey the idea that both classical and quantum models can
be used to shed light on the physical phenomena of prether-
malization and prethermal DTCs, irrespective of their “true”
(classical or quantum) nature, we prefer to talk of classical
and quantum approaches to the prethermal DTCs, rather than
classical and quantum prethermal DTCs [53]. For this reason,
here we did not use the word “classical” as an adjective
for the phenomenon of prethermalization, but rather for the
theoretical approach used (e.g., in the title).

As a brief outlook for future research, an insightful ques-
tion regards the assessment of the exact functional form of τth.
We note that, numerically, this is a hard enterprise because
it requires probing thermalization over a broad range of fre-
quencies ω � 4, when the τth ∼ 106T for ω = 3.5 is already
remarkably long and computationally demanding (see Figs. 3
and 4). Nonetheless, even if a precise characterization of τth is
interesting on its own, we emphasize that what really matters
here is the existence of a clear separation of timescales (τpreth

and τth) leaving time for the emergence of prethermal DTCs.
It would then be desirable to clarify to what extent quantum
fluctuations affect our findings, as to some extent addressed in
one dimension [22,47]. An important open question regards
the existence of genuinely quantum (that is, with no classical
counterpart) prethermal phases of matter. Finally, on a more
open end, future research should aim at applying classical
Hamiltonian dynamics to study other dynamical phenomena,
both related to prethermalization and beyond it.
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