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Spin-exchange Hamiltonian and topological degeneracies in elemental gadolinium
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We present a comprehensive study of the magnetic exchange Hamiltonian of elemental gadolinium. We use
neutron scattering to measure the magnon spectrum over the entire Brillouin zone and fit the excitations to a
spin wave model to extract the first 26 nearest-neighbor magnetic exchange interactions with rigorously defined
uncertainty. We find these exchange interactions to follow RKKY behavior, oscillating from ferromagnetic to
antiferromagnetic as a function of distance. Finally, we discuss the topological features and degeneracies in Gd,
and HCP ferromagnets in general. We show theoretically how, with asymmetric exchange, topological properties
could be tuned with a magnetic field.
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I. INTRODUCTION

Gadolinium (Gd) is one of the few elemental ferromagnets
[1]. It is considered a critical material to industry because
of its unique magnetic properties [2–4], and yet the mecha-
nisms behind its magnetism are not fully understood. In this
paper, we use inelastic neutron scattering to determine the
magnetic exchange Hamiltonian of elemental Gd to the 26th
neighbor exchange, showing the exchange approximately fol-
lows a Ruderman-Kittel-Kasuya-Yoshida (RKKY) model. In
a separate paper [5], we also show that these spin waves yield
topological features; in this paper, we extend this topology
discussion with further details about anisotropic hexagonal
close packed (HCP) rare earths.

The Gd crystal structure is HCP, shown in Fig. 1. Elemental
Gd orders ferromagnetically [1] with a Curie temperature
Tc = 293 K [6,7]. Its magnetism is almost perfectly isotropic:
The first three valence electrons are itinerant, leaving an effec-
tive Gd3+ at each site [8] with a quenched orbital moment and
well-defined S = 7/2 [9]. Small anisotropies do exist in Gd
[10], which vary as a function of temperature [7,11] (leading
to a ferromagnetic spin polarization 30◦ from c at the lowest
temperatures [7]) and appear to be from interaction between
the itinerant electrons and localized 4 f electrons [12,13].

The Gd inelastic neutron spectrum was first measured in
1970 [14], and it is a textbook example of ferromagnetic
spin waves [15,16]. However, the original measurements,
performed on a triple-axis spectrometer, were only along
high-symmetry directions. This led to limitations in fitting
a spin-wave Hamiltonian [17]: in-plane and out-of-plane
exchanges could not be fitted simultaneously. Fortunately,
neutron spectrometers have dramatically improved over the
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last 50 years [18]. In this paper, we measure the inelastic neu-
tron spectrum of elemental Gd over the entire Brillouin zone
using modern instrumentation. This allows us to rigorously fit
the excitations to a full spin-wave model, compare to RKKY
exchange strengths, and observe topological features in the
data.

This paper is organized as follows: Section II explains the
neutron scattering experiment on Gd, Sec. III shows the spin-
wave fits to the scattering data and compares the exchanges to
RKKY, and Sec. IV discusses the topology of the Gd magnon
band structure.

II. EXPERIMENT

We measured the spin waves of Gd using the SEQUOIA
spectrometer [19,20] at the ORNL Please define SNS [21].
Because most Gd isotopes have an extremely high neutron
absorption cross section, we measured a 12 g isotopically en-
riched 160Gd single crystal (in fact, the same 99.99% enriched
crystal as was used in Ref. [14]). The sample was mounted
with the (hh�) plane horizontal in a closed cycle refrigerator
and cooled to 5 K. We measured the neutron spectrum at
incident energies Ei = 50 meV and 100 meV. We rotated the
sample about the vertical axis in one degree steps over 180º.
See Appendix A for further details. Data were reduced and
symmetrized [22] to fill out the full Brillouin zone. Measure-
ments were performed with the SNS operating at 1.4 MW over
the course of two days.

Some slices of the Gd scattering data are shown in
Figs. 2(a)–2(d) with constant Q cuts in Fig. 3; see the Sup-
plemental Material [23] for more plots. The magnon modes
are sharp and well defined even at the top of the dispersion,
which indicates localized moments as expected. Because of
the large S = 7/2 spin, the magnon intensity is much larger
than phonon intensity at 5 K for the measured wave vectors.
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FIG. 1. HCP crystal structure of Gd, with layers of triangular
lattices.

The phonon modes have similar shaped dispersions to the
magnons due to the HCP structure: in certain slices [like
(h, h, 0.5) in Fig. 2(c)], the phonon modes appear as faint
modes at lower energies. However, the phonons can be distin-
guished by the fact that their intensity grows with momentum
transfer |Q|, while the magnon intensity decreases (see Sup-
plemental Material for details [23]).

III. SPIN-WAVE FIT

To date, the most comprehensive Hamiltonian fit to Gd spin
waves was performed by Lindgård in 1978 [17]. This analysis
used the inelastic neutron scattering data collected by Koehler
in 1970 [14]. Lindgård included 11 exchange parameters fitted
to hk plane scattering, but fitted the � direction separately to
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FIG. 3. Constant Q cuts of Gd scattering along the (1, 0, �) di-
rection [top row, from Fig. 2(a)] and (h, 0, 1) direction [bottom row,
from Fig. 2(b)] compared to the best fit LSWT calculation. The
magnon peaks are very clearly visible in the data. A phonon is visible
in panel (b) at 6 meV, with much smaller intensity than the magnons.
LSWT simulations have a energy peak full width half maximum of
1.5 meV, which was chosen to visually match the experimental width
at all energies.

a J (Q) model (effectively calculating Fourier components)
rather than including it in the fit. With our data set, we are
able to perform a full, comprehensive Hamiltonian fit to the
data.

The magnon dispersion of a HCP Heisenberg ferromag-
net described by H = ∑

i j Ji jSi · S j (here Si are S = 7/2
operators) is derived in Ref. [16]. Although the magnon bands

FIG. 2. Measured and fitted spin wave spectra of Gd. The top row (a)–(d) shows the measured spin wave spectra of Gd. The Q width in
reciprocal lattice units (r.l.u.) in the direction perpendicular to the x axis is shown in the upper right of each panel. The middle row (e)–(h)
shows the LSWT calculated spectrum from the best fit Hamiltonian in Table I. The bottom row (i)–(l) shows a portion of the data points used
in the fit (black circles), and the fitted dispersion from this paper (blue solid line) and Lindgård [17] (orange dashed line).
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TABLE I. Refined exchange constants for Gd, in units of μeV
from fine binned data. Positive values indicate antiferromagnetic
exchange, negative values indicate ferromagnetic exchange. Error
bars indicate one standard deviation.

J1 = −138 ± 8 J10 = −2 ± 2 J19 = −5 ± 3
J2 = −174 ± 4 J11 = 0 ± 20 J20 = −5.6 ± 1.3
J3 = 50 ± 20 J12 = −25 ± 6 J21 = 5 ± 9
J4 = 41 ± 6 J13 = 0 ± 2 J22 = −5 ± 7
J5 = −10 ± 20 J14 = −8 ± 10 J23 = 29 ± 7
J6 = −14 ± 4 J15 = 4 ± 2 J24 = −5 ± 9
J7 = −4 ± 2 J16 = 1 ± 7 J25 = 1 ± 8
J8 = 0 ± 3 J17 = 4 ± 8 J26 = 7 ± 2
J9 = −10 ± 20 J18 = 10 ± 20

appear gapless in our neutron data, magnetic torque measure-
ments reveal the single-ion anisotropy of Gd to be 37 μeV.
To first order, this produces a linear offset of all dispersion
bands [16] of 37 μeV, and we incorporated this effect into our
model. Beyond this single-ion anisotropy, we assumed that all
exchanges are isotropic in accord with Gd’s quenched orbital
moment.

To fit the magnon dispersions to the observed energies, we
extracted the magnon dispersion from the data by fitting the
magnon modes with Gaussian peaks as a function of energy
transfer for fixed values of the wave vector. We used over
42 different Q vs h̄ω slices through our data [see Figs. 2(i)–
2(l) for examples and the Supplemental Material [23] for a
complete list], which yielded a total of 2309 unique Q points.
We found that including data away from high-symmetry di-
rections was important for constraining the fit, hence the large
number of slices. These mode energy points were used to
define a global χ2.

To determine the exchange constant terms, we compared
the analytical form of the dispersion [16] to the determined
energy transfer of the 2309 unique wave vectors, including
an overall offset of 0.037 meV to account for the anisotropy
as described earlier. The fitting procedure itself involved
a stochastic simulated annealing method based on Scipy’s
minimization package [24] and is described in detail in Ap-
pendix B. We found that at least 26 nearest neighbors are
required to accurately describe the details of the Gd magnon

FIG. 5. Fit versus number of fitted parameters. Panel (a) shows–
χ 2

red as a function of number of parameters. Panel (b) shows the
absolute value of the fitted exchange constants. Note that a sudden
drop in χ 2

red (seen at n = 12, 20, 23, and 26) corresponds to a well-
constrained parameter. Because χ 2

red only slowly decreases beyond
n = 26, we cut off the fit at n = 26.

modes, and all subsequent neighbors had uncertainties over-
lapping with zero. The best fit parameters with uncertainty
are shown in Table I, and are visually depicted in Fig. 4. The
simulated neutron spectrum is plotted in Figs. 2(e)–2(h). In
every cut, the simulation matches the data quite well.

We examined χ2 as a function of neighbors included in
the model, as shown in Fig. 5. We find that exchanges up
to the 26th neighbor have a significant effect on the fit. By
comparing Fig. 5 with Fig. 4, one can see that the drops in
χ2 correspond to either crossing additional lattice planes as
terms are added to the Hamiltonian (neighbor n = 12, 23) or
when exchanges in a particular direction not represented be-
fore are included in the Hamiltonian (n = 20, 26). Including
exchanges up to the 35th neighbor continues to improve the
fit, though only slightly [Fig. 5(a)]. In our model, we ignored

FIG. 4. Neighbor bond length and magnitude of the refined exchange for Gd. The five panels indicate different layers along the c axis,
where δc in each panel indicates the bond length along the c axis. The number in each circle denotes the neighbor number. The color indicates
the fitted exchange interaction: Ferromagnetic exchange is indicated by blue, antiferromagnetic by red, with the magnitude indicated by the
color bar on the right.
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FIG. 6. Correlation matrix for Jn from the Gd spin wave mode
fits. Red indicates positive correlation, blue indicates negative cor-
relation. Some parameters, like J3, are highly correlated with many
other parameters. Others, like J4, have almost no correlation with
other parameters, and thus are uniquely constrained by the data.

exchanges beyond the 26th-nearest neighbor as insignificant
within the uncertainty of our data.

We calculated the statistical uncertainty for these fitted
parameters by computing the �χ2 = 1 contour around the
global minimum using a systematic search and Monte Carlo
Markov chain (MCMC) method. This gave a reliable estimate
of statistical uncertainty, as well as the correlation matrix
between each parameter (visualized in Fig. 6). As is perhaps
not surprising, many of the fitted exchange constants are
highly correlated with one another. Indeed, principal compo-
nent analysis reveals that 78.0% of the statistical variance of
all exchange constants can be described by a single vector in
{J1, J2, ..., J26}. Thus, the uncertainties in Table I are by no
means independent: the parameters with the largest error bars
are highly correlated with a set of other exchanges. In addition
to this statistical uncertainty in the refined values, we also cal-
culated the systematic uncertainty associated with truncating
the Hamiltonian at the 26th-nearest neighbor by taking the
standard deviation of the parameters between nmax = 27 and
nmax = 35 as the systematic uncertainty, which we added in
quadrature with the statistical uncertainty to get the values in
Table I.

We compare our refined Hamiltonian to the one proposed
by Lindgård [17] in Figs. 2(i)–2(l). Lindgård’s Hamiltonian
has a reduced χ2, χ2

red = 442.1 when compared to our data,
whereas the Hamiltonian in Table I has χ2

red = 12.1. This
dramatic improvement is made possible by our much larger
data set.

It is worth noting that the measurements in Ref. [14] were
carried out at 78 K (compared to 5 K in our experiment). Sub-
sequent measurements in the 1980s showed the Gd dispersion
along c varies greatly between 9 K and 290 K [25–27], so
some differences between the Lindgård Hamiltonian and ours
are expected. In general, it appears that the higher frequency
Q modulations in the modes vanish at higher temperatures,
indicating that the exchange becomes more and more short
ranged as the temperature increases [26].

FIG. 7. Refined values of magnetic exchange constants as a func-
tion of bond distance |r| compared with a fitted RKKY exchange
[Eq. (1)], see text. A few key points are labeled by their Jn index.

Comparison to RKKY

Despite the fact that Gd is ferromagnetic at low tempera-
tures, many of the exchange constants are antiferromagnetic.
Plotting the exchange constants against bond distance (Fig. 7)
reveals an oscillation between ferromagnetism and antiferro-
magnetism as bond distance grows. This is consistent with
RKKY exchange [28–30], where the magnetic exchange is
mediated by conduction electrons.

The RKKY mechanism in three dimensions predicts a
magnetic exchange Hamiltonian of the form

H = A Si · S j[2kf ri j cos(2kfri j ) − sin(2kf ri j )]/r4
i j (1)

[28], where kf is the Fermi wave vector, ri j is the bond dis-
tance, and A is a constant. The above equation assumes a
spherical Fermi surface; because this is is not quite true for
Gd, we treat kf in Eq. (1) as a fitted constant, fitting to the
nearest six neighbors Jn where the oscillation is clearest. This
yields kf = 0.49(3) Å−1 and the curve shown in Fig. 7. This
fitted value is very close to the largest Fermi wave vectors
measured by de Haas–Van Alphen oscillations (0.15 Å−1 to
0.51 Å−1) [31], indicating that the fitted kf is reasonable and
close to the actual Fermi surface radius. Of course, some of
the fitted Jn do not follow the spherical RKKY model (most
notably J23), indicating the presence of additional exchange
mechanisms (see Appendix C for details, where we show how
purely RKKY models fail to reproduce the mode energies).
Nevertheless, our results confirm that the RKKY mechanism
is dominant in Gd, giving an oscillation between ferromag-
netic and antiferromagnetic exchange. RKKY exchange has
long been thought to be dominant in Gd [32–35], but here we
show clear evidence in the exchange constants themselves.

IV. TOPOLOGY AND DEGENERACIES

Some features of the Gd spin wave spectrum do not depend
on the fine details of the Hamiltonian: band degeneracies
[36,37] and associated topological invariants [38] are immune
to perturbations of the exchange constants. As discussed in
Ref. [5], the Gd neutron spectrum shows a nodal line degener-
acy at K = (1/3, 1/3, �) which has a π Berry phase around it,
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FIG. 8. Linear band crossing at K = ( 2
3

2
3 0). Panels (a) and

(b) show the measured neutron scattering for two orthogonal cuts
through K , highlighting the anisotropic intensity around the disper-
sion cone. Panels (c) and (d) show constant energy slices above and
below the band crossing, showing intensity arcs. Panel (e) shows
the intensity binned around the circles in (c) and (d), fitted to a sin
function.

and a nodal plane degeneracy at half-integer �. An example
of a K linear band crossing is shown in Fig. 8, which has
the anisotropic winding intensity characteristic of nontrivial
topology [39,40]. The origin of the anisotropic intensity is
discussed in Appendix D. These degeneracies are generic
to all Heisenberg-only exchange Hamiltonians on the HCP
lattice [36,37], so long as the ferromagnetic ground state is
preserved.

Degeneracies can be broken by anisotropic exchange terms
in the magnetic Hamiltonian. Magnetic dipolar exchange is
one potential source of anisotropy; however, in the HCP Gd
lattice the lattice-summed dipolar exchange is ≈0.15 meV
[41], which is less than 1.6% of the lattice-summed nearest-
neighbor exchange strength Ji jn( 7

2 )2 = 9.26 meV, so dipolar
exchange would not noticeably influence the band degenera-
cies in Gd.

In general, however, other elemental HCP magnets have
unquenched orbital angular momentum, leading to off-
diagonal magnetic exchange which breaks the degeneracies.
One such example is the anisotropic Dzyaloshinskii-Moriya
(DM) exchange interaction:

H =
∑

i j

D · (Si × S j ). (2)
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FIG. 9. LSWT calculated spectrum along high-symmetry direc-
tions without (a) and with (b) nonzero DM exchange interaction
term on the second neighbor site. When DM = 0, K has a linear
band crossing and all � = 1/2 is a nodal plane. When DM > 0,
the K → H nodal line and the nodal plane degeneracies are broken,
leaving nodal lines only along A → L. Panel (c) shows the Brillouin
zone nodal lines in (a), and panel (d) shows the same for (b).

Among the 30-nearest HCP neighbors, DM exchange is
symmetry-allowed on the second, seventh, eighth, tenth, 13th,
15th, 19th, 20th, 26th, and 27th neighbors [42]. Each DM
exchange has a similar effect on the magnon degeneracies:
nonzero DM exchange will tend to lift the degeneracy at the
K point (1/3, 1/3, 0), as well as for most of the nodal plane,
as shown in Fig. 9—although the splitting depends on the
spin polarization direction. No gap at the � point (0,0,0) is
produced by DM exchange on the HCP lattice. However, a
nodal line degeneracy along A → L is preserved even with
nonzero asymmetric exchange, as shown in Fig. 9. This means
that asymmetric exchange leaves a triangular grid of � = 1/2
nodal lines in place of the nodal plane. This grid of nodal lines
is protected by residual magnetic glide symmetry m11̄0T that
exists because the DM has a U(1) symmetry. In Gd, no mode
splitting is resolvable, giving an upper bound of 3(1) μeV on
the total asymmetric DM exchange in Gd (see Appendix E).

Intriguingly, the mode splitting at a given DM exchange
strength can be tuned by changing the spin orientation. Be-
cause the second-neighbor DM vector is constrained to point
along the c axis, when spins are polarized in the ab plane
the mode splitting vanishes. Meanwhile, the mode splitting is
maximal when spins are polarized along c. (Figure 9 was cal-
culated using the low-temperature Gd spin orientation; mode
splitting with other spin orientations is explored in Fig. 10.)
Thus, in the anisotropic HCP rare earths, it may, in principle,
be possible to tune the topological features by polarizing the
spins along certain directions.
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FIG. 10. Chiral surface mode in the HCP ferromagnet. The top
three panels show the bulk (periodic boundary conditions) and sur-
face (c-axis termination) modes in a simplified third-nearest neighbor
(3NN) exchange model with a second-neighbor DM exchange of
40 μeV. The three panels show the spins polarized at different angles
θ from the c axis. The different spin polarizations induce different
mode splitting because of the DM asymmetry. At a certain polar-
ization angle, the two surface modes meet and cross with opposite
slopes, evidencing chiral surface magnon modes. For the simplified
3NN model, the chiral angle is θ = 0.955. Panel (d) shows this chiral
angle as a function of DM strength for different models: Nearest-
neighbor exchange only (green), 3NN model (blue), and the full
26-neighbor model (red). In each case, a minimum DM exchange
strength is necessary to produce the chiral mode crossing. Panel (e)
shows these chiral angle is governed by the energy gap between the
surface and bulk modes at K .

The physical consequences of the nodal plane and the
� = 1/2 nodal line grid have yet to be fully explored, but
we can draw conclusions about the best understood feature:
the nodal line Dirac cone at K . One of the reasons that Dirac
magnons are of interest is because when symmetry is broken
by off-diagonal exchange, chiral surface magnons can be in-
duced [38]. To explore this in the HCP context, we calculated
the magnons for a 20-unit cell layer supercell HCP ferromag-
net using SpinW [43], shown in Fig. 10. Using a simplified
three-neighbor exchange model, we calculated the modes both
with periodic boundary conditions (shown in blue) and a
c-axis termination simulated with a blank space at the top
of the supercell (shown in red) with a second-neighbor DM
exchange of 40 μeV. The surface modes are clearly visible as
lying outside the continuum of magnon states between � = 0
and � = 1.

As noted above, the DM magnon mode splitting can be
tuned by the spin polarization angle from the c axis. The
calculations in Figs. 10(c)–10(e) show that at a particular spin
polarization angle, the surface magnon modes appear to cross
at K with opposite velocities—potentially indicating chiral
edge modes [38]. The specific angle depends upon the DM
exchange interaction strength—but if DM exchange is strong
enough, the system could host chiral edge states at that special
polarization angle.

We calculated this chiral angle for several different HCP
models with a second-neighbor DM term in Fig. 10(d). For all
models, the chiral angle depends on DM interaction strength
as arccos(C/DM), where C is a constant dependent upon the
energy gap between the DM = 0 surface and bulk magnons
at K . If we scale the chiral angle curve by the surface-bulk
gap, the curves of various models collapse onto the same
curve [Fig. 10(e)], giving a minimum threshold value for DM
exchange based on the rest of the exchange Hamiltonian.
The situation grows more complicated for other off-diagonal
exchange on the HCP lattice, but spin reorientation still gener-
ically shifts around the bands such that a special polarization
direction may restore the K-point degeneracy.

Besides Gd, some other elemental HCP ferromagnets
are dysprosium [17,44], terbium [17,45], and hexagonal (α)
cobalt [46]. Unlike Gd, these materials have unquenched
orbital angular momentum and anisotropic exchange. Nodal
plane splitting was actually measured in Tb [16,45] to be
∼0.4 meV—although the Tb spins being aligned in plane
[47] would tend to suppress mode splitting from DM, and
other forms of anisotropy probably contribute to the mode
splitting, rendering the actual DM strength uncertain. Be that
as it may, Tb spin reorientation can be accomplished by a
relatively modest <5 T magnetic field [48], which suggests
the possibility of tunable topology.

V. CONCLUSION

We have measured the magnetic spectrum of elemental Gd
over the entire Brillouin zone. We fit its magnetic exchange
Hamiltonian to the 26th-nearest neighbor, finding that the
exchange interactions approximately follow an RKKY oscil-
lation, in good agreement with long-standing expectations that
RKKY exchange is relevant to Gd. We have also explored
the topology and degeneracies of Gd, using that to predict
the nodal lines of anisotropic HCP ferromagnets. Finally, we
have used linear spin-wave simulations to suggest how tunable
topology may be induced in HCP ferromagnets with DM
exchange.

These results showcase the ability of modern inelastic
neutron spectrometers to precisely determine the magnetic
exchange interactions with rigorous uncertainty. They also
reveal the magnetic behavior of an industry-critical material,
providing quantities to test against future theoretical studies.
Perhaps most importantly, these results show the class of HCP
magnets to be a useful platform for topological magnetism.
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APPENDIX A: EXPERIMENT DETAILS

For the SEQUOIA neutron measurements, we set the T 0
chopper at 90 Hz, Fermi 1 chopper at 120 Hz, Fermi 2 chopper
at 360 Hz for Ei = 50 meV, slits 36 mm wide and 14 mm tall.
For Ei = 100 meV, the same chopper speeds were used but
with the Fermi 2 chopper at 540 Hz.

APPENDIX B: FITTING PROCEDURE

The spin-wave dispersions were fitted to the data from 37
different Q vs h̄ω slices. To avoid local minima from an over-
constrained fit, we fit random subsets of the data, selecting
between five and ten slices and optimizing the Hamiltonian
using Scipy’s implementation of Powell’s method [49]. Then,
the best fit values were accepted or rejected based on improve-
ment of the global χ2 (of all slices) with a simulated annealing
method. This approach proved to be very effective at avoiding
local χ2 minima, which are plentiful with this data set. As
a final step, we fit Jn to all slices in the steepest descent,
which yielded the best fit parameters in Table I. This fitting
procedure was repeated multiple times and always converged
to the same solution, provided the annealing step was run for

enough iterations. For a sample of code used for this fitting
procedure, along with all the Gd scattering data, see Ref. [50].
The full set of data points used in the fitting procedure is
plotted in the Supplemental Material [23].

As shown in Fig. 5, the addition of certain Jn in the
model dramatically improves the fit. The furthest neighbor
Jn where we found such an effect (up to n = 35) was J26.
To demonstrate that the 26th neighbor is indeed necessary to
describe the Gd spin wave dispersion, we plot the experimen-
tal Gd scattering compared to the LSWT calculated spectra
from both a 25-neighbor model and 26-neighbor model in
Fig. 11.

Once the global minimum had been found, we calculated
the χ2 contour by randomly sampling points around the best
fit {Jn}, and keeping those whose χ2

red was increased by less
than one above the global optimum χ2

red. (This corresponds
to an uncertainty of one standard deviation [51].) After a few
points had been identified, we used Scikit principal compo-
nent analysis [52] to identify the principal components and
accompanying standard deviations in {Jn} along which to
sample, running a MCMC to collect more solutions within
�χ2

red = 1. This approach, which yielded ∼6000 possible so-
lutions within the �χ2

red = 1 contour, allows us to sample the
full χ2

red landscape regardless of variation in local curvature.
We take the range of possible values under the �χ2

red = 1
threshold, shown in Fig. 12, as an estimate of the statistical
uncertainty of each fitted value.

The MCMC χ2
red sampling also reveals the correlation be-

tween different fitted parameters, as shown in Fig. 13. We
quantify this by calculating a correlation matrix via Pearson
correlation coefficients, which is visually plotted in Fig. 6.
This reveals families of highly correlated exchange constants,
especially J3, J5, J9, and J11.

units)

FIG. 11. Comparison between experimental Gd scattering (top row) and the LSWT calculated scattering from a 25-neighbor model (middle
row) and a 26-neighbor model (bottom row). As the red circles indicate, certain features in the data require the 26th neighbor J to reproduce.
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FIG. 12. Possible Hamiltonian solutions within �χ 2
red = 1 of the global optimum fit generated by MCMC (see text). Each panel shows the

range of such solutions, which we take as an estimate of uncertainty. The small blue circle represents the best fit values.

APPENDIX C: RKKY CALCULATED SCATTERING

Because the Gd magnon dispersion roughly follows an
RKKY behavior, it is worth considering how close it is to an
RKKY-only model. To this end, we consider three different
possibilities. First, we consider an isotropic RKKY model
based on Eq. (1). Second, we consider an anisotropic RKKY
based on Eq. (1) where k f varies as a function of bond angle
from the c axis (effectively giving three fitted parameters:
an overall scale factor, kxy

f , and kz
f ). Third, we consider an

anisotropic RKKY model (aniso 2) based on Eq. (1) with

different scale factors

H = Axy Si · Sj
[
2kxy

f ri j cos(2kfri j ) − sin
(
2kxy

f ri j
)]

rxy
i j /r5

i j

+ Az Si · Sj
[
2kz

f ri j cos(2kfri j ) − sin
(
2kz

f ri j
)]

rz
i j/r5

i j,

which gives a total of four fitted parameters: Axy, Az, kxy
f , and

kz
f . These three models were each fitted to the experimental

data and are plotted against the experimental data in Fig. 14.
As is evident from the plots, none of the models describe
the experimental scattering very well (for the isotropic model,
χ2 = 1706; for the first anisotropic model, χ2 = 1467; for the

FIG. 13. Hamiltonian solutions within �χ 2
red = 1 plotted against J5, as an example of correlations between fitted parameters. The small

blue circle represents the best fit values. A circular distribution indicates no correlation, but an ellipsoidal distribution indicates high correlation.
J1, J9, and J11 all are highly correlated with J5, and the correlations are not quite linear.
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units)

FIG. 14. Comparison between experimental Gd scattering (top row) and LSWT calculated scattering from three simple RKKY models: An
isotropic RKKY model (second row), an anisotropic RKKY model (third row) where the Fermi wave vector is allowed to vary as a function of
bond angle from c, and another anisotropic RKKY model (bottom row) where the Fermi wave vector and energy scale are allowed to vary as
a function of bond angle from c. The last model comes closest, but is still far from reproducing the details of the exchange model.

second anisotropic model, χ2 = 749). Thus a simple isotropic
or ellipsoidal RKKY model is insufficient for describing the
magnetic exchange of Gd.

APPENDIX D: ORIGIN OF THE ANISOTROPIC
INTENSITY AT THE BAND CROSSING

In this section, we explain the origin of the anisotropic
neutron intensity pattern at energies above and below the
K-point linear band crossing [40]. The neutron structure factor
for magnetic correlations is

Sαβ (Q, ω) =
∑

�

∫ ∞

−∞

〈
Sα

0 (0)Sβ

� (t )
〉
e−iQ·�e−iωt dt, (D1)

where
∑

� is a sum over all neighbor distances, Q is the
scattering vector, and Sβ

r (t ) is the β component of magneti-
zation at site r at time t . This we may compute within linear
spin wave theory. For the two-band model under consideration
here, the magnon wave functions take the form

ψk± = (1/
√

2)

(± exp(iφk )
1

)
, (D2)

where + is for the upper band. The momentum-
dependent phase enters into the dynamical structure
factor as Sαβ (k, ω) ∼ 1 ± cos φk. For concreteness,
we consider the vicinity of the Dirac crossing at the
(1/3, 1/3, 0) K point, k = (1/3, 1/3, 0) + δk, the phase
is the complex phase associated with δk‖ + iδk⊥, where
δk ≡ δk‖(

√
3/2, 1/2) + δk⊥(−1/2,

√
3/2). This phase

winds around the Dirac point. It equals zero on the far side
of the Dirac point along (h, h, 0) from the � point, leading to
a maximum of the intensity and π on the near side leading
to a minimum. Since the phase rotates by π from the upper
to the lower band for fixed k, the intensity is continuous,
moving along k in the (h, h, 0) direction passing smoothly
from the lower band to the upper band on passing through
the Dirac point. It follows that the character of the magnon
modes varies continuously in passing from the acoustic to the
optical mode through the Dirac point in a given direction in
momentum space.

This can be visualized following the physical picture of a
spin wave in Squires [15]. In the acoustic mode, where two
spins in the unit cell cant the same direction and in the optical
mode the two spins cant in opposite directions (Fig. 15).
When Q is along the (hh0) direction in the bipartite hexagonal
lattice, something peculiar happens: the optical magnon mode
has zero intensity. This is because each 〈Sα

0 (0)Sβ

� (t )〉 has a
corresponding 〈Sα

0 (0)Sβ

� (t )〉 of the opposite sign with the same
value of Q · � when Q is along (hh0). This is visually clear
from Figs. 15(b) and 15(d). Thus, when the sum

∑
� is carried

out, Sαβ (Q, ω) = 0 for the optical mode. Note that this is
only true when Q = (hh0). As soon as Q gains any orthog-
onal components, the optical mode gains nonzero intensity.
Assuming net ferromagnetic Heisenberg interactions on the
hexagonal lattice, at Q = 0, the acoustic mode is zero energy
and the optical mode has finite energy. At the K = ( 1

3 , 1
3 ) point

with Heisenberg exchange, the acoustic and optical magnon
bands become perfectly degenerate. This is visually illustrated
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FIG. 15. Origin of the anisotropic intensity around the K-point linear band crossing. Panels (a) and (b) show acoustic and optical modes
of a Q = 0 magnon, where the arrows indicate the spin displacement from equilibrium. Panels (c) and (d) show acoustic and optical modes
of a Q = ( 1

3 , 1
3 ) magnon; (e) and (f) show the same for Q = ( 1

2 , 1
2 ) magnon. With only Heisenberg magnetic exchange, these two modes are

related by a degenerate global rotation of a single sublattice at Q = ( 1
3 , 1

3 ), highlighted by the dark blue circles. Meanwhile, the acoustic mode
becomes lower energy at Q = ( 1

2 , 1
2 ), signaling a mode crossing between Q = 0 and Q = ( 1

2 , 1
2 ), which occurs at Q = ( 1

3 , 1
3 ). The green lines

indicate the � in Eq. (D1) which give an equivalent e−iQ·� for a neutron scattered along (hh0). Because of the staggered spin displacements,
the optical modes are always invisible, leading to the anisotropic intensity pattern in panel (e), where the color coding on the double cone
corresponds to S(Q, ω).

in Figs. 15(c) and 15(d), where a global rotation on a single
sublattice does not change the overall system energy. Moving
along (hh) further, at Q = (1/2, 1/2) the optic mode has
lower energy than the acoustic mode [Figs. 15(e) and 15(f)], as
the spin canting is more along the nearest-neighbor directions
with the optic at Q = (1/2, 1/2). Thus, at K = ( 1

3 , 1
3 ) the

modes linearly cross, meaning the upper branch switches from
zero intensity to nonzero intensity, leading to the peculiar
anisotropic intensity pattern shown in Fig. 15(g). Note that
this is the case for every bipartite hexagonal system, including
both the 3D HCP lattice and the 2D honeycomb lattice.

This intensity pattern is observed in Gd at the K =
(2/3, 2/3, 0) point as shown in Fig. 8, though the fact that it is
in the neighboring Brillouin zone means the acoustic and optic
modes have swapped places, and the acoustic mode energy
decreases as hh increases. Another K-point linear crossing in
the Gd data is shown in Fig. 16.

APPENDIX E: NODAL PLANE DEGENERACY

To within the instrumental resolution of this experiment,
the acoustic and optical magnon modes are degenerate at
half-integer � in Gd. To obtain an upper bound on the Gd
mode splitting—and thus on asymmetric DM interactions—
we fit the scattering at � = 1/2 to a double peak as shown
in Fig. 17. Using the (h, h, 3/2) line where only one mode
is visible to define the resolution shape and width, we find a
fitted maximum double-peak splitting of 0.24(5) meV, which
corresponds to a maximum second-neighbor DM exchange
of 3(1) μeV. Of course, the peak broadening observed in

un
its
)

FIG. 16. Linear band crossing at K = ( 1
3

1
3 0) measured with Ei =

100 meV neutrons. The resolution and statistics are notably worse
than Fig. 8 with Ei = 50 meV, but the anisotropic intensity is still
visible.
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un
its
)

un
its
)

FIG. 17. Mode splitting at � = 3/2 for Gd. The bottom panel
shows a constant Q cut on the (h, h, 3/2) line where only one mode
has intensity. The top panel shows a constant Q cut near K along
( 1

3 + h, 1
3 − h, 3/2), where both modes have intensity. Using the

bottom cut to define a resolution profile, we fit two modes of equal
intensity to the top cut, yielding a maximum mode splitting of 0.24(5)
meV—well beyond the resolution of this experiment.

Fig. 17(b) could be from differences in resolution function be-
tween the two points—so this fit gives only an upper bound on
the DM exchange interaction: at least 50 times weaker than the
J2 Heisenberg exchange interaction. (For more discussion of
mode broadening, see the Supplemental Material [23], which
includes Ref. [53].)

Symmetry and the DM interaction

From the perspective of symmetries, we can theoretically
understand the DM interaction breaking nodal plane degen-
eracy as follows. The second-neighbor DM with D = Dẑ has
spin-space symmetry. When the moments are in the plane, the
U (1) spin symmetry of the coupling together with physical
time reversal lead to an effective time reversal T ∗ operator
that guarantees the presence of the nodal plane degeneracy. If
instead the moments have a nonzero out-of-plane component,
the pure effective time-reversal symmetry induced by spin-
space symmetry is broken. For the most general anisotropic
coupling, the U (1) will also be absent and, in this case too,
effective pure time-reversal symmetry is broken. A robust
consequence of this symmetry breaking is the gapping out of
the nodal plane and the zone corner nodal lines as shown in
Fig. 9.

Even though the effective time-reversal symmetry is bro-
ken when the moments lie out of the xy plane, there is a
residual higher symmetry when D = Dẑ is present. Exam-
ining operations that leave the magnetic structure invariant,
we see that in-plane twofold rotation axes and mirror planes
perpendicular to the triangular planes are broken by the fact
that the moments are tilted out of the xy plane. However, these
symmetries survive when paired with time-reversal symmetry
and the U (1). The is because the combination of the twofold
spin rotation in each case can be undone by rotating the
moments about z.

The symmetry that will be relevant to us is the set of glides
times time reversal. One such magnetic glide is m11̄0T . This
has the effect of swapping sublattices, taking (kx, ky, kz ) →
(−kx, ky,−kz ) and complex conjugating the Hamiltonian. The
action of glide on the moments is to rotate by π about the
axis perpendicular to the mirror plane; time reversal and U (1)
then restore the moment directions. The nonsymmorphic part
of the symmetry enters, as for the screw [5], as an overall
exp(ikz ) phase when the glide is carried out twice. Overall,
on the two-band model we find(

0 1
e−ikz 0

)(
A(−kx, ky,−kz ) B(−kx, ky,−kz )
B∗(−kx,−ky, kz ) A′(−kx,−ky, kz )

)

×
(

0 eikz

1 0

)
= H (kx, ky, kz ), (E1)

so A(kx, ky, kz ) = A′(−kx, ky,−kz ). This implies that, on the
surface kz = ±π and on the invariant momentum line kx = 0,
A = A′.

In addition, the inversion symmetry and twofold screw
symmetry force B to vanish on the kz = ±π surface. Inversion
has the effect of taking k to −k and swapping the sublattices
so B(kx, ky, kz ) = B∗(−kx,−ky,−kz ). The constraint from the
screw symmetry on B is eickz B∗(−kx,−ky, kz ) = B(kx, ky, kz ).
Taking both constraints together, we find that B must vanish
at kz = ±π as claimed.

Since B vanishes and A = A′ on this surface, there is a de-
generacy on this line. There are two further symmetries of this
sort related by C3z operations. We have therefore shown that
there are residual nodal lines on the hexagonal zone boundary
when the exchange is anisotropic.

For the most general anisotropic exchange (i.e., beyond
the DM coupling considered above), time-reversal symmetry
survives only when the moments lie in the mirror plane. In
that case, the corresponding nodal line remains and the others
are gapped out. For collinear moments in a nonsymmetric
direction, there are no degeneracies in the spectrum. The fact
that nodal plane degeneracies are preserved to within experi-
mental resolution shows that such anisotropic exchanges are
negligible in Gd.
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