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We study the intrinsic scattering of phonons by a general quantum degree of freedom, i.e., a fluctuating “field”
Q, which may have completely general correlations, restricted only by unitarity and translational invariance.
From the induced scattering rates, generalizing the model studied in a companion paper [Mangeolle et al.,
Phys. Rev. X 12, 041031 (2022)], we obtain the consequences on the thermal conductivity tensor of the phonons.
We confirm that, even within our generalized model, the off-diagonal scattering rates involve a minimum of three-
to four-point correlation functions of the Q fields, and we discuss the “semiclassical” versus “quantum” nature
of all contributions. We obtain general and explicit forms for these correlations which isolate the contributions
to the Hall conductivity, and we provide a general discussion of the implications of symmetry and equilibrium;
this elaborates on, and extends, the results of Mangeolle et al. [Phys. Rev. X 12, 041031 (2022)]. We also extend
the discussion and evaluation of these two- (diagonal scattering) and four-point correlation functions, and hence
the thermal transport, for the illustrative example of an ordered two-dimensional antiferromagnet, where the Q
field is a composite of magnon operators arising from spin-lattice coupling, and confirm numerically that the
results, while satisfying all the necessary symmetry restrictions, lead to nonvanishing scattering and Hall effects.
In particular, we investigate, both analytically and numerically, the dependence of such intrinsic scattering on a
crucial parameter—the magnon to phonon velocity ratio υ. We in particular confirm that within some range of
υ of order 1 the skew-scattering mechanism leads to comparable thermal Hall conductivity for thermal currents
within and normal to the plane of the antiferromagnetism, and we discover that the temperature scaling of the
longitudinal conductivity displays a threshold effect and a nonuniversal, continuous variation of the scaling
exponent with υ.

DOI: 10.1103/PhysRevB.106.245139

I. INTRODUCTION

Two-point correlation functions are ubiquitous in the study
of condensed matter systems. They are often the building
blocks of response functions in scattering and other exper-
iments and appear in Feynman diagrams, as well as Monte
Carlo simulations. They are the central elements of linear
response theory, as is evident from Kubo’s formula [1,2]. They
are often independent of the arbitrary phase choice of the wave
function.

Higher-order correlation functions have witnessed renewed
interest recently. They arise theoretically in the measurement
of chaos. A particular type of four-point correlation function,
the “out-of-time-ordered” correlator, has been shown to be
related to the Lyapunov exponent, which measures the rate
at which the result of a measurement diverges after a weak
initial perturbation [3]. Multipoint correlations also naturally
describe nonlinear response, e.g., in nonlinear optics such
as second harmonic generation, and in “multidimensional
spectroscopy” [4]. They may also arise in scattering measure-
ments at resonance, such as RIXS [5,6]. From a statistical
point of view, higher-order correlation functions measure the
non-Gaussianity of the distribution of an observable. The

more strongly correlated a state is, i.e., the more it devi-
ates from a free-particle description, the more significant the
non-Gaussianity. Hence, multipoint functions are essential
harbingers of strong correlations.

In a companion paper [7], we present the study of the ther-
mal conductivity due to phonons linearly coupled to another
degree of freedom, for example an electronic or a magnetic
one. We summarize the results of that paper in this paragraph.
First, it is demonstrated that this coupling induces two types
of scattering of phonons: those which are symmetric in the
sense of respecting detailed balance, and those which are anti-
symmetric and obey an “anti-detailed-balance” relation. Only
the latter “skew-scattering” events contribute to a thermal Hall
effect of phonons, as proven by formulating and solving the
associated Boltzmann transport equations. Finally, the results
are applied to an example calculation of the diagonal and
Hall components of the thermal conductivity for the case of
a two-dimensional antiferromagnet.

The purpose of the present paper is to extend the prob-
lem of Ref. [7] to the most general case, and to give full
detail of the corresponding scattering contributions and their
derivation. We allow the phonons to be both linearly and
quadratically coupled to the fluctuating degree of freedom,
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i.e., with an interaction Hamiltonian density [cf. Eq. (16)]

H ′ =
∑
nk

∑
q=±

aq
nkQq

nk +
1√
Nuc

∑
nk �=n′k′

∑
q,q′=±

aq
nkaq′

n′k′Q
qq′
nkn′k′ ,

(1)

where a−nk ≡ ank, a+nk ≡ a†
nk are the phonon annihilation and

creation operators for the nth phonon mode with momentum
k, and Qq

nk, Qqq′
nkn′k′ are the collective fluctuating “fields” cou-

pled to the phonons (we discuss even more general forms in
the Appendices). The quantity Nuc is the number of unit cells
in the sample. We provide a full discussion of all the different
scattering contributions generated by these terms (up to quar-
tic order in the phonon coupling, see Sec. III D), and give a
full exposition of the expressions of the corresponding rates in
terms of correlation functions. We also give a thorough discus-
sion of the consequences of symmetries and detailed-balance
relations on the Hall conductivity, and show in particular that
the conclusion that two-point correlations functions do not
contribute to a Hall effect, arrived at in Ref. [7] for the linear
coupling model, continues to hold in full generality.

Up to fourth order in λ, where λ captures the size of the
coupling between one phonon and one Q operator, and terms
involving p phonon operators are assumed to be of order λp,
the longitudinal scattering rate is

Dnk = D(1)
nk + D(2)

nk + D̆nk, (2)

where D(1) and D(2) are obtained in our perturbative expan-
sion at orders λ2 and λ4, respectively, and D̆nk encompasses
contributions due to other scattering processes as well as
higher-order terms of the expansion.

The skew-scattering rate can be similarly expanded in
terms at different orders in λ. At fourth order, we find the full
set of scattering rates generalizing the results of Ref. [7] to
include the two-phonon couplings and quantum interference
terms:

W
�,[1,1];[1,1],qq′
nkn′k′ ∼ 〈[

Q−q
nk ,Q−q′

n′k′
]{

Qq′
n′k′ ,Qq

nk

}〉
,

W
⊕,[1,1];[1,1],qq′
nkn′k′ ∼ 〈{

Q−q
nk ,Q−q′

n′k′
}{

Qq′
n′k′ ,Qq

nk

}〉
− 〈[Q−q

nk ,Q−q′
n′k′
][

Qq′
n′k′ ,Qq

nk

]〉
,

W
⊕,[2];[2],qq′
nkn′k′ ∼ 〈

Q−q−q′
nkn′k′ Q

q′q
nkn′k′

〉
,

W
⊕,[1,1];[2],qq′
nkn′k′ ∼ 〈

Q−q,−q′
nkn′k′

[
Qq′

n′k′ ,Qq
nk

]〉
,

W
�,[1,1];[2],qq′
nkn′k′ ∼ 〈

Q−q,−q′
nkn′k′

{
Qq′

n′k′ ,Qq
nk

}〉
,

W
�,[2,1];[1],qq′
nkn′k′ ∼ 〈

Q−q
nk

{
Q−q′

n′k′ ,Qqq′
nkn′k′

}〉
,

W
�,[1,1,1];[1],qq′
nkn′k′ ∼ 〈

Q−q
nk

⎧⎩Q−q′
n′k′ ,Qq

nk,Qq′
n′k′

⎫⎭〉. (3)

The full scattering rate is the total of all the contributions,
summed over σ = ±1 = ⊕,�, q, q′ = ±1, and the [·], [·′]
indices which denote the “internal” states of the scattering

process and will be explained in Sec. III C 1. The
⎧⎩·, ·′, ·′′⎫⎭

notation in the last term is explained in Appendix C5. The first
term, W�,[1,1];[1,1],qq′

nkn′k′ is that discussed in Ref. [7].
Most importantly, we have separated the processes into

those which satisfy detailed (σ = 1) and “anti-detailed” (σ =

FIG. 1. Dependence upon υ = vm/vph of the longitudinal con-
ductivity as a function of temperature, in log-log scale, for D̆nk =
γext = 10−6(vph/a). We highlight the change of scaling behaviors for
T > T �

λ [defined in Eq. (100)] at vm/vph = 3, above which the tem-
perature scaling exponent of κL is a continuous function of vm/vph;
see Eq. (5) or Eq. (117).

−1)-balance relations,

W
σ,qq′
nkn′k′ = σe−β(qωnk+q′ωn′k′ )W

σ,−q−q′
nkn′k′ , σ = ± or⊕,�.

(4)
When these rates are used as input to the Boltzmann equa-
tion, we observe that only the anti-detailed-balance terms
can generate a thermal Hall effect. A discussion of these
(anti-)detailed-balance relations can be found in Secs. III C 2,
IV A 2.

After the derivation of these relations and their relation
to the thermal conductivity tensor, and a discussion of the
consequences of symmetry for the latter, we turn to the spe-
cific problem of the antiferromagnet introduced in Ref. [7].
Notably, we significantly extend the treatment there to unveil
the dependence of the thermal conductivity upon the ratio υ =
vm/vph of the magnon and phonon velocities, which is striking
and nontrivial. In particular, κL has the scaling behavior

κL ∼
{

T−1 for υ < 3,
T 3−8(υ−1)−1

for υ > 3,
(5)

exhibiting a threshold effect and a nonuniversal, continuous
variation of the scaling exponent with υ, as shown in Fig. 1.
Furthermore, we find that the Hall resistivity dramatically
decreases as υ increases, due to the reduction of the allowed
phase space for scattering.

The remainder of the paper is organized as follows. We
first (Secs. II and III) provide an expanded derivation of the
skew and longitudinal scattering rates, including those terms
which result from “higher-order” Q-phonon interactions and
are not present in Ref. [7]. We then (Sec. IV) provide a
detailed discussion of the consequences of symmetries and
“detailed-balance”-like relations on the Hall conductivity. The
final section (Sec. V) is an application of the results to an
ordered antiferromagnet, as in Ref. [7], which we expand on
in considerably more detail, both regarding the longitudinal
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and skew-scattering rates. We obtain analytical results for the
longitudinal conductivity κL and Hall resistivity 
H in terms
of multidimensional integrals, whose scaling we analyze and
verify through numerical evaluation. Seven Appendices pro-
vide all details and further generalizations not given in the
main text.

II. SETUP

A. Derivation

The quasiparticle nature of phonons justifies treating their
dynamics within the Boltzmann equation,

∂t Nnk + vnk ·∇rNnk = Cnk[{Nn′k′ }], (6)

where Nnk(ip) = 〈ip|a†
nkank|ip〉 is the number of (n,k)

phonons (k is the phonon momentum and n an extra phonon
label, containing the band index and polarization) in the |ip〉
state, Nnk =

∑
ip

Nnk(ip)pip is the average population, and
vnk = ∇kωnk, with ωnk the dispersion of phonons, is the
group velocity of phonons. C is the “collision integral,” which
captures in particular the scattering of phonons with other
degrees of freedom [Q fields whose coupling to the phonons is
given by H ′ in Eq. (1)]. In turn, using Born’s approximation,
we have the following perturbative expansion of the scattering
matrix:

Ti→f = Tfi = 〈f|H ′|i〉 +
∑
n

〈f|H ′|n〉〈n|H ′|i〉
Ei − En + iη

+ · · · ,
(7)

where the |i, f, n〉 states are product states in the Q (index
s) and phonon (index p) Hilbert space, |g〉 = |gs〉|gp〉 for g =
i, f , n, and Eg is the energy of the unperturbed Hamiltonians
of the Q and phonons in state g. η → 0+ is a small regulariza-
tion parameter. The expression Eq. (7) can be derived from
time-dependent perturbation (scattering) theory, in which η

captures causality and the regularizability of 1/(Ei − En) in
the case of a continuous energy spectrum, appropriate for
scattering (unbounded) states which we are interested in [8].

The rate of transitions from state i to state f is obtained
using Fermi’s golden rule,


i→f = 2π

h̄
|Ti→f|2δ(Ei − Ef). (8)

Note that 
i→f is a transition rate in the full combined
phonon-Q system. This in turn determines the collision inte-
gral through the master equation

Cnk =
∑
ip, fp


̃ip→ fp[Nnk( fp)− Nnk(ip)]pip, (9)

where pip =
∑

is
pi, where pi = 1

Z e−βEi is the probability to
find the system in state i, and Z is the partition function of the
two subsystems. Here


̃ip→ fp =
∑
is fs


i→f pis (10)

is the transition rate between just phonon states, with pis =
1
Zs

e−βEis .

B. Discussion

The above approach is “semiclassical” in two respects.
First, it ultimately treats phonons as quasiparticles within a
Boltzmann equation. This is justified whenever the scattering
rate is small compared to the energy of the particles. Second,
we use the Fermi’s golden rule relation, Eq. (8), to deter-
mine the scattering rates. This approximation leads to slight
differences from an exact calculation of the quantum rates,
but preserves all symmetries and physical processes, and we
expect it to capture all the key features of a fully quantum
approach. We proceed with the T -matrix approach here which
has the advantage of (relative) physical transparency, as every
effect can be directly identified with a scattering process.

One can understand the need for effects beyond the first
Born approximation entirely through the symmetries of the
T matrix. Specifically, since the time reversal (TR) operator
is antiunitary, and requires complex conjugation, one can see
from Eq. (7) that under time reversal, TR : T �→ T † (η →−η

under complex conjugation). Since TR invariance is sufficient
to enforce a vanishing Hall effect, the hermiticity of T is
enough to guarantee a vanishing Hall effect. From Eq. (7), T is
indeed always hermitian within the first Born approximation,
because H ′ itself must be hermitian.

Finally, we note that we are focusing on collisional effects,
i.e., on real transitions induced by interactions, rather than
Berry phase contributions, which arise from entirely virtual
transitions and manifest as modifications to the semiclassical
equations of motion for phonons, e.g., an anomalous velocity.
Formally, real transitions are captured within the collision
integral on the right-hand side of the Boltzmann equation [9],
while Berry phase contributions enter the left-hand side and
in the definition of the currents. For phonons, our focus on
collisions is justified by strong phase space constraints on the
Berry curvature effects which are typical to acoustic bosonic
modes. Specifically, as shown in Ref. [10], the Berry phase
contributions are described by an emergent vector potential
which at small momenta must by symmetry be at least second
order in gradients, making it a formally “irrelevant” perturba-
tion to the phonon Lagrangian, and strongly suppressing its
effects at low temperature [11].

III. FORMAL EXPRESSIONS FOR THE
THERMAL CONDUCTIVITY

A. Formal expressions

To solve Eq. (6), we expand Nnk = Neq
nk + δNnk around the

equilibrium distribution Neq
nk , which solves Boltzmann’s equa-

tion at ∇T = 0, keep terms up to linear order in δNnk in the
collision integral and for convenience separate the diagonal
Dnk and off-diagonal Mnk,n′k′ parts, i.e., we write the collision
integral

Cnk =
∑
n′k′

(−δnn′δkk′Dnk +Mnk,n′k′ )δNn′k′ + O(δN
2
), (11)

where by definition Mnk,nk = 0. The equation Cnk[{Neq
n′k′ }] =

0—i.e., the collision integral is zero in equilibrium—should
be considered the definition of the equilibrium densities {Neq

n′k′ }
of the interacting phonons (see Appendix C3).
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Using Fourier’s law,

j = −κ ·∇T = V−1
∑
nk

Nnkvnkωnk, (12)

and formally inverting the collision integral leads to the
following expressions for the longitudinal κμμ

L , and Hall (anti-

symmetric) κμν
H = (κμν − κνμ)/2 conductivities (along the μ

direction and in the μν plane, respectively):

κ
μν
L/H = h̄2

kBT 2

1

V

∑
nkn′k′

Jμ

nkKL/H
nkn′k′J

ν
n′k′ , (13)

where ν = μ for κL. Assuming
∑

n′k′ Mnkn′k′ 
 Dnk, one can
effectively invert the collision integral to obtain the kernels

KL
nkn′k′ =

eβ h̄ωnk

Dnk
δnn′δk,k′ + eβ h̄(ωnk+ωn′k′ )/2

2DnkDn′k′

[
sinh(β h̄ωnk/2)

sinh(β h̄ωn′k′/2)
Mnk,n′k′ + (nk ↔ n′k′)

]
, (14)

KH
nkn′k′ =

eβ h̄(ωnk+ωn′k′ )/2

2DnkDn′k′

[
sinh(β h̄ωnk/2)

sinh(β h̄ωn′k′/2)
Mnk,n′k′ − (nk ↔ n′k′)

]
. (15)

Here we identified the equilibrium phonon current Jμ

nk =
Neq

nkωnkv
μ

nk, and made the “standard” approximation ∇rNnk ≈
∇rNeq

nk , and looked for a stationary solution (∂t N = 0) to
Boltzmann’s equation. While the sign of κH depends on the
details of the system (see later), the second law of thermody-
namics imposes κL > 0. Considering Eq. (14), we therefore
expect Dnk > 0.

Clearly, only contributions to KL/H
nk,n′k′ which are symmetric

(respectively, antisymmetric) in exchanging (nk ↔ n′k′) con-
tribute to κL (respectively, κH ). The special case of the term
diagonal in nk, n′k′, being symmetric, does not contribute to
the Hall conductivity. Below we will isolate the correlation
functions of the Q operators which give antisymmetric (in
nk ↔ n′k′) contributions to sinh(β h̄ωnk/2)

sinh(β h̄ωn′k′ /2) Mnk,n′k′ , and hence
contribute to κH . These correspond to scattering processes
which violate detailed balance.

B. Model

To describe the interaction between the phonons and an-
other degree of freedom, we introduce general coupling terms
between phonon annihilation (creation) operators a(†)

nk and

general, for now unspecified, fields Q
{q j }
{n j ,k j} which are op-

erators acting in their own Hilbert space. In what follows
we only consider the first two terms of the expansion with
respect to phonon operators [see also Eq. (1)], i.e., we write
the interaction Hamiltonian as H ′ = H ′

[1] + H ′
[2], where

H ′
[1] =

∑
nk

∑
q=±

aq
nkQq

nk,

(16)

H ′
[2] =

1√
Nuc

∑
nk �=n′k′

∑
q,q′=±

aq
nkaq′

n′k′Q
qq′
nkn′k′ ,

and in the following, we consider Eq. (16) as a perturbative ex-
pansion with respect to a small parameter λ, such that formally
Qnk ∼ λ,Qqq′

nkn′k′ ∼ λ2, etc. Note we consider generalizations
of this model in Appendix D.

In the above expression we used a+nk ≡ a†
nk and a−nk ≡ ank.

The hermiticity of H ′ imposes Q+
{niki} ≡ Q†

{niki} and Q−
{niki} ≡

Q{niki}, and for many-phonon terms, we have Q−q1,...,−qM

{n j k j} =
(Qq1...qM

{n j k j} )†. The single-phonon interaction terms, which may

physically be seen as single-phonon scattering off the Q de-
grees of freedom, corresponds in particular to a coupling of
the Q operators to the strain tensor Eαβ (r),

Eαβ (r) = ih̄1/2

√
Nuc

∑
kn

eik·r
(
kαε

β

kn + kβεαkn

)
√

2Mucωkn
(akn + a†

−kn),

(17)
where Muc is the unit cell mass and εnk is the polarization
vector of the |nk〉 phonon. The two-phonon terms capture
quadratic coupling of the lattice displacements to the elec-
trons/spins, as is often considered for example in treatments
of Raman scattering [12,13]. A priori, the quadratic terms are
much smaller than the linear ones, but the former may be
important if they give rise to distinct effects or contribute at
a lower order in perturbation theory than the linear ones.

C. Scattering rates

1. T-matrix elements

The transition matrix elements are Tfi =
∑

l T [l1,...]
fi (the

li represent which H[li] appear successively in T , so that the
number of li appearing in T [l1,...]

fi is the order of the Born
approximation used for that term), where

T [1]
i→f =

∑
nkq

√
Ni

nk +
1+ q

2
〈 fs|Qq

nk|is〉I(ip
q·nk−→ fp), (18)

T [2]
i→f =

1√
Nuc

∑
nkq,n′k′q′

√
Ni

nk +
1+ q

2

√
Ni

n′k′ +
1+ q′

2

× 〈 fs

∣∣Qqq′
nkn′k′

∣∣is〉I(ip
q·nk−→

q′ ·n′k′
fp
)
, (19)

T [1,1]
i→f =

∑
nkq,n′k′q′

√
Ni

nk +
1+ q

2

√
N f

n′k′ +
1− q′

2

×
∑
ms

〈 fs|Qq′
n′k′ |ms〉〈ms|Qq

nk|is〉
Eis − Ems − qωnk + iη

I
(
ip

q·nk−→
q′ ·n′k′

fp
)
,

(20)

and T [1,2]
i→f and T [1,1,1]

i→f are given in Appendices C 4 [Eq. (C50)]

and C5 [Eq. (C54)], respectively. Here, I(ip
q·nk−→ fp) [respec-

tively, I(ip
q·nk−→

q′ ·n′k′
fp)] is a large product of δ functions which
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enforce N f
n′′k′′ = Ni

n′′k′′ ∀n′′k′′ �= nk [respectively, ∀n′′k′′ �=
(nk, n′k′)], and N f

nk = Ni
nk + q (respectively, N f

nk = Ni
nk +

q,N f
n′k′ = Ni

n′k′ + q′). Note that the cases where nk = n′k′
require a formal correction. However, at any given order in the
λ expansion, such terms are smaller than all others by a factor
1/Nuc, where Nuc is the number of unit cells, and therefore
vanish in the thermodynamic limit. In what follows we thus
use

∑
nk,n′k′ and

∑
nk �=n′k′ exchangeably, unless we specify

otherwise.
The scattering rate as given by Eq. (8), involves the

squares of the elements of the total transition matrix (see
Appendices C 4 and C 5 for computational details). Its full
expression to perturbative order λ4 is


i→f = 
SC
i→f + 
Q1

i→f + 
Q2
i→f, (21)

where[

SC
i→f; 
Q2

i→f; 
Q1
i→f

]
= 2π

h̄
δ(Ei − Ef)

×

⎡⎢⎢⎣
∣∣T [1]

i→f

∣∣2 + ∣∣T [1,1]
i→f

∣∣2 + ∣∣T [2]
i→f

∣∣2;

2Re
{(

T [1,1]
i→f

)∗
T [2]
i→f

}
;

2Re
{(

T [1,2]
i→f

)∗
T [1]
i→f +

(
T [1,1,1]
i→f

)∗
T [1]
i→f

}
⎤⎥⎥⎦. (22)

This decomposition into three terms is discussed in
Sec. III D 3.

2. Collision matrix elements

Following Eq. (9), the scattering rates 
i→f give access to
the collision integral, i.e., to Mnk,n′k′ and Dnk. We decompose
the latter as Dnk = D(1)

nk + D(2)
nk + D̆nk, where D(1) and D(2)

are obtained in our perturbative expansion at orders λ2 and
λ4, respectively, and D̆nk encompasses contributions due to
other scattering processes as well as higher-order terms of
the expansion. In the following, we also use the “[li]; [l ′j]”
superscripts to denote a term obtained from the product of

T [li]
i→f and T

[l ′j ]
i→f within |Ti→f|2. For instance, at order λ2, we

have

D(1)
nk = D[1];[1]

nk . (23)

Details of the derivation are given in Sec. III D 1 and Ap-
pendix C2. At order λ4, the diagonal and off-diagonal

contributions to the collision integral take the forms

D(2)
nk = − 1

Nuc

∑
n′k′

∑
qq′

q

(
Neq

n′k′ +
q′ + 1

2

)[
W

qq′
nkn′k′

]
, (24)

and

Mnkn′k′ = 1

Nuc

∑
q,q′=±

q

(
Neq

nk +
q + 1

2

)[
W

qq′
nkn′k′

]
, (25)

respectively, where W
qq′
nk,n′k′ is an off-diagonal scattering rate

which involves two different phonon states |nk〉 and |n′k′〉.
More precisely, W+,+ (respectively, W−,−) corresponds to
scattering processes where two phonons are emitted (respec-
tively, absorbed), and W+,−,W−,+ to processes where one
phonon is emitted and one is absorbed. Dnk is the diagonal
scattering rate, i.e., it is associated with variations in δNnk
only.

We will now decompose the W
qq′
nk,n′k′ scattering rates into

W
qq′
nk,n′k′ =W

⊕,qq′
nkn′k′ +W

�,qq′
nkn′k′ , (26)

where W
⊕/�,qq′
nk,n′k′ satisfy detailed (σ = 1) or “anti-detailed”

(σ = −1)-balance equations

W
σ,qq′
nkn′k′ = σe−β(qωnk+q′ωn′k′ )W

σ,−q−q′
nkn′k′ , σ = ± or⊕,�.

(27)
Physically, Eq. (27) expresses “microscopic” thermody-
namic equilibrium between the process which takes {Nnk →
Nnk + q,Nn′k′ → Nn′k′ + q′} to the “conjugate” process taking
{Nnk → Nnk − q,Nn′k′ → Nn′k′ − q′}, with q, q′ = ±1, leav-
ing Nn′′k′′ unchanged for n′′k′′ /∈ {nk, n′k′}. Note that this is
different from time-reversal symmetry which provides a rela-
tion between the processes acting on {|nl ,kl〉} phonons to the
same processes acting on the {|nl ,−kl〉} phonons.

Moreover, since, by construction, the two-phonon scatter-
ing rates satisfy

W
σ,qq′
nkn′k′ =W

σ,q′q
n′k′nk, (28)

the following relations also hold:

W
σ,+−
n′k′nk = σ eβ(ωnk−ω′

n′k )W
σ,+−
nkn′k′ . (29)

Together, these imply that there are only four independent
such scattering rates between the |n,k〉 and |n′,k′〉 phonons,
namely, Wσ,++

nk,n′k′ and W
σ,+−
nk,n′k′ , with σ = ⊕,�.

As discussed at length, the first Born approximation alone
does not lead to a nonzero thermal Hall effect, neither do
those scattering rates which satisfy detailed balance as the
latter imposes thermal equilibrium between “left” and “right”
scattering. We find the kernels KL/H defined in Eqs. (14) and
(15) in terms of the W scattering rates:

KL
nkn′k′ =

eβ h̄ωnk

Dnk

(
δn,n′δk,k′ + eβ h̄ωn′k′

2NucDn′k′

∑
q=±

e
q−1

2 β h̄ωn′k′
{
W

�,+,q
nk,n′k′

[
q coth

(
β h̄ωnk

2

)
+ coth

(
β h̄ωn′k′

2

)]
− 2W⊕,+,q

nk,n′k′

})
, (30)

KH
nkn′k′ =

eβ h̄ωnk eβ h̄ωn′k′

2NucDnkDn′k′

∑
q=±

W
�,+,q
nk,n′k′ e

q−1
2 β h̄ωn′k′

[
coth

(
β h̄ωn′k′

2

)
− q coth

(
β h̄ωnk

2

)]
. (31)

Incorporating the expression for D in the denominators of KL,H provides an expansion up to O(λ4) of the latter. We recover,
as mentioned before, that the terms in W⊕ do not contribute to KH (they satisfy detailed balance). The “anti-detailed-balance”
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relations satisfied by the W� terms do not however prohibit their contribution to KL. See Sec. IV B for a discussion. Inserting
Eqs. (30) and (31) into Eq. (13), and after some algebra, one obtains the results for κL,H, respectively:

κ
μν
L = h̄2

kBT 2

1

V

(∑
nk

ω2
nkv

μ

nkv
ν
nk

4Dnk sinh2(β h̄ωnk/2)
+
∑

nkn′k′
Jμ

nk

eβωnk/2

Dnk

{
1

Nuc

∑
q=±

eβqωn′k′ /2eβωnk/2

× [W�,+q
nkn′k′coth(βωn′k′/2)− qW⊕,+q

nkn′k′
]}eβωn′k′ /2

Dn′k′
Jν

n′k′

)
, (32)

where the first term is the leading-order contribution and with Jμ

nk = Neq
nkωnkv

μ

nk, and

κ
μν
H = h̄2

kBT 2

1

V

∑
nkn′k′

Jμ

nk

eβ h̄ωnk/2

Dnk

[
1

Nuc

∑
q=±

(eβ h̄ωnk − eqβ h̄ωn′k′ )W�,+,q
nk,n′k′

4 sinh(β h̄ωnk/2) sinh(β h̄ωn′k′/2)

]
eβ h̄ωn′k′ /2

Dn′k′
Jν

n′k′ . (33)

D. The collision integral as correlation functions

1. Terms at O(λ2 )

The diagonal scattering rate D(1)
nk , obtained by inserting

T [1]
i→f from Eq. (18) into Eqs. (8)–(10), may now be cast into

the form of a correlation function of Q operators. To do so, we
first enforce the energy conservation δ(Ef − Ei) by writing
the latter as a time integral, i.e., use

´ +∞
−∞ dteiωt = 2πδ(ω);

we then identify A(t ) = e+iHt Ae−iHt and use the identity 1 =∑
fs
| fs〉〈 fs|. Taking the Qs in the initial state to be in thermal

equilibrium pis = Z−1
s e−βEis , summing over |is〉, identifying

〈A〉β = Z−1Tr(e−βH A), summing over final phononic states
fp and taking the average over initial phononic states ip, we
obtain the |T [1]

i→f|2 contribution of 
SC,

D(1)
nk = − 1

h̄2

ˆ
dte−iωnkt 〈[Qnk(t ),Q†

nk(0)]〉β. (34)

We now apply the same method to higher orders of the pertur-
bative expansion.

2. Terms at O(λ4)

We use the following time integral representation for the
denominators appearing at second and higher Born orders
[using a regularized definition of the sign function, i.e.,
lim
η→0

sign(t )e−η|t | → sign(t )],

1

x ± iη
= PP

1

x
∓ iπδ(x) = 1

2i

ˆ +∞

−∞
dt1eit1x[sign(t1)± 1].

(35)

Using Eqs. (19), (20), and (22), we find the explicit ex-
pressions for the other semiclassical (
SC) scattering rates as
correlation functions of the Q operators,

W
⊕,[2];[2],qq′
nkn′k′ = 2

h̄4

 
t

〈
Q−q,−q′

nkn′k′ (−t )Qq,q′
nkn′k′ (0)

〉
, (36)

W
�,[1,1];[1,1],qq′
nkn′k′

= 2

h̄4 NucRe

 
t,t1,t2

〈
�Q−q

nk (−t − t2),

×Q−q′
n′k′ (−t + t2)�

{
Qq′

n′k′ (−t1),Qq
nk(t1)

}〉
, (37)

W
⊕,[1,1];[1,1],qq′
nkn′k′ = 1

h̄4 Nuc

 
t,t1,t2

〈{·, ·}{·, ·} − �·, ·��·, ·�〉, (38)

where we use the shorthand notation

�A(ta),B(tb)� = sign(tb − ta)[A(ta),B(tb)], (39)

and
ffl

t,{t j}, j = 1, .., l , denotes the set of 1+ l Fourier

transforms evaluated once at �
n′k′q′
nkq = qωnk + q′ωn′k′

and l times at �
n′k′q′
nkq = qωnk − q′ωn′k′ , i.e.,

ffl
t,{t j} =´

dtdt1..dtle
i�n′k′q′

nkq t ei�n′k′q′
nkq (t1+..+tl ). The symbols · must be

replaced by the same set of operators as the expression
from the above. The commutators and anticommutators
ultimately capture antisymmetrization and symmetrization
over the nkq ↔ n′k′q′ indices. We provide expressions
for W

�,[1,1];[2],qq′
nkn′k′ , W

⊕,[1,1];[2],qq′
nkn′k′ (from 
Q2), W

[1,2];[1],qq′
nkn′k′

and W
[1,1,1];[1],qq′
nkn′k′ (from 
Q1) in Appendices C 4 d and C5,

Eqs. (C48), (C49), (C51), and (C56), respectively.

3. Scattering channels and conserving approximation

The above terms capture all contributions to the collision
integral arising from the Born expansion of the transition
amplitude, up to perturbative order λ4. This gives, corre-
spondingly, physical processes in the collision integral which
contribute up to O(λ4).

In Eq. (21), while 
SC
i→f and 
Q2

i→f are “two-phonon” terms,
the contribution from 
Q1

i→f is a “one-phonon” term, i.e., one
where the initial i and final f states differ by only one phonon
|nk〉. Physically, this contributes to processes which create or
annihilate a single phonon, in contrast with the O(λ4) pro-
cesses described so far, which create/annihilate two phonons
with different quantum numbers. Because the single phonon
process is physically distinct from the two-phonon ones, we
expect that it is independent from the latter in the sense that
the set of all the O(λ4) single-phonon processes satisfies in-
dependently all physical constraints such as symmetries and
conservation laws. Hence, omitting these contributions is a
“conserving approximation” in the traditional sense [14], and
we will proceed with this omission for the most part in the
following. We however include formal expressions for these
terms in the Appendices.

The remaining contributions in Eq. (21) are “two-phonon”
terms, i.e., terms in which the initial i and final f states
differ by two phonons |nk〉, |n′k′〉. The two-phonon, O(λ4),
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contributions to the W scattering rates thus read

W
�,qq′
nk,n′k′ = W

�,[1,1];[2],qq′
nk,n′k′ +W

�,[1,1];[1,1],qq′
nk,n′k′ ,

W
⊕,qq′
nk,n′k′ = W

⊕,[2];[2],qq′
nk,n′k′ +W

⊕,[1,1];[2],qq′
nk,n′k′ +W

⊕,[1,1];[1,1],qq′
nk,n′k′ .

(40)

Another physical distinction between the contributions
in Eq. (21) can be made according to the “quantum” or
semiclassical, nature of the terms. The one-phonon 
Q1

i→f

and two-phonon 
Q2
i→f terms in Eq. (21) are “quantum” in

the sense that the physical process corresponding to each
contribution therein is an interference term between distinct
scattering channels. In particular, in a “quantum” term, the
number of scattering events in the two channels are dif-
ferent. On the contrary, each contribution in 
SC

i→f is the
probability amplitude of one given scattering channel, corre-
sponding physically to the probability amplitude of a given
scattering process, and in this respect is truly semiclassical.
As a semiclassical approximation, we will neglect “quan-
tum” contributions in the following; formal expressions for
these terms are nonetheless included in the Appendices.
The only “semiclassical” contributions, up to O(λ4), to the
collision integral are from the scattering rates shown in
Eq. (36).

Upon applying our results to the case of a staggered
antiferromagnet in Sec. V, we focus on the lowest-order
contributions to KL

nk,n′k′ and KH
nk,n′k′ , which come from D(1)

nk

and W
�,qq′
nk,n′k′ , respectively. Therefore, in Sec. V, we con-

sider only the lowest-order semiclassical contributions Dnk ≈
D(1)

nk + D̆nk and W
�,qq′
nk,n′k′ ≈W

�,[1,1];[1,1],qq′
nk,n′k′ .

4. Physical interpretation

To leading order, the longitudinal conductivity is controlled
by the diagonal scattering rate, whose main contribution oc-
curs at order λ2. The latter is given as the first term in Eq. (2),
and is shown explicitly in Eq. (34). It is related to the Fourier
transform of the commutator of two Qnk operators at unequal
times. The commutator structure identifies the phonon scat-
tering rate D(1)

nk with the spectral function of the Qnk field
at energy ωnk, i.e., it captures the proportion of the energy
density contained in the Qnk field located at ωnk, as expected
from (lowest-order) linear response [15,16].

As mentioned above, the first Born order transition
matrices are hermitian. At second Born’s order, the ad-
vanced/retarded Green’s function, 1/(Ei/f − Em ± iη), ap-
pearing in Ti �→f, splits into on-shell and off-shell contri-
butions, so that the scattering rate ∝ |Ti �→f|2 then involves
the product of two on-shell or two-offshell contributions, as
well as the products of one on-shell and one off-shell one.
Because of complex conjugation of one term upon taking
the square modulus of the T matrix, the scattering rates
which involve either two on-shell or two off-shell contri-
butions are blind to the sign of ±iη, i.e., to the advanced
or retarded nature of the process, and enforce a detailed-
balance relation, Eq. (27) with σ = ⊕. Therefore, the only
scattering rates which can contribute to the Hall conductivity
are those involving one on-shell (imaginary part) and one
off-shell (real part) scattering event, which translates here

into the product of a commutator and an anticommutator,
Eq. (37).

IV. RELATIONS AND SYMMETRIES

In this section, we explore in more detail some physical
relations verified by the scattering rates defined above, and
their possible consequences on the longitudinal and Hall con-
ductivities.

A. Time-reversal symmetry: Reversal of the momenta

We investigate the implications of time-reversal (TR) in-
variance on our results. In particular, we check explicitly that
the Hall conductivity vanishes in a TR-symmetric system. It
is important to note that, in a time-reversal invariant system,
the scattering rates are a priori not time-reversal invariant
themselves.

We denote with uQ and |un〉 the time-reversal of operator
Q and of state |n〉, respectively. Then, because of the antiu-
nitarity of the time-reversal operator, for any states n, m and
any operator Q, we have 〈un|Q†|um〉 = 〈m| uQ|n〉. Moreover, it is
possible to choose a polarization index n invariant under TR,
whence Ňaq

nk = aq
n,−k.

Let us now consider what happens in a time-reversal-
invariant system. In that case, the Hamiltonian H ′

[1] =∑
nkq Qq

nkaq
nk must be TR-invariant, so that ŊQq

nk = Qq
n,−k. Sim-

ilarly, TR-invariance of H ′
[2] [defined in Eq. (16)] entails

ŔQqq′
nk,n′k′ = Qqq′

n−k,n′−k′ .

1. Consequences for the scattering rates

Following the same steps as those sketched in Sec. III D 1,
and using the fact that E

um = Em for any state m of a
TR-symmetric system, we can show explicitly that, in a
time-reversal-invariant system, the following relations for the
scattering rates exist:

D(1)
n,k = D(1)

n,−k, (41)

W
σ,qq′
nk,n′k′ = σ W

σ,qq′
n−k,n′−k′ . (42)

The σ sign in the second relation can be understood as arising
from two facts: (1) schematically, Wσ ∼ 1

Ef−Em+iη
1

Ei−Em−iη +
σ H.c.—which is reflected in the fact that W⊕ (respectively,
W�) expressed as an integral, Eqs. (36)–(38), contains an
even (respectively, odd) number of sign functions—and (2)
an effect of time-reversal on the T matrix is to exchange
denominators 1

Ef−Em+iη → 1
E

uf−E
um−iη (see Sec. III D 4 for an

interpretation of the +iη regularization).

2. Relation to detailed balance

The decomposition of the scattering rate W
qq′
nk,n′k′ =∑

σ W
σ,qq′
nk,n′k′ into odd and even terms under the “conjugation”

(in the sense of detailed balance, i.e., thermodynamic equilib-
rium) of the associated scattering processes, is also that of its
decomposition into terms, odd and even under the inversion
of momentum, in the presence of time-reversal symmetry.

Indeed, if a scattering process S = (
q·nk−→

q′ ·n′k′
) transfers an energy
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TABLE I. Relations which hold true in the presence of time-
reversal symmetry. The phonon operator relation Ňaq

nk = aq
n,−k holds

true even when no time-reversal symmetry is present. See text for
definitions and justifications.

Q operators ŊQq
nk = Qq

n,−k

ŔQqq′
nk,n′k′ = Qqq′

n−k,n′−k′

Scattering rates D(1)
n,k = D(1)

n,−k

W
σ,qq′
nk,n′k′ = σ W

σ,qq′
n−k,n′−k′

Conjugate process Wσ (mr[S])
Wσ (S) = e−δE (S)

s→p Wσ (pc[S])
Wσ (S) = σ

Kernels KH
nk,n′k′ = −KH

n−k,n′−k′

Conductivities κH = 0

δE (S)
s→p = qωnk + q′ωn′k′ to the phonon system (anti-)detailed

balance with the “conjugate process” pc[S] = (
−q·nk−→
−q′ ·n′k′

) reads

Wσ (pc[S]) = σeδE (S)
s→pWσ (S). Meanwhile, in the presence of

time-reversal symmetry, the momentum-reversal symmetry
reads Wσ (mr[S]) = σWσ (S), for the “momentum-reversed”

process mr[S] = (
q·n−k−→

q′·n′−k′
). In other words, in a time-reversal

invariant system, the scattering rate associated with the pro-
cess “conjugate” of a given process S coincides (up to a
Boltzmann weight) with that of its momentum-reversed one:

Wσ (mr[S])

Wσ (S)
= e−δE (S)

s→p
Wσ (pc[S])

Wσ (S)
= σ. (43)

Hence, while σ was defined as signature of the behavior of the
scattering rates under “process conjugation,” it is also that of
momentum reversal in a time-reversal invariant system [17].
These results are summarized in Table I.

3. Consequences for the kernels

How is this reflected in the kernels KL,KH ? Because the
relation vnk = ∇kωnk = −vn,−k holds, only that component
of KL/H which is even upon reversal of the momenta, k( ′ ) ↔
−k( ′ ), has a nonvanishing contribution to the sum Eq. (13). A
first consequence of this is that, in a TR-invariant system, the
identity

KH
nk,n′k′ = −KH

n−k,n′−k′ (44)

entails κH = 0—as per Onsager’s reciprocity relations stating
that κH is TR-odd. Note that KL in Eq. (30) involves both
W� and W⊕. Therefore, there is no analog to Eq. (44) for
KL. However, in a TR-invariant system, the W� term in KL

does not contribute to κL—this is consistent with the Onsager-
Casimir relations which state that κL is TR-even.

This indeed reflects the previous discussion as follows:
When time reversal is preserved, TR-even κL gets contribu-
tions solely from “detailed-balance-even” and TR-even W⊕.
On the other hand, TR-odd κH gets contributions solely from
“detailed-balance-odd” and TR-odd W�. Since the system is
actually TR-even, κH vanishes.

B. Point-group symmetries

Here we provide some sufficient (but nonnecessary) condi-
tions on KH

nkn′k′ under which the Hall conductivity vanishes.

1. Curie relations

From Fourier’s law jμ = −κμν∇νT , the Curie and On-
sager relations provide general constraints on the κμν

coefficients, and in turn on its Hall component κ
μν
H . In Ta-

ble II, we look at the D4h = D4 × Z2 point group—the largest
tetragonal point group—with the associated axes aligned with
the orthogonal basis (μ, ν, ρ) (μν is the basal plane and ρ the
transverse direction). We can see that if the system is invariant
under any one of the transformations g ∈ D4h which are odd
under the A2g representation (i.e., C′

2, C′′
2 , σv , σd ), the Hall

conductivity must vanish.

2. Symmetry relations on KH

We now turn to relations specific to the scattering situation,
i.e., we analyze under which conditions on KH

nkn′k′ it befalls
that κ

μν
H = 0. We start with the expression of κ

μν
H as a mo-

mentum integral, Eq. (13), i.e., κ
μν
H ∝∑

nkn′k′ Jμ

nkJν
n′k′K

H
nkn′k′

and recall Jμ

nk = Neq
nkωnk∂kμωnk.

If the phonon system is invariant under a unitary transfor-
mation g, then ωnk is also invariant under this transformation.
In turn only μ in Jμ

nk transforms nontrivially under g. There-
fore:

(i) If the phonon system is invariant under an opera-
tion g ∈ D4h which leaves the μ, ν axes invariant, i.e., g =
C2,C′

2, inv, σh, σv , and if one of the two following conditions,
(a) under g the μν product is even (i.e., g = C2, inv, σh) and
KH

nkn′k′ is odd, (b) under g the μν product is odd (i.e., g =
C′

2, σv) and KH
nkn′k′ is even, is satisfied, then it follows that

κ
μν
H = 0.

(ii) Besides, recalling that by construction KH
nkn′k′ =−KH

n′k′nk, if the system is invariant under an operation g ∈ D4h

which exchanges the μ, ν axes, i.e., g = C4,C′′
2 , S4, σd , and

if one of the two following conditions, (c) under g the μν

product is even (i.e., g = C′′
2 , σd ) and KH

nkn′k′ is even, (d) under
g the μν product is odd (i.e., g = C4, S4) and KH

nkn′k′ is odd, is
satisfied, then it follows that κμν

H = 0.
In terms of the behavior of KH

nkn′k′ , this analysis reduces
to: if g ∈ D4h is a symmetry of the phonon system, and if g :
KH

nkn′k′ �→ −χA2g (g)KH
nkn′k′ , where χA2g (g) is the character of g

in the A2g representation of the D4h point group, then κ
μν
H = 0.

We emphasize that this analysis holds if the transformation g
is a symmetry of the phonon system, and whether or not g is
a symmetry of the whole system. For example, we will show
explicitly in Sec. V C 4 that there are cases where, under TR
or σd the system is not invariant, but the kernel KH

nk,n′k′ and the
phonon system are, and so κH = 0.

Finally, note that the above analysis goes beyond the gen-
eral predictions from Onsager, which tell us that κH vanishes
in the presence of some symmetries of the whole system,
namely, C′

2, C′′
2 , σv , or σd (as well as time-reversal discussed

in the previous subsection). Here, not only do we establish
relations for the other symmetries in D4h (as symmetries of
the phonon subsystem only), we also show in which way κH

vanishes, by inspecting the behavior of the kernels KH
nk,n′k′

under those symmetry transformations. In turn, this may for
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TABLE II. Elements of the D4h point group aligned along the (μ, ν, ρ ) basis (with μν the basal plane), their characters in the A2g irrep (also
labeled 
+

2 ), and transformations of μ, ν, ρ, κμν, κ
μν
H . The lines for κμν and κ

μν
H hold true when the system is invariant under the corresponding

D4h operation (aligned with the μνρ basis). The last line is the “category” (cat) to which the operation belongs, as defined in Sec. IV B 2. Here
Id is the identity; C4 is the π/2 rotation around the ρ axis; C2, C′

2, and C′′
2 are π rotations around the ρ axis, μ or ν axes, and in-plane directions

bisecting the μ, ν axes, respectively; inv is inversion, S4 are π/2 rotations around the ρ axis followed by a reflection through the basal μν

plane; σh, σv , and σd are reflections through the μν plane (σh), through a plane containing μ or ν and the ρ direction (σv), and through a plane
containing the ρ direction and one bissecting the μ, ν directions (σd ), respectively.

D4h Id C4 C2 C′
2 C′′

2 inv S4 σh σv σd

A2g 1 1 1 −1 −1 1 1 1 −1 −1

μ μ ν −μ ±μ ±ν −μ ν μ ±μ ±ν

ν ν −μ −ν ∓ν ±μ −ν −μ ν ∓ν ±μ

ρ ρ ρ ρ −ρ −ρ −ρ −ρ −ρ ρ ρ

κμν κμν −κνμ κμν −κμν κνμ κμν −κνμ κμν −κμν κνμ

κ
μν
H κ

μν
H κ

μν
H κ

μν
H −κ

μν
H −κ

μν
H κ

μν
H κ

μν
H κ

μν
H −κ

μν
H −κ

μν
H

cat (a) (d) (a) (b) (c) (a) (d) (a) (b) (c)

example allow to gather information about the system—about
KH

nk,n′k′—from the (non)cancellation of κH .

V. APPLICATION TO AN ORDERED MAGNET

We now turn to an application of these general results.
There, we keep only the lowest-order terms in the expressions
derived above, as described in Sec. III D 4, and we consider
an interaction Hamiltonian density which contains single-
phonon interactions with a field Q [this is the first term in
Eq. (1)] of the form

H ′ =
∑
nk

(a†
nkQ†

nk + ankQnk ), (45)

as obtained from the simplest case of linear coupling to the
strain tensor.

We consider an ordered magnetic system, which we take
to be a spin-orbit coupled Néel antiferromagnet with tetrago-
nal symmetry. For concreteness, we treat the magnetism as
purely two-dimensional, i.e., the full spin+phonon system
is described by a stack of two-dimensional antiferromagnets
embedded into the three-dimension solid, so that in particular,
we take, when going from the lattice to the continuum limit,∑

r

→ 1

a2

∑
z

ˆ
d2x,

∑
k

→ a2

(2π )2

∑
kz

ˆ
d2k, (46)

where a is the in-plane lattice spacing.

A. Magnon dynamics

1. Low-energy field-theoretical description

We consider a Néel antiferromagnet with a two-site mag-
netic unit cell, more precisely a bipartite lattice of spins such
that the classical ground state is ordered in an antiferromag-
netic configuration, with a local moment μ0 oriented in the
direction n, i.e., n is the Néel vector which has unit length
in the ordered state at zero field. Within standard spin-wave
theory, μ0 = S with S the spin value. For concreteness, we
will choose the ordering axis at zero field to be aligned along
the ûx axis (the set (ûx, ûy, ûz ) is an orthonormal cartesian

basis)—the results of this subsection hold regardless of this
choice.

A general low-energy spin configuration is described by
two continuum fields: the aforementioned Néel vector n(r)
and a uniform magnetization density m(r), such that

Sr = (−1)rμ0n(r)+ a2m(r), (47)

where (−1)r is a sign which alternates between neighboring
sites (recall we are considering a Néel antiferromagnet), and
both continuum fields are assumed to be slowly-varying rel-
ative to the lattice spacing. Here a is the 2D lattice spacing.
We will assume the nonlinear sigma model constraint that the
spin length is fixed to μ0, which implies that

|n|2 + a4

μ2
0

|m|2 = 1, m · n = 0. (48)

The spin wave expansion consists of expanding these fields
around the zero field ordered state, i.e., nord = ûx,mord = 0.
To linear order around this state, we take n = ûx + n and
m = m, where nx = mx = 0, leaving the remaining degrees
of freedom ny, nz,my,mz. In terms of the spins, this gives

Sr = (−1)rμ0ûx +
∑
a=y,z

[(−1)rμ0na(r)+ a2ma(r)]ûa. (49)

Because the local moment along the ûx axis is nonzero,
the low-energy fields satisfy the commutation relations
[my(r), nz(r′)] = −[mz(r), ny(r′)] = −iδ(r − r′). The low-
energy continuum Hamiltonian density for these fields is

HNLS = ρ

2
(|∇ny|2 + |∇nz|2)+ 1

2χ

(
m2

y + m2
z

)
+

∑
a,b=y,z


ab

2
nanb, (50)

where ρ is the spin stiffness constant, χ is the spin suscepti-
bility, ∇ = (∂x, ∂y) denotes the in-plane gradient, and the 
ab

are anisotropy coefficients which open a small spin wave gap
(see Appendix F3). For an approximately Heisenberg system
with isotropic exchange constant J , we have within spin wave
theory that χ−1 ≈ 4Ja2, ρ ≈ 2Jμ2

0, while 
ab are determined
by exchange anisotropies. The choice to normalize m as a
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density while keeping n dimensionless ensures that my,z fields
are just the canonical momenta conjugate to the nz,y fields, and
hence Eq. (50) is just a Hamiltonian density of two free scalar
boson fields.

The above description is appropriate to describe the or-
dered phase of the antiferromagnet, for any value of the spin,
provided temperature is low compared to the Néel temperature
and any applied magnetic fields are small compared to the
saturation field. These conditions are well-satisfied in practice
in experiments on many antiferromagnets. Specifically we
will be interested in the case with an applied magnetic field
perpendicular to the axis of the Néel vector [e.g., along z or
y, given the choice in Eq. (49)]. In general, the field induces
a nonzero uniform magnetization along its direction, e.g., for
a z-axis field 〈mz〉 �= 0. Such a “spin flop” configuration is
favorable for an antiferromagnet in a field.

2. Symmetry considerations

Two symmetries clarify the calculations and provide
physical insight. The first is the macroscopic time-reversal
symmetry of the zero field state, which is what makes it
an anti-ferromagnet. Specifically, the system in zero field is
invariant under the combination of time-reversal symmetry
TR and a translation T . Under this operation, we see that the
continuum fields transform according to

T = TR × T : m →−m, n → n. (51)

The presence of a staggered magnetization (with any orien-
tation) does not break this symmetry, but a uniform mag-
netization does. Note that the effective quadratic low-energy
Hamiltonian, Eq. (50), is invariant under this symmetry. This
is true even at nonzero fields, because the low-energy Hamil-
tonian is quadratic. Thus, effects of time-reversal symmetry
breaking will become evident in terms beyond this form,
notably in anharmonic corrections, and in the spin-lattice cou-
pling itself. Specifically, we see that time-reversal symmetry
will be effectively broken only by terms involving an odd
number of powers of the ma fields.

The second important symmetry is one which may be
preserved not only by the underlying exchange Hamiltonian
and crystal structure, but also by the applied field and the
spontaneous ordered moments. In particular, the latter breaks
the original translational symmetry of the square lattice by a
single lattice spacing. However, a symmetry may be retained
under such a simultaneous translation composed with a C2

spin rotation around the field axis. In the presence of spin-orbit
coupling, generically the spin rotation must be accompanied
by a spatial rotation, and the full combined operation is in
fact nothing but a C2 rotation about an axis passing through
the mid-point of a bond of the square lattice. This of course
requires the C2 rotation in question to be part of the lattice
point group. In our problem, this is true when the field is along
z or y (but not for a general orientation in the yz plane).

This odd symmetry is important for simplifying the
magnon interactions. In particular, if the field axis is along z,
then we see that mz and ny are both even under this operation,
while my and nz are odd under it (and vice versa if the field
is along y). Note that the fields within a canonically conjugate
pair transform the same way under this symmetry. We take

advantage of these facts in the following. In particular, only

0 = 
yy and 
1 = 
zz do not vanish a priori, which ensures
that the two valleys (� = 0, 1) are exactly decoupled.

3. External magnetic field

At the lowest order, an applied external magnetic field h
couples solely to the m field; this is already taken into account
in Eq. (50) where the m fields can acquire a (static) nonzero
expectation value due to the spin alignment with the field.

Meanwhile, at higher orders the magnetic field also couples
to the n field; the main contribution comes from the square,
isotropic coupling (nh)2. Due to the C2 symmetry around the
field axis (y or z), and since first-order terms of the form
hanb are forbidden by translational symmetry, this results in
an additional term,

Hfield = χ

2

∑
a=y,z

h2
an2

a. (52)

Note this form is valid only when the field is along the y or z
axis, not at other angles in the y-z plane (which would violate
the C2 symmetry). The prefactor χ/2 is fixed to match the
results obtained from microscopic calculations in Ref. [18],
and we provide an alternative derivation in Appendix F3 as
well as a more detailed derivation of the full form of the
gap from a microscopic XXZ exchange model plus a Zeeman
coupling to the field in Appendix F3.

4. Diagonalization

We proceed to diagonalize Eq. (50), supplemented by
Eq. (52) following the discussion in Sec. V A 3, by intro-
ducing creation and annihilation operators in the standard
way for free fields. We use the Fourier convention φk =

1√
V

´
dxφ(x)e−ik·x for any continuum field φ, where V is the

volume of the system. Then

my
k =

√
χ�k,0

2
(b−k,0 + b†

k,0),

nz
k = i

1√
2χ�k,0

(b−k,0 − b†
k,0),

mz
k =

√
χ�k,1

2
(b−k,1 + b†

k,1),

ny
k = −i

1√
2χ�k,1

(b−k,1 − b†
k,1),

(53)

where

�k,� =
√

v2
mk2 +�2

�, (54)

with vm = √
ρ/χ . The magnon gaps depend on the applied

(transverse) magnetic field in the form

�� =
√

�/χ + h2

�, (55)

with valley index � = 0, 1 and where we set h0 = hy and
h1 = hz. This reflects the explicit breaking of O(3) rotational
symmetry of the order parameter n by the transverse field.
With these definitions, we obtain

HNLS + Hfield =
∑
�

∑
k

�k,�b
†
k,�bk,�. (56)
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The b, b† fields with index � = 0 have opposite C2 eigenvalue
to those with � = 1. This guarantees that all terms preserving
C2 symmetry must conserve the two boson flavors modulo 2.

B. Formal couplings

1. Definitions

In general, we can expand the operator Qnk, which couples
to a single phonon, in powers of the magnon operators,

Qq
nk =

∑
�,q1,z

An,�|q1q
k eikzzbq1

�,k,z

+ 1√
Nuc

∑
p,�,�′

q1,q2,z

Bn,�1,�2|q1q2q
k;p eikzzbq1

�1,p+ q
2 k,zb

q2

�2,−p+ q
2 k,z.

(57)

Note that while the phonons are three-dimensional excita-
tions, and hence have a three-dimensional momentum k,
the spin operators (and hence magnons) only have two-
dimensional momenta. We will make use of the following:
k = k + kzûz, where k is the projection of k onto the kz = 0
plane and ûz is the unit vector along z. A phonon is cou-
pled to the sum of spin operators in all layers—we have
here introduced the explicit label z for the layer. Because the
spins in different layers are completely uncorrelated, there are
however no cross-terms involving b operators from different
layers, and in correlation functions the sums over z will col-
lapse to independent correlators within each layer, which are
all identical to one another. When possible, we will therefore
take z = 0 and suppress this index.

The naïve leading term in Eq. (57) is the single magnon
one A, linear in b

�,k and b†
�,k operators (notations defined

below). This results in a quadratic mixing term in the Hamil-
tonian, hybridizing phonons and magnons. Being quadratic, it
is trivially diagonalized, and has been considered by several
authors. Generally, such coupling has little effect except when
it is resonant, i.e., near a crossing point of the decoupled
magnon and phonon bands. Since such a crossing is highly
constrained by momentum and energy matching, it occurs in
a narrow region of phase space, if at all, and is likely to be
unimportant for transport. It in any case does not give rise
to scattering, the focus of this work. We therefore henceforth
neglect the A contribution.

Nontrivial scattering processes arise from the second-order
term in the magnon field expansion of Qnk, parametrized by B.
Here as elsewhere we introduce particle-hole indices q1, q2 ∈
+,−, such that in particular,

b+�,p,z = b†
�,p,z, b−�,p,z = b�,−p,z. (58)

Notice the minus sign in the momentum in the second relation.
This means generally that(

bq
�,p,z

)† = b−q
�,−p,z. (59)

To make the coefficients unambiguous, we choose the sym-
metrized form

Bn,�1,�2|q1q2q
k;p = Bn,�2,�1|q2q1q

k;−p . (60)

Demanding that Q+
nk = (Q−

nk )† implies that

Bn,�1,�2|q1q2+
k;p = (

Bn,�2,�1|−q2−q1−
k;p

)∗
. (61)

If the phonon mode n which Qq
nk is coupled to is C2 invariant,

then only terms with �1 = �2 are nonzero. In Sec. V C 1, we
will introduce a concrete and general model of spin-lattice
couplings, and see that within this model, almost all interac-
tions obey this selection rule. In particular, off-diagonal terms
with �1 �= �2 arise only from the �

(ξ )
6,7 couplings defined in

Eq. (70), which are furthermore smaller in magnitude than
other couplings as they are related to magnetic anisotropy.

2. Diagonal scattering rate

Contributions to the first-order longitudinal scattering rate,
Eq. (34), can be computed exactly using Wick’s theorem. To
do so we use the free particle two point function, which in the
notation of Eq. (58) is〈

bq1
�1,p1,z1

(t1)bq2
�2,p2,z2

(t2)
〉

= δ�1,�2δz1,z2δq1,−q2δp1+p2,0 fq2 (��1,p1 )e−iq2��2 ,p2 (t1−t2 ),

(62)

where fq(�) = (1+ q)/2+ nB(�), where nB(�) is the
Bose distribution. One obtains two contributions, D(1)

nk =∑
s=± D(1)|s

nk , where D(1)|+ corresponds to the emission of two
magnons and D(1)|− corresponds to the scattering of a magnon
from one state to another:

D(1)|+
nk = 2π

h̄2

1

N2D
uc

∑
p,�,�′

sinh
(
β

2 h̄ωnk
)

sinh
(
β

2 h̄��,p− k
2

)
sinh

(
β

2 h̄��′,−p− k
2

)
× δ(ωnk −��,p− k

2
−��′,−p− k

2
)
∣∣Bn,�,�′|++−

k;p

∣∣2,
(63)

and

D(1)|−
nk = 4π

h̄2

1

N2D
uc

∑
p,�,�′

sinh
(
β

2 h̄ωnk
)

sinh
(
β

2 h̄��,p− k
2

)
sinh

(
β

2 h̄��′,p+ k
2

)
× δ

(
ωnk −��,p− k

2
+��′,p+ k

2

)∣∣Bn,�,�′|+−−
k;p

∣∣2. (64)

Note that the prefactor involves just the number of two-
dimensional unit cells in a single layer, N2D

uc = Nuc/Nlayers,
which results because a single sum over z gives a factor of the
number of layers Nlayers, converting the Nuc to N2D

uc . One can
compare the expressions in Eqs. (63) and (64) and observe a
difference of a factor 2 in the prefactor, the sign of the second
� frequency in the δ function, and that of the second to last
index in B. The squared modulus | · · · |2 can be traced back to
Fermi’s golden rule, and the thermal sinh(· · · ) factors, which
originate from Bose factors, fall off exponentially at large
momenta. Energy conservation imposed by the δ functions
strongly constrain these scattering rates. Specifically, if all
magnons have the same velocity vm and the phonons have an
isotropic velocity vph, then we find that

supp
(
D(1)|+

nk

) ⊆ {
(k, kz )

∣∣(v2
ph − v2

m

)∣∣k|2 + v2
phk2

z > 4�2
}
,

supp
(
D(1)|−

nk

) ⊆ {
(k, kz )

∣∣(v2
ph − v2

m

)∣∣k|2 + v2
phk2

z < 0
}
, (65)
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where � = min(�0,�1) and supp(D) is the support of D.
It follows that if vm > vph, D(1)|+

nk is nonzero in two regions
of large |kz| bounded by hyperboloid surfaces tangent to the

{ kz

|k| =
√

v2
m−v2

ph

vph
} cone, while D(1)|−

nk is nonzero in the region
outside the said cone, containing large |k|. The two regions
are mutually exclusive, i.e., for any given k at most one of
the two rates is nonzero. For vm < vph, the constraints are
even stronger, and D(1)|−

nk = 0 strictly vanishes, while D(1)|+
nk

is nonzero within an ellipsoid region containing k = 0. The

first and second scenarios are realized in La2CuO4 [19], and
in, e.g., FeCl2 [20], respectively.

3. Off-diagonal scattering rate

Expanding each Q operator in terms of magnon operators
in the four-point correlations, i.e., plugging Eq. (57) into
Eq. (37), one can obtain the Hall scattering rate using Wick’s
theorem. We find

W
�,qq′
nk,n′k′ =

64π2

h̄4

1

N2D
uc

∑
p

∑
{�i,qi}

D
nn′|q1q2q3,�1�2�3
qkq′k′,p F

q1q2q4,�1�2�3
qkq′k′,p Im

{
Bn�2�3|q2q3q

k,p+ 1
2 qk+q′k′

Bn′�3�1|−q3q1q′

k′,p+ 1
2 q′k′

× PP

[ Bn�1�4|−q1q4−q
k,p+ 1

2 qk
Bn′�4�2|−q4−q2−q′

k′,p+qk+ 1
2 q′k′

�
qq′
nkn′k′ + q1�

�1,−q1
p − q2�

�2,q2
p+qk+q′k′ − 2q4�

�4,−q4
p+qk

+
Bn′�1�4|−q1−q4−q′

k′,p+ 1
2 q′k′

Bn�4�2|q4−q2−q
k,p+ 1

2 qk+q′k′

�
qq′
nkn′k′ − q1�

�1,−q1
p + q2�

�2,q2
p+qk+q′k′ − 2q4�

�4,q4
p+q′k′

]}
,

(66)

where we defined �
�,q
p = ��,qp, and the product of δ functions D and “thermal factor” F,

D
nn′|q1q2q3,�1�2�3
qkq′k′,p = δ

(
�

qq′
nkn′k′ + q1�

�1,−q1
p + q2�

�2,q2
p+qk+q′k′

)
δ
(
�

qq′
nkn′k′ + 2q3�

�3,−q3
p+q′k′ − q1�

�1,−q1
p + q2�

�2,q2
p+qk+q′k′

)
,

(67)
F

q1q2q4,�1�2�3
qkq′k′,p = q4

[
2nB

(
�

�3,−q3
p+q′k′

)+ 1
][

2nB
(
��1,−q1

p

)+ q1 + 1
][

2nB
(
�

�2,q2
p+qk+q′k′

)+ q2 + 1
]
,

and �
q,q′
nkn′k′ = qωnk + q′ωn′k′ , �

q,q′
nkn′k′ = qωnk − q′ωn′k′ . Note

that while we described and will use below a continuum
formulation of the spin wave theory in Sec. V A, the result in
Eq. (66) is actually valid at the lattice level, i.e., when the full
periodic band structure of the magnons is included, as it relies
only upon the canonical commutation relations of the magnon
operators, and their dispersions and couplings are taken com-
pletely arbitrary at this stage. Therefore, this formula could be
applied directly in many other circumstances.

We may understand the terms in Eq. (66) as follows: the
second energy conservation δ function comes from Fermi’s
golden rule; the first δ function, and the denominator in the
third line, come from 1

Ei−En+iη = PP 1
Ei−En

− iπδ(Ei − En);
while the Bose factors appear when evaluating the thermal
averages of magnon population numbers, and their product
falls off exponentially at large momenta. W�,qq′

nkn′k′ may dis-
play divergences when the denominator vanishes. One can
explicitly check that the detailed-balance relation, Eq. (27),
holds, using the properties of the B coefficients, as well as
W

�,qq′
nk,n′k′ =W

�,q′q
n′k′,nk.

C. Phenomenological coupling Hamiltonian

We now propose a symmetry-based phonon-magnon cou-
pling Hamiltonian, Eq. (69), for the low-temperature ordered
phase of a Néel antiferromagnet on lattice made of layers
of square lattices, and, as above, we consider the layers to
be magnetically decoupled. Moreover, for concreteness, we
take the classical ground state to be Néel antiferromagnetic
along the ûx axis, so that all the point-group symmetries of
the crystal are preserved by the magnetic structure, up to a
translation of half a magnetic unit cell [21].

1. Interaction Hamiltonian density

We consider the most general coupling between (1) the
strain tensor, Eαβ = 1

2 (∂αuβ + ∂βuα ), where u is the lattice
displacement field, and (2) spin bilinears in terms of the m,n
fields, allowed by the symmetries of our tetragonal crystal
in its paramagnetic phase, which has the largest symmetry
group provided by the crystal structure (generated by mir-
ror symmetries Sx,Sy,Sz, fourfold rotational symmetry Cxy

4 ,
translation and time-reversal). Since we treat the magnetism
as two-dimensional, the coupling Hamiltonian is a sum over
layers and an integral over two-dimensional space,

H ′
tetra =

∑
z

ˆ
d2xH′

tetra (r). (68)

We use r = (x, z) to denote the three-dimensional coordinate.
The corresponding local Hamiltonian density reads, with all
fields expressed in real space,

H′
tetra (r) =

∑
α,β

a,b=x,y,z

Eαβ
r

(
�

(n),αβ
ab nanb +

�
(m),αβ
ab

n2
0

mamb

)∣∣∣∣∣
x,z

,

(69)

where n0 = μ0/a
2 is the ordered moment density. Here each

�(ξ ) tensor, which we define to be symmetric in both ab and
αβ variables, has seven independent coefficients, which we
call

�
(ξ )
1 = �(ξ ),xx

xx = �(ξ ),yy
yy ,

�
(ξ )
2 = �(ξ ),xx

yy = �(ξ ),yy
xx ,

�
(ξ )
3 = �(ξ ),xx

zz = �(ξ ),yy
zz ,

�
(ξ )
4 = �(ξ ),zz

xx = �(ξ ),zz
yy ,

(70)
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�
(ξ )
5 = �(ξ ),zz

zz ,

�
(ξ )
6 = �(ξ ),xy

xy = �(ξ ),yx
xy = �(ξ ),yx

yx = �(ξ ),xy
yx ,

�
(ξ )
7 = �(ξ ),xz

xz = �(ξ ),zx
xz = �(ξ ),zx

zx = �(ξ ),xz
zx ,

= �(ξ ),yz
yz = �(ξ ),zy

yz = �(ξ ),zy
zy = �(ξ ),yz

zy ,

and all other �(ξ ),αβ
ab are zero.

In Appendix F1, we provide a microscopic derivation of
these coupling constants starting from a spin Hamiltonian
Hspin =

∑
r,r′ Sa

r̃ Jab(r̃ − r̃′)Sb
r̃′ on the distorted lattice, with

r̃ = r + u(r) (Jab is the exchange parameter between the a
and b spin components, and depends a priori exponentially
on the distance between the two sites). Expanding of the mag-
netic exchange at linear order in the displacement u(r) (away
from the position r of the atoms in the absence of a phonon)
results in a magnetoelastic coupling of the form Eq. (69), with
coefficients �(ξ ),αβ

ab expressed in terms of spatial derivatives of
the magnetic exchange Jab.

Within this microscopic approach �
(ξ )
6,7 are related to

the spatial derivatives of symmetric off-diagonal exchange
Jxy, Jxz, Jyz, while �

(ξ )
1,2 −�

(ξ )
3 and �

(ξ )
4 −�

(ξ )
5 are associ-

ated with the spatial derivatives of XXZ exchange anisotropy
Jxx,yy − Jzz. Finally, note that in Eq. (69) bilinears of the
manb kind, arising from, e.g., alternating DM interactions
JD

i j i.e., such that JD
r,r+ûa

= −JD
r−ûa,r with a = x, y, could also

contribute to the thermal Hall conductivity [22], but are not
allowed in the single-site (paramagnetic) Bravais lattice we
consider here.

2. Expansion

We now carry out an expansion of the m,n fields in
two steps. First we expand around the zero-field, zero-net-
magnetization Néel-ordered configuration (nord = ûx,mord =
0), assuming deviations are small and satisfy Eq. (48). One
thereby expresses nx and mx in terms of the free fields
my/z,ny/z as, in real space,

nx = 1− 1

2

∑
b=y,z

(
n2

b +
1

n2
0

m2
b

)
,

(71)
mx = −

∑
b=y,z

mbnb,

which are correct to second order in the free fields [this
constitutes a nonlinear correction to Eq. (49)]. In a second
step, we include a net magnetization and expand �m around
it, i.e., write mα = mα

0 + mα where mα
0 is the sum of both

a possible spontaneous magnetization and response to the
external magnetic field. This two-step expansion physically
assumes m 
 m0 
 n0. Using these forms in Eq. (69), we
obtain the spin-lattice coupling to second order in the free-
field fluctuations,

H′
tetra (r) ≈

∑
αβ

Eαβ
r

∑
a,b=y,z

∑
ξ,ξ ′=0,1

λ
αβ

ab;ξξ ′n
−ξ−ξ ′
0 ηaξrηbξ ′r,

(72)

where ηa0 = na and ηa1 = ma and with

λ
αβ

ab;ξξ = �
(ξ ),αβ
ab − δab�

(0),αβ
xx ,

λ
αβ

ab;01 = λ
αβ

ba;10

= −1

n0

[
ma

0�
(1),αβ
bx + δabma

0�
(1),αβ
ax + mb

0�
(0),αβ
ax

]
,

(73)

where y = z, z = y and we have associated ξ = n ⇔ ξ = 0
and ξ = m ⇔ ξ = 1 in �(ξ ).

These relations are satisfied for any �
(ξ ),αβ
ab in Eq. (69)

[i.e., not necessarily satisfying the constraints Eq. (70)], but
do assume a Néel moment along the x direction, and a net
moment in the yz plane. Note that, while the bare (not lin-
earized) interactions in Eq. (69) did not couple the na and
mb fields, such a coupling is present in the linearized λab;01

coefficient (i.e., that coupling na and mb). We can see immedi-
ately from Eq. (73) that this coupling vanishes in the absence
of “anisotropic” couplings �

(ξ )
6,7. Importantly, it also vanishes

in the absence of any uniform magnetization. This is a con-
sequence of macroscopic time-reversal symmetry, Eq. (51).
Conversely, λab;01 is the only term in our low-energy descrip-
tion of the coupled spin-lattice system which is odd under this
effective time-reversal symmetry. Consequently, time-reversal
odd effects like skew scattering must involve at least one factor
of this coupling. This will appear explicitly at the end of the
next subsection.

3. In terms of the eigenbosons, b, b†

We now seek to identify the B coefficients as defined in
Eq. (57) [with the convention Eq. (58)]. To do so, we use
the Eq. (53) representation of the ma, na fields in terms of the
b bosons, which diagonalize the pure magnetic Hamiltonian,
and plug in their expressions into Eq. (72). This involves a
unitary transformation which can be defined as (using a =
1 ⇔ a = y and a = 2 ⇔ a = z)

ηaξr =
∑

p

∑
�=0,1

∑
q=±

Uaξ�q(p)bq
�peip·r, (74)

with

Uaξ�q(p) = −δa−1,�−ξ mod2Fξq�(p), (75)

Fξq�(p) = (iq)ξ (−1)ξ�(χ��p)ξ−
1
2 . (76)

We defined ξ = 1− ξ , i.e., 0 = 1, 1 = 0, and ξ̃ = 2ξ − 1,
i.e., 0̃ = −1, 1̃ = 1. We also used relation for the valley � =
δa−1,ξ , and conversely a = 1+ ξ̃ �+ ξ . Now inserting this
expression into Eq. (72), and collapsing the a, b sums, we
obtain

H′
tetra =

∑
αβ

∑
p1,p2

Eαβ
r

∑
q1q2

∑
�1�2=0,1

∑
ξξ ′=0,1

n−ξ−ξ ′
0 λ

αβ

�1−ξ̄ ,�2−ξ̄ ′;ξξ ′

×Fξq1�1 (p1)Fξ ′q2�2 (p2)bq1
�1p1

bq2
�2p2

ei(p1+p2 )·r. (77)

We similarly express the local strain in terms of its con-
stituent Fourier modes, which are proportional to the phonon
creation/annihilation operators, as discussed in detail in Ap-
pendix A. Putting in these two ingredients, some algebra
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(shown also in Appendix A) finally yields, if we define
λ̂
��′;αβ
ξξ ′ = λ

αβ

�−ξ̄ mod2,�′−ξ̄ ′ mod2;ξξ ′ ,

Bn,�1�2|q1q2q
k;p = iq

2
√

2Muc

∑
ξξ ′

n−ξ−ξ ′
0 Lq,�1,�2

nk;ξ,ξ ′ Fξq1�1

×
(

p+ q

2
k
)

Fξ ′q2�2

(
−p+ q

2
k
)
, (78)

where

Lq,�1,�2
nk;ξ,ξ ′ =

∑
α,β=x,y,z

λ̂
�1�2;αβ
ξξ ′

kα
(
ε
β

nk

)q + kβ
(
εαnk

)q

√
ωnk

. (79)

Equation (78) may now be inserted into Eq. (66). Note that iξ

in F plays an important role as discussed in Sec. V C 4.
Finally, note that the only coefficients λab,ξξ ′ which con-

tribute to B�1�2 with �1 �= �2 (i.e., to “intervalley hopping”
recalling B�1�2 is the coefficient of bq1

�1
bq2
�2

in Qq) are those
which satisfy δab + δξξ ′ = 1—see Appendix F2 for details.
Such coefficients involve only the �

(ξ )
6,7 couplings, which are

typically much smaller than �
(ξ )
1..5. Therefore, a good approxi-

mation is to consider only those contributions to the scattering
rates Eqs. (63), (64), and (66) with the smallest possible num-
ber of intervalley hoppings. Now, the forms D(1) ∼ B�1�2B�2�1

and W� ∼ B�1�2B�2�3B�3�4B�4�1 impose that intervalley hop-
ping can only happen an even number of times in D(1) and
W�. Because D(1)

nk is a priori nonzero even when �6,7 = 0, we
discard the subdominant, of order ( �6,7

�1..5
)2, contributions from

�1 �= �2 upon calculating D(1)
nk . On the other hand, a nonzero

W
�,eff,qq′
nk,n′k′ := 1

2

(
W

�,qq′
nk,n′k′ +W

�,qq′
n−k,n′−k′

)
(80)

requires either (or both) nonzero �6,7. The first nonzero term
with �1 = �2 = �3 = �4 in turn occurs at order ( �6,7

�1..5
)1, and

therefore corrections due to �i �= � j are another order ( �6,7

�1..5
)1

smaller for W
�,eff,qq′
nk,n′k′ . We use this approximation in what

follows, i.e., in Secs. V D and V F.

4. Effective breaking of symmetries

(i) Time reversal. We now briefly comment on the relation
between the “effective” time-reversal of the spin system T
and the transport properties of the phonon system. Indeed, it
is obvious from Eqs. (63) and (66) that if all the B coefficients
satisfy

Bn,�1�2|q1q2q
−k;−p

?= (
Bn,�1�2|q1q2q

k;p

)∗
, (81)

then D(1)
n−k = D(1)

nk and W
�,qq′
n−k,n′−k′ = −W�,qq′

nk,n′k′ , i.e., the
phonon collision integral is effectively time-reversal sym-
metry preserving, as discussed in Sec. IV A. Therefore, no
phonon Hall effect follows if the spin-phonon coupling sat-
isfies Eq. (81).

Which terms in Eq. (72) are compatible with an effec-
tive time-reversal symmetry breaking? By direct inspection
of Eq. (79), one finds that iLq,�1,�2

n−k;ξ,ξ ′ = (iLq,�1,�2
nk;ξ,ξ ′ )

∗. Thus,

only those terms in Eq. (78) with iξ+ξ
′ = i may sat-

isfy Bn,�1�2|q1q2q
−k;−p �= (Bn,�1�2|q1q2q

k;p )∗. All others are such that

Bn,�1�2|q1q2q
−k;−p = (Bn,�1�2|q1q2q

k;p )∗.

TABLE III. Solutions to a single δ function of the form δ(� −
��,p − s��,p−k ), with s = ±1, as a function of the value of a2 − k2,

where a = �/vm, k2 = k2
x + k2

y , and ��,p = vm

√
p2 + δ2

� . The nec-

essary existence conditions described in this table are captured by the
equation s(a2 − k2) > 4δ2

� (s+ 1)/2.

a2 − k2 < 0 0 < a2 − k2 < 4δ2
� 4δ2

� < a2 − k2

s = + No solutions No solutions Ellipse
s = − Half-hyperbola No solutions No solutions

The breaking of effective time-reversal in the phonon
system thus relies upon the presence of spin-phonon cou-
plings where ξ ′ = ξ , i.e., λab,01 and λab,10 (henceforth denoted
“λnm”) coefficients; this is consistent with the argument in
Sec. V C 2, based on macroscopic time-reversal T , Eq. (51).
Moreover, going back to Sec. IV B 2, we see that if m0 �= 0
but �(ξ )

6 = 0 = �
(ξ )
7 , then the kernel KH

nk,n′k′ is invariant under
momentum reversal, and so κH = 0, even though the system
breaks T .

(ii) σd operation. Here we briefly study the σd operation,
i.e., a mirror transformation through the plane containing the
ẑ and x̂+ŷ√

2
directions. The system, having antiferromagnetic

ordering along the x axis as well as possibly my
0 �= 0, explicitly

breaks this symmetry. However, if �(ξ )
1 = �

(ξ )
2 and �

(ξ )
7 = 0,

then σd is preserved at the level of the kernel KH
nk,n′k′ , whence

κH = 0. This illustrates the importance of knowing the action
of D4h operations upon the kernels KH

nk,n′k′ , because some
symmetries which are explicitly broken globally might fail to
be effectively broken in phonon scattering.

D. Solutions of the δ functions

Each contribution to the scattering rate involves a momen-
tum integral over an integrand which contains either a single δ

function or a product of two δ functions. These express energy
conservation constraints, which must be solved to carry out
the integration. The argument of each δ function, which must
be set to zero, is of the form

� −��,p − s��,p−k = 0, (82)

where s = ±1. Using the continuum form of the magnon dis-

persion, ��,p =
√

v2
m|p|2 +�2

� = vm

√
|p|2 + δ2

� = vm�̂�,p,

where δ� = ��/vm, we can rewrite this as√
|p|2 + δ2

� + s
√
|p− k|2 + δ2

� = a, (83)

where a = �/vm and s = ±1.
The existence and type of solutions depend on the value of

a2 − k2, where k2 = k2
x + k2

y . When they exist, the solutions
are conics, as is summarized in Table III.

It is then best to introduce coordinates p‖, p⊥ which are
along the principal axes of the hyperbola/ellipse,

p = p‖k̂ + p⊥ẑ× k̂, (84)

where we define k̂ = (kxx̂ + kyŷ)/k (note the denominator k
which differs from k when kz �= 0), and we can define the
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major ā and minor b̄ semiaxes, or conversely, of the conics:

ā = |a|
2

√
1− 4δ2

�

a2 − k2 , b̄ = 1

2

√
|a2 − k2 − δ2

� |. (85)

An immediate consequence is that, in the case of the ellipse
−ā � p‖ − k

2 � ā and −b̄ � p⊥ � b̄, while in the case of the

half-hyperbola: p‖ � k
2 + a.

Both Eq. (83) and a pair of such equations may be solved
analytically, but the solutions are analytically complicated.
We provide their details in Appendix E1, and give here only
the final results.

1. Diagonal scattering rate

We have, in particular, the following compact form for
D(1)|s

nk , with s = ±,

D(1)|s
nk = (3− s)πa2

(2π )2 h̄2

∑
�,�′

ˆ
d2p

sinh( β

2 h̄ωnk )

sinh( β

2 h̄��,p) sinh( β

2 h̄��′,p−k )

× δ(ωnk −��,p − s��′,p−k )
∣∣Bn,�,�′ |+s−

k;−p+ k
2

∣∣2, (86)

where we converted the two-dimensional momentum sum to
an integral using

∑
p → N2D

uc a2
´ d2p

(2π )2 , where N2D
uc a2 is the

area of the sample in the xy plane.
From now on, in this paragraph and the following, we make

use of the approximation B� �=�′ → 0, as explained previously.
Then, collapsing the δ function (to avoid clutter, we identify
y = p⊥):

D(1)|s
nk = (3− s)a2 sinh( β

2 h̄ωnk )

4πvm h̄2

ˆ +∞

−∞
dy
∑
η

fs
η(y)Js

η(y)

×
∑
�

∣∣Bn,�,�|+s−
k;−p(η)

�,k (y)+ k
2

∣∣2
sinh

(
β

2 h̄�
�,p(η)

�,k (y)

)
sinh

(
β

2 h̄�
�,p(η)

�,k (y)−k

) , (87)

where

fs=1
η (y) = �(b̄− |y|)�(a2 − k2 − 4δ2

�

)
,

fs=−1
η (y) = δη,1 �(k2 − a2),

(88)

where a = ωnk/vm, η = ±1 and

Js
D(y) =

∣∣∣∣∣∣
∑
r=±

s(r−1)/2rcr (y)√
cr (y)2 + y2 + δ2

�

∣∣∣∣∣∣
−1

, (89)

with

cη(y) = 1

2

(
k + η a

√
1− 4

δ2
� + y2

a2 − k2

)
(90)

and

p(η)
�,k(y) = cη(y )̂k + yẑ× k̂, (91)

i.e., we identified p‖ and p⊥ in Eq. (84) with cη(y) and y,
respectively. At this point it may be comforting to check
dimensions. Noting that y has dimensions of momentum, i.e.,
inverse length, and B has dimensions of energy, i.e., inverse
time, one can indeed see that D in Eq. (87) has proper dimen-
sions of a rate.

2. Off-diagonal scattering rate

In this case, we must solve a pair of conic equations simul-
taneously, which takes the form

�1 −��,p − s1��,p−k1 = 0,

�2 −��,p − s2��,p−k2 = 0,
(92)

i.e., √
|p|2 + δ2

� + s1

√
|p− k1|2 + δ2

� = a1,√
|p|2 + δ2

� + s2

√
|p− k2|2 + δ2

� = a2,
(93)

where ai = �i/vm. Indeed, the integrals which occur in the
second-order scattering rates involve pairs of δ functions,
whose arguments are of the form considered above, with
in Eq. (92), �1 = −q1�

qq′
nkn′k′ , �2 = −q1q′ωn′k′ , s1 = q1q2,

s2 = −q1q3, k1 = −qk − q′k′, k2 = −q′k′, and δ� = ��/vm.
In this case, each of the two δ function constraints defines
a half-hyperbola or an ellipse in the p plane, and the inte-
grand is confined to the intersections of these two curves.
Consequently, the integral will be collapsed to a discrete set
of points. It is straightforward to see geometrically that the
intersection of two curves of these types is, except for the
degenerate cases in which the two curves are identical, a set
of at most four points. The two simultaneous equations can be
solved analytically, but the solutions are algebraically compli-
cated and we give here only the results and leave details to the
Appendices.

Collapsing the δ functions as explained in Appendix E1,
we can write

W
�,qq′
nk,n′k′ =

4a2

v3
m h̄4

∑
j

∑
�,{qi}

JW(p j )F̂ �,�,�|q4,q1,q2
p j ,qk,q′k′

× Im

{
Bn��|q2q3q

k,p j+ 1
2 qk+q′k′

Bn′��|−q3q1q′

k′,p j+ 1
2 q′k′

PP

[ Bn��|−q1q4−q
k,p j+ 1

2 qk
Bn′��|−q4−q2−q′

k′,p j+qk+ 1
2 q′k′

q1qωnk
vm

+ �̂�,p j − q1q4�̂�,p j+qk
+

Bn′��|−q1−q4−q′

k′,p j+ 1
2 q′k′

Bn��|q4−q2−q
k,p j+q′k′+ 1

2 qk

q1q′ωn′k′
vm

+ �̂�,p j + q1q4�̂�,p j+q′k′

]}
,

where �̂ = �/vm, and

F̂ �3,�1,�2|q4,q1,q2
p,qk,q′k′ = q1q4[2nB(��3,p+q′k′ )+ 1][2nB(��1,p)+ q1 + 1][2nB(��2,p+qk+q′k′ )+ q2 + 1] (94)
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is a product of thermal factors and where, when they exist, the solutions, j = 0, .., 3 take the form

p j = t� j/2�v� j/2� + u( j̃ [2])
� j/2� w� j/2�, (95)

where, for i = 0, 1vi = a2k1 + (−1)ia1k2, wi = ẑ× vi (note that vi = vi, wi = wi and p j = p
j

are all in-plane vectors), ti and

u(±)
i are given in Appendix E1 (also recall we defined 0̃ = −1, 1̃ = 1, x [2] is x mod 2, and �x� denotes the floor of x), and

JW(p j ) =
∣∣∣∣∣s1

k1 ∧ p
j

�̂�,p j �̂�,p j−k1

+ s2

p
j
∧ k2

�̂�,p j �̂�,p j−k2

+ s1s2

−k1 ∧ k2 + p
j
∧ k2 − p

j
∧ k1

�̂�,p j−k1�̂�,p j−k2

∣∣∣∣∣
−1

, (96)

where V1 ∧ V2 = V x
1 V y

2 −V y
2 V x

1 for any in-plane vectors
V1,2. Coefficients t0,1 are always well defined, but for each i,

u(±)
i are the solutions to a quadratic equation which has zero,

one or two solutions, whether the discriminant du,i thereof is
negative, zero, or positive.

Necessary (but not sufficient) conditions of existence of
solutions are: (i) the existence of both conics, cf. Table III, (ii)
du,0 � 0 and/or du,1 � 0, (iii) when s1 and/or s2 is negative,
the p j must lie on the η1,2 = 1 branch of the 1 and/or 2 hy-
perbola. Even with these constraints, spurious solutions exist,
so that one must check that the solutions Eq. (95) also satisfy
the equations for the given values of a1, a2,k1,k2, q, q′, qi.

E. Scaling and orders of magnitude

In this subsection, we discuss the temperature dependence
and magnitude of the magnonic contributions to the different
phonon scattering rates, which determine the phonon ther-
mal conductivity and thermal diffusivity tensors. Since we
consider a low-energy continuum theory (without a momen-
tum cutoff) in which the dispersion of the phonons is linear,
these hold only in the low-temperature limit, i.e., for T 

h̄vph/(akB). Similarly, we consider the low-energy dispersion
of magnons, so our results are valid for T 
 h̄vm/(akB) ∼
J/kB. In Table IV, we summarize some of the relations derived
in this section.

1. Longitudinal scattering rate: Role of
anisotropies and scaling exponent

First we consider the leading magnonic contributions to
the longitudinal scattering rate, D(1)

nk . The typical magnitude
of this quantity for |k| ∼ kBT/vph sets the basic rate 1/τ .
This rate has been studied previously in classic work on the
phonon-magnon coupling in antiferromagnets. Reference [24]
finds that 1/τ ∼ T 5 (for the moment we give only the T
dependence under the above condition, and do not give the
prefactor), for a model of exchange-striction in a Heisenberg

TABLE IV. Scaling relations derived in Sec. V E and the corre-
sponding equation number where they appear. Note that these were
obtained within a low-energy approach which omit in particular
larger-k deviations away from the acoustic phonon linear dispersion
limit and other higher-T effects such as Umklapp [23].

Quantity τ−1 κL W� τ−1
skew 
H

T -scaling T d+2x T 3−d−2x T d−1+3x T d+2+3x T d−1+3x

Eq. (98) (99) (102) (103) (108)

antiferromagnet in three dimensions. This should be recov-
ered from our formalism.

A general estimate can be obtained from Eqs. (63) and
(64). To evaluate it requires, in addition to the dispersion
relations, the phonon-magnon couplings B, which are given
in Eq. (78). At the level of temperature scaling for typical
thermal momenta, for temperatures well above the magnon
gap, vmk � �, we may replace k ∼ kBT/vph, ω ∼ vphk ∼
kBT and � ∼ kBT (the latter is true if the ratio between vm

and vph is order one). Noting that ξ̃ and ξ̃ ′ in Eq. (78) equal
±1, we see that a general phonon-magnon coupling is a sum
of three contributions,

B ∼
(

kBT

Mv2
ph

) 1
2

n−1
0

(
λmm

χkBT

n0
+ λmn + λnn

n0

χkBT

)
. (97)

Here, as above, we label generic Néel-Néel vector
couplings λnn ≡ λab,00, net magnetization-magnetization
couplings λmm ≡ λab,11 and “cross” Néel-magnetization
couplings λmn ≡ λab,10.

Depending upon which of these terms is dominant, the
temperature dependence of B ∼ T 1/2+x, with x = −1, 0, 1
corresponding to the λnn, λmn, and λmm terms, respectively.
We can then estimate the scattering rate by converting the
momentum sum over p to a d-dimensional integral (d is the
spin-exchange dimensionality) and recalling |p| ∼ T . We see
therefore that

1

τ
∼ T d−1|B|2 ∼ T d+2x. (98)

A priori, the dominant contributions would arise from terms
with x = −1, which have the smallest power of temperature,
which would give 1/τ ∼? T d−2 ∼ T in d = 3 dimensions.
This does not agree with Ref. [24]. Instead, one notices that
what one might expect to be the subdominant contribution
from x = +1, which gives 1/τ ∼ T d+2 in general dimensions,
does agree with the classic theory for d = 3.

Why is this the case? The resolution lies in the fact that
Ref. [24] assumes isotropic Heisenberg interactions, and is
carried out in zero magnetic field. As a consequence, the
Hamiltonian has SU (2) symmetry, and Goldstone’s theorem
protects the gaplessness of the magnon modes even in the
presence of strain. In particular, because even an arbitrar-
ily strained lattice must preserve the gapless magnons in
this case, the spin-lattice coupling, Eq. (69) must be spin-
rotationally invariant, and moreover its quadratic expansion,
Eq. (72), must vanish for a magnon configuration which is a
small rotation of the Néel order, which corresponds to either
ny or nz nonzero and spatially constant. This means that the
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nonzero terms in Eq. (72) involve only ξ, ξ ′ = m and not n
(in a treatment including higher-order terms, spatial gradients
∇n would appear, but these scale in the same manner as m).
One can indeed check in Eq. (73) that when the interactions
�

(m/n),αβ
ab are isotropic (∝ δab), λnn vanishes, and λmn vanishes

at zero field when the uniform magnetization ma
0 = 0. Taking

the λmm contribution in Eq. (97) gives x = +1 in Eq. (98) as
needed for agreement with earlier work.

What is the physics of the different values of x? We see
that stronger effects (smaller powers of temperature) arise
from coupling to n than to m. This is a fundamental prop-
erty of antiferromagnets: fluctuations of the order parameter
n are stronger and more long-ranged than those of the uni-
form magnetization m, which is naturally suppressed when
antiferromagnetic interactions dominate. Thus, larger effects
would be expected from coupling of strain to the staggered
magnetization than to the uniform one, as the formula indeed
shows.

How is this reflected in κL(T )? The last step from the
scattering time τ to the longitudinal conductivity κL is a
standard one [23,25]. The sum over phonon momentum k in
the first term of Eq. (32) is converted to a three-dimensional
integral (the magnon momentum integral was d-dimensional,
with d = 2 in the case of a layered antiferromagnet).

For temperatures kBT � �, the scaling for the temperature
dependence of the longitudinal conductivity is

κL ∼ T 3−d−2x. (99)

As can be seen from Eq. (97), a crossover between the
low-temperature x = −1 and the high-temperature x = +1
behaviors occurs at T �

λ ,

kBT �
λ ∼

n0

χ

√
λnn

λmm
. (100)

Equation (100) assumes that the intermediate behavior x =
0, due to the λmn coupling which is proportional to both
anisotropic exchanges and the net magnetization, is negligi-
ble; this is consistent with our numerical results shown in
Sec. V F 4. The above results, Eqs. (99) and (100), also assume
that D(1)

nk is the dominant scattering rate contributing to the
longitudinal inverse scattering time Dnk. (The role of D̆nk is
considered in more detail in Sec. V F 4.) However, many more
scattering processes, such as boundary or impurity scattering,
which in Eq. (2) are encompassed as D̆nk, contribute (through
Matthiessen’s rule) to the phonon relaxation. Thus, κL should
be considered a probe of the full Dnk.

2. Longitudinal scattering rate: Role of the gap
and magnetic field dependence

Since we have seen that the assumption of isotropic interac-
tions suppresses the coupling to the staggered magnetization,
this discussion suggests that breaking of spin-rotation sym-
metry should greatly enhance phonon scattering. While this
may indeed be the case, we should note a subtlety: although
spin anisotropy indeed allows such coupling, it also allows the
formation of a magnon gap—enlarged by the presence of an
external magnetic field, �� =

√

�/χ + h2

� . Which behavior
should be expected from the combination of these two effects?

Regardless of the form of coupling (scaling exponent x),
if kBT 
 �, magnon-phonon scattering will become ener-
getically unavailable. More precisely, D(1)|+, corresponding
to the process whereby a phonon excites two magnons, is
exponentially suppressed due to the required rest energy 2�,
while D(1)|−, corresponding to the process whereby a phonon
scatters a magnon, is exponentially suppressed due to the ex-
ponential decrease of all magnon populations at temperatures
below the gap. Therefore, D(1) as a whole is exponentially
suppressed if kBT 
 �; We check this behavior numerically
in Sec. V F 6.

Thus, a crossover in the behavior of κL(T ) occurs at
temperature T �

� ∼ �/kB. Below T �
�, the phonon thermal con-

ductivity is mostly due to other scattering effects, which
are captured by D̆nk in this work. For constant D̆nk, this
yields κL ∼ T 3. Above T �

�, phonon-magnon scattering be-
comes available, and is enhanced by anisotropic coupling;
provided this is the dominant effect, the resulting thermal con-
ductivity behavior is κL ∼ T 3−d−2x with x = −1 which, for
d = 2 (two-dimensional magnons), is the same power of tem-
perature as that obtained with only constant D̆nk. However, the
proportionality constant is larger with phonon-magnon scat-
tering than without, which, for sufficiently strong anisotropic
couplings (i.e., sufficiently large λnn), may lead to a “bump”
in κL(T ), as we indeed numerically see in Sec. V F 4.

Remarkably, this effect depends on the external magnetic
field through the width of the magnon gap (recall the lat-
ter is field dependent), and may be an important feature of
κL(h,T )− κL(0,T ). For the sake of completeness, we note
that types of dependencies on the magnetic field may arise
at temperatures where the scaling exponent x = 0 plays a
role, because the λmn coupling depends explicitly on the net
magnetization m0 in [see Eq. (73)]. It is however not clear how
this contribution could become nonnegligible in any range of
temperatures, and the gap dependence �(h) is arguably the
main culprit as regards the dependence on h of the longitudi-
nal conductivity.

3. Transverse scattering: Scaling exponent

We can now apply similar reasoning to the transverse/Hall
scattering rate W� from Eq. (66). Obviously if tempera-
ture is sufficiently low, i.e., below magnon gaps, the result
will be exponentially suppressed. Of greater interest is the
energy regime above the magnon gaps, in which we may as-
sume acoustic linearly dispersing magnons (and phonons). We
proceed by counting the obvious factors of momentum and
energy, and by assuming the relevant momentum scales are set
by dimensional analysis, i.e., k,k′ ∼ kBT/vm, etc. Inspection
of Eq. (66) shows one sum over magnon momentum p, which
converts to an integration in the thermodynamic limit, two
energy δ functions, and one energy denominator, which, using
the aforementioned momentum scaling implies that

W� ∼ T d−3B4. (101)

Here we considered the magnon momentum integration as
d-dimensional, as in the previous discussion of longitudinal
scattering rates.

Now to proceed we must estimate the contribution of
the four B factors. To do so, we need to consider the
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effective time-reversal symmetry T . This symmetry must be
broken to obtain a nonzero effective skew-scattering rate,
W

�,eff,qq′
nk,n′k′ , which in particular is odd under T . As discussed in

Secs. V C 2 and V C 3, under T the λmm and λnn couplings are
even while only the λmn couplings are odd; therefore, W�,eff

must contain an odd number of factors of λmn. Furthermore, in
the low field regime we consider here, T symmetry breaking
happens through the development of a small uniform magneti-
zation, hence λmn ∝ m0, which in turn is linearly proportional
to the applied field [see Eq. (73)]. Consequently, to obtain the
linear-in-field Hall scattering rate, we should keep just one
(and not three, the other available odd number) factors of λmn.
Therefore, we may use Eq. (97) to estimate

W�,eff ∼ T d−1λmn(λmmT + λnnT−1)3 ∼ T d−1+3x. (102)

Here, as in Sec. V E 1, x = +1 obtains in a large parameter
region where λmm

λnn

 ( n0

χkBT )
2
, while x = −1 results if λnn is

nonzero and dominant in a low-temperature regime where the
magnon gap remains negligible.

It is by no means clear how the latter regime would be
achieved, and if we assume that the x = +1 case dominates,
then it is interesting to see that W�,eff in Eq. (102) scales like
T d+2, which is the same power of temperature as the magnon
contribution to the longitudinal scattering rate in Eq. (98).

This scaling is a bit surprising, as we should expect that the
transverse is smaller than the longitudinal scattering, since it
comes from a higher-order term. To resolve this, we should
consider more carefully the relationship of W�,eff to a “skew-
scattering rate.” In particular, one should note that W

�,eff
nknk′

enters the collision term via a sum over k′, which converts to
an integral over k′ in the thermodynamic limit. Therefore, the
measure of this integral, which is expected to be dominated
by |k′| ∼ kBT/vm, kBT/vph, contributes an additional factor
of T 3 (since phonons are always three-dimensional). Thus, it
would be more correct to estimate the skew-scattering rate as

1

τskew
∼ T 3W�,eff ∼ T d+2+3x. (103)

For x = 1 and d = 2, this scales as T 7 which is indeed small
compared to the T 4 predicted in the same regime for the
longitudinal scattering.

Additionally, we highlight in Sec. V F 7, through numeri-
cal evaluations, the strong momentum-orientation dependence
of W�.

4. Transverse scattering: Thermal Hall resistivity

We would like to emphasize that within any scattering
mechanism of phonon thermal Hall effect, the skew-scattering
rate is a more fundamental measure of chirality of the phonons
than the thermal Hall conductivity. This is because the Hall
conductivity inevitably involves the combination of the skew
and longitudinal scattering rates (in the form τ 2/τskew), and
the longitudinal scattering rate of phonons has many other
contributions that do not probe chirality, and may have com-
plex dependence on temperature and other parameters that
obscure the skew scattering. The scaling of the temperature
dependence of 1/τskew given above is a much more reliable
prediction than any corresponding one made for κH for this
reason, and we do not quote the latter here. Instead, to extract

the skew-scattering rate, one should look at the thermal Hall
resistivity, 
H , which is simply proportional to 1/τskew, at
least in the simplest view where the angle-dependence of the
longitudinal scattering does not spoil its cancellation.

We define the thermal Hall resistivity tensor as usual by
the matrix inverse, � = κ−1. In particular, considering the
simplest case of isotropic κμμ → κL and κL � κμ �=ν , one thus
has



μν
H = 
μν − 
νμ

2
≈ −κμν + κνμ

2κ2
L

= −κ
μν
H

κ2
L

. (104)

The quantity 

μν
H is independent of the scale of the longitudi-

nal scattering, in the sense that under a rescaling Dnk → ζDnk,
then 


μν
H is unchanged [see indeed Eqs. (32) and (33) for an

explicit check at leading perturbative order].
As explained before, let us further assume that Dnk = 1/τ

is (n,k)—independent, e.g., as if the case if dominated by
some extrinsic effects. In that case, we can extract the longi-
tudinal dependence from the transverse conductivity kernel,
and redefine K̃H

nkn′k′ = τ−2KH
nkn′k′ which is now independent

of the longitudinal scattering rate τ−1. Besides, to leading
order one has simply KL

nkn′k′ = τeβ h̄ωnkδnn′δkk′ , from which,
assuming ωnk = vph|k| and Neq = nB, we have simply

κL = τ
h̄2

kBT 2

1

V

∑
nk

eβ h̄ωnk
(
Jα

nk

)2 = τcv

v2
ph

3
, (105)

where by construction the result does not depend on the cho-
sen direction α of the current (for instance α = x, y, z). This is
the well-known relation between the thermal conductivity κL

and the thermal capacity

cv = ∂

∂T

[
1

V

∑
nk

Neq
nk h̄ωnk

]
= kB

2π2

5

(
kBT

h̄vph

)3

(106)

of the phonon gas. Consequently, Eq. (104) evaluates to



μν
H = −k−1

B

(
15vph

2π2

)2( h̄

kBT

)8 V

(2π )6

∑
nkn′k′

Jμ

nkK̃H
nkn′k′J

ν
n′k′ .

(107)

This expression does not depend on τ , which justifies studying

H instead of κH . From it and Eq. (31), one can readily derive
the scaling relation


H ∼W�,eff ∼ T d−1+3x, (108)

which we check numerically in Sec. V F 5.

5. Detailed scaling analysis of the longitudinal conductivity

The scaling with temperature described above, obtained
by replacing every momentum scale h̄vm,phk, h̄vm,phk, and
h̄vm,ph p by that of the temperature, kBT , are expected to be
valid for υ = vm/vph of “order one.” Here we investigate
more carefully the dependence of these quantities on υ when
the latter becomes large. Surprisingly, we show below that the
prediction of Eq. (99) for the high temperature scaling of κL

breaks down already for υ > 3, giving way to a continuously
variable power law exponent. For the thermal Hall resistivity,
we find that the temperature exponent, Eq. (108), remains
independent of the velocity ratio.
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To obtain these results, we analyze the full integral ex-
pressions directly, distinguishing momentum and temperature
dependencies. Various technical details are provided in Ap-
pendix E4.

To analyze κL, we start by writing the expression for the
diagonal scattering rate, Eq. (87), in dimensionless form, in
terms of a scaling parameter κ and dimensionless variable ỹ,

κ = h̄vphk

kBT
, ỹ = y/k. (109)

We assume the relevant momentum and energy scales are
large compared to any gaps, δ� 
 k, kBT/vm, and therefore
in the following set δ� → 0. Then we can obtain scaling
forms

cη(y) = k c̃η(ỹ),

�
�,p(η)

�,k (y),��,p(η)
�,k (y)−k = vm k �̃

±η

� (ỹ),

Bn,�,�|+s−
k;−p+k/2 = k3/2 B̃mm(ỹ)+ k1/2 B̃mn(ỹ)

+ k−1/2 B̃nn(ỹ), (110)

and the precise functional forms of c̃η(ỹ), �̃
±η

� (ỹ), and B̃ξξ ′

are given in Appendix E4, Eqs. (E20)–(E25). We find, after
making the change of variables in the integral of Eq. (87) from
y to ỹ,

D(s)
nk (T ) =

1∑
x=−1

k2+2xF(s)
x (κ, υ, θ ), (111)

where the scaling functions F(s)
x (κ, υ, θ ) are

F(s)
x (κ, υ, θ ) = (3− s)a2 sinh(κ/2)

4πvm h̄2

ˆ +∞

−∞
dỹ
∑
η

f̃s
η(ỹ)J̃ s

D(ỹ)

×
∑
�

C̃x(ỹ)

sinh
[
υκ
2 �̃

+η

� (ỹ)
]

sinh
[
υκ
2 �̃

−η

� (ỹ)
] .

(112)

Here C̃x(ỹ) are quadratic combinations of the original
B̃mm, B̃mn, and B̃nn coefficients given in Appendix E4. Equa-
tion (111) agrees with the scaling behavior given in Eq. (98)
(with d = 2). In Appendix E4 we derive the behavior of the
scaling functions F(s)

x at small and large κ, which will be
useful in the following.

The scaling form of the scattering rate is input to the
thermal conductivity. To see the implication, we presume for
simplicity the total scattering rate Dnk =

∑
s D(s)

nk + D̆ is dom-
inated by a single value of x. We note in passing that when the
gaps are zero, only one value of s contributes here: s = −1 for
υ > 1 (the case of most interest), and s = 1 for υ < 1.xbrk
Then

Dnk =
(

kBT

h̄vph

)2+2x

[κ2+2xFx(κ)+ Ď(T )]. (113)

Here we defined Ď(T ) = ( h̄vph

kBT )2+2xD̆, which is temperature-
dependent. In particular, for x = 0, 1, it becomes very small
at high temperature. Inserting this into Eq. (32), turning the
sum over k into an integral, and using spherical coordinates,

we obtain

κ
μμ
L ∼ kB

h̄2

(
h̄vph

kBT

)2x−1 ˆ +∞

0
dκ

ˆ π

0
dθ

×
ˆ 2π

0
dφ

k̂μk̂μ sin θκ
4 sinh−2(κ/2)

κ
2x+2Fx(κ, υ, θ )+ Ď(T )

. (114)

Now we are in a position to investigate the temperature
dependence of the conductivity. To simplify the discussion,
we restrict the remainder of this section to the case x = 1,
since F1 is the largest contribution when spin-orbit coupling is
weak, and is also enhanced at high temperature. First consider
the low temperature limit. Then Ď(T ) becomes large at low T ,
and we can simply replace the denominator of the integrand
in Eq. (114) by Ď(T ). This is just the extrinsic limit in which
the constant D̆ scattering dominates and one recovers the
T 3 dependence of the thermal conductivity arising from the
phonon heat capacity.

Next we turn to the higher temperature limit. There, the pa-
rameter Ď(T ) becomes small, and might naïvely be neglected.
Dropping this term in Eq. (114), the sole remaining tempera-
ture dependence is in the prefactor, and agrees with what was
found earlier in Eq. (99) (for d = 2). This procedure is valid
provided the integral in Eq. (114) converges for Ď(T ) = 0.
To check this, we must consider the potential divergences at
small and large κ. At small κ, the integrand behaves like
1/[κ2F1(κ)]. As shown in Appendix E4, F1(κ) grows as
small κ [see Eq. (E29)], ensuring there is no divergence.
The large κ limit is more problematic. This is because al-
though the sinh−2(κ/2) factor decays exponentially, the factor
Fx in the denominator also decays exponentially. Specifically,
we show in Appendix E4 that Eq. (112) implies

Fx(κ, υ, θ ) ∼
κ�1

F̄(υ, θ )e−α(υ,θ )κ, (115)

where the function α(υ, θ ) = 1
2 (υ| sin θ | − 1) [see

Eq. (E27)], and F̄(υ, θ ) a constant. This implies an
exponential growth of 1/Fx with κ when Ď is neglected.
For υ > 3, the integral becomes divergent for Ď = 0, and the
naïve scaling fails.

To see what happens for υ > 3, we deduce from the above
discussion that the integral in Eq. (114) becomes dominated
in this case by large κ � 1. Then we approximate sinh κ

2 ∼
eκ/2, and use the asymptotic form of Fx in Eq. (115). We must
then distinguish two cases. If α < 1, the κ integral converges,
even for Ď(T ) → 0, and we obtain, in the latter limit, κL ∼
T−1. When α > 1, we must be more careful. Successively per-
forming the changes of variables u = e−κ , u = vĎ(T )α(υ,θ )−1

and v = w[−α(υ, θ )−1 ln Ď(T )]−α(υ,θ )−1
, and a saddle-point

procedure assuming α > 1, we arrive at (see Appendix E4)

κL ∼ 1

T
Ď(T )α

−1
0 −1

[−α−1
0 ln Ď(T )

]4−α−1
0 I0(υ ), (116)

where α0(υ ) = α(υ, 0) = (υ − 1)/2 > 1, I0(υ ) =´ +∞
0 dw 1

wα0 F0(υ,0)+1 . This entails, up to logarithmic
corrections, the result quoted in Eq. (5),

κL ∼
{

T−1 for υ < 3,

T 3−8(υ−1)−1
for υ > 3.

(117)
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We see that the 1/T high-temperature behavior of κL changes
for υ > 3 to a power law with an exponent that continuously
depends upon υ, and even changes sign: for υ > 11/3, the
conductivity increases with increasing temperature at high
T . We indeed recover this nontrivial feature numerically; see
Fig. 1.

Note that this behavior is all obtained within the linearized
phonon and magnon models, and thus eventually changes
when the temperature exceeds for example the Debye energy.

F. Numerical results

1. Implementation

Details about the numerical implementation are given in
Appendix E3. In short, we use C together with (i) the Cu-
bature library to perform the one-dimensional momentum
integrals [appearing in the definitions of D(1)|s

nk , Eq. (87)], (ii)
the Cuba library [26] to perform multidimensional integrals
[three-dimensional for κ

μμ
L , first term in Eq. (32), and in six-

dimensional for 
μν
H , Eq. (107)].

2. Choice of parameters

(i) Polarization vectors. In Eq. (79), L is the trace over the
product of the coupling matrix λ, with matrix elements λαβ ,
and that, S, which determines the structure of the strain tensor
and has matrix elements

Sq;αβ
nk = kα

(
ε
β

nk

)q + kβ
(
εαnk

)q

√
ωnk

. (118)

Values of (n,k) such that this factor vanishes correspond to
phonons which are not coupled to the magnons, and whose
longitudinal conductivity is solely driven by D̆nk, i.e., other
scattering effects. While this may indeed happen in prac-
tice, to highlight the effects of phonon-magnon scattering we
choose a basis of polarization vectors (ε0,k, ε1,k, ε2,k ) such
that this is never the case (at least for α = β, as with �1..5

which are much larger than �6,7).
These polarization vectors enforce εn,−k = ε∗nk = −εnk

(so that Sq;αβ
n,−k = Sq;αβ

nk = −S−q;αβ
nk ) as well as the tetrag-

onal symmetry of the crystal, as required by the general
theory of elasticity [27]; explicit expressions are given in
Appendix E 2 b.

(ii) Extrinsic phonon scattering rate. For similar reasons,
the extrinsic phonon scattering rate is taken to be D̆nk → γext,
a constant independent of (n,k) and small compared with
the typical Dnk as soon as T > T �

� (see Sec. V E 2). In very
clean monocrystals and in the absence of any other phonon
scattering events, γext ∼ vph/L reduces to the rate at which
phonons bounce off the boundaries of the sample (of size L).

(iii) Phonon dispersion. The phonon dispersion relation
is chosen linear, n-independent and isotropic, ωnk = vph|k|,
so that the different regimes of scaling exponents x appear
clearly.

3. Units and numerical values

We express our numerical results in units where h̄code = 1,
kcode

B = 1, vcode
ph = 1 and with unit lattice spacing acode. Then,

the mass of the unit cell Muc is expressed in units of M0 =

TABLE V. Table of units of velocity v0, distance a0, rate γ0, mass
M0, temperature T0, energy ε0, inverse susceptibility χ−1

0 , coupling
�0, and thermal conductivity κ0 used in Table VI.

v0 a0 γ0 M0 T0 ε0 χ−1
0 �0 κ0

vph a
vph

a

h̄
vpha

h̄vph

akB
kBT0 ε0a

2 ε0
a

kBvph

a2

h̄
vpha

and is typically large—of the order Muc ∼ 104M0. T is

expressed in units of T0 = h̄vph

akB
and should verify T/T0 � 1 so

that the assumption of linearly dispersing phonons is correct.
Correspondingly, we can define an energy ε0 = kBT0, and the
isotropic part of the exchange J is expressed in units of ε0.

The magnon velocity is fixed according to linear spin wave
theory, which gives vm = 2

√
dJSa/h̄, with J the isotropic

magnetic exchange constant. We take d = 2 and S = 1/2;
moreover, it is known that for S = 1/2 there is a renormaliza-
tion factor Z ≈ 1.2 enhancing the velocity, so that vm/vph =√

2ZJ/ε0 ≈ 1.7J/ε0 in our units. Since, for isotropic ex-
change, χ = 1

4a2J , we also take χ−1
code = 4(J/ε0).

Spin-phonon couplings �1..7 are expressed in units of
ε0/a = h̄vph/a

2. We describe a possible microscopic mech-
anism for spin-strain coupling in Appendix F1, where we
show that �1..5 typically arise as derivatives of the isotropic
magnetic exchange constants. Since the latter ultimately arises
from the overlap of atomic wave functions, which vary over
distances of the order aB the Bohr radius, we expect �1..5 ∼
J/aB. Meanwhile, �6,7 come from anisotropic exchanges and
are thus expected to be considerably smaller.

Since the differences �
(ξ )
1,2 −�

(ξ )
3 and �

(ξ )
4 −�

(ξ )
5 are due

to anisotropic exchanges, they are chosen a fraction of a
�

(ξ )
1..5. Since these magnetoelastic couplings typically arise as

derivatives of magnetic exchange, we also take �
(m)
i ≈ −�

(n)
i

for i = 1..7; see Appendix F1 for a detailed derivation.
Scattering rates Dnk and γext are expressed in units of γ0 =

vph/a, and we assume γext to be small, of the order of 1/L
with L the size of the sample—typically γext ∼ 10−7vph/a.
Finally, thermal conductivities are expressed in units of κ0 =
kBvph/a

2. All these units are summarized in Table V.
For numerical calculations, we kept most dimensionless

materials parameters (e.g., the ratio of vm and vph) fixed and
constant, with the values given in Table VI. Those parameters
for which we explore a given range of values are given in
the captions of the figures in the following subsections. The
fixed values are loosely inspired by copper deuteroformate
tetradeuterate (CFTD), a square lattice S = 1/2 antiferromag-
net which has been intensively studied via neutron scattering
[28–30] due to its convenient scale of exchange which suits
such measurements. For our purposes, CFTD has the de-
sirable attribute that the magnon and phonon velocities are
comparable (based on an estimate of the sound velocity from
the corresponding hydrate [31]), which creates a significant
phase space for magnon-phonon scattering. By contrast, in
La2CuO4, vm is much larger than vph. Finally, note that the
following scaling relations for κL,

κL
({�(ξ )

1,..,7}, γext
) = ζ 2

0 κL
({ζ0�

(ξ )
1,..,7}, ζ 2

0 γext
)
, (119)
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TABLE VI. Numerical values of the fixed parameters used in all numerical evaluations, expressed in the units given in Table V. The
upper and lower entries for my

0 and mz
0 correspond to the two cases for calculating 


xy
H and 
xz

H , respectively. υ = vm/vph is a dimensionless
multiplier used to reproduce the effect of a varying magnetic exchange scale, which mainly impacts vm, χ,�

ξ
i . In the plots, we use the values

υ = 2.5, 5, 10.

vm vph χ−1 n0 a Muc mx
0 my

0 mz
0 �0 �1

0.0 0.05
υ 1.0 2.08υ 1/2 1.0 8× 103 0 0.2 0.04

0.05 0.0

ξ �
(ξ )
1 �

(ξ )
2 �

(ξ )
3 �

(ξ )
4 �

(ξ )
5 �

(ξ )
6 �

(ξ )
7

n = 0 4.8υ 4.0υ 5.6υ 4.0υ 4.8υ 0.24υ 0.32υ

m = 1 −4.0υ −4.8υ −5.6υ −4.8υ −4.0υ −0.32υ −0.24υ

and for 
H ,


H
({�(ξ )

1,..,5}, {�(ξ )
6,7},my,z

0

)
= ζ−3

1 ζ−1
2 ζ−1

3 
H
({ζ1�

(ξ )
1,..,5}, {ζ2�

(ξ )
6,7}, ζ3my,z

0

)
+ O

((
my,z

0

)3(
�

(ξ )
6,7

)3)
, (120)

hold for any rescaling factors ζ0,..,3. Equations (119) and (120)
make it possible to extrapolate results from our calculations
for values of the parameters which are not explicitly explored
in Table VI and Figs. 4(a), 4(b), 2(a), and 2(b).

4. Results for κL

Numerical results for κL(T ) are displayed in Figs. 2(a) and
2(b) at fixed υ = vm/vph = 2.5.

Figure 2(a) shows plots of κL(T ) for several values of
the extrinsic scattering γext and fixed υ = vm/vph = 2.5. This
figure exhibits all the behaviors described in Secs. V E 1 and
V E 2, with the extra feature that here there are two crossovers

temperatures, T �
�,0 and T �

�,1 defined by the two different
magnon gaps �0,�1 whose values we give in Table VI. These
are more clearly visible in Fig. 2(b), where we show κL(T ) in
a small window of low temperatures and for smaller values
of γext.

Four scaling regimes can then be identified:
(i) For T � T �

�,1, only extrinsic scattering contributes to the
full phonon scattering rate, and κL ∝ T 3/γext.

(ii) For T �
�,1 � T � T �

�,0, both the extrinsic and the x = −1
phonon-magnon (only in the � = 1 valley) scattering rates
contribute with the same scaling exponent, yielding κL ∝ T 3

with a smaller proportionality coefficient than in the first
regime.

(iii) For T �
�,0 � T � T �

λ , both the extrinsic and the x = −1
phonon-magnon (now in both valleys) scattering rates con-
tribute with the same scaling exponent, yielding κL ∝ T 3 with
yet a smaller proportionality coefficient.

(iv) For T > T �
λ , the x = +1 phonon-magnon scattering

rate is dominant and yields κL ∝ T−1. Note that T �
λ is defined

(a) (b)

FIG. 2. Longitudinal thermal conductivity κL (in units of κ0 = kBvph/a
2) with respect to temperature T [in units of T0 = h̄vph/(akB)], for

four different values of γext . (a) γext = 1× 10−z(vph/a), z ∈ �4, 7�, from darker (z = 4) to lighter (z = 7) shade. The dashed gray line indicates
the evolution of the crossover temperature T �

λ as a function of γext . Inset: log-log plot; the scaling behaviors are consistent with the analysis
presented in the text. The inset is reproduced in Appendix G. (b) γext = 1× 10−z(vph/a), z ∈ �6, 9�, from darker (z = 6) to lighter (z = 9)
shade. The two crossover temperatures T �

�,1 and T �
�,0 are defined in the text up to a prefactor; here we identify the corresponding features in κL

but do not indicate specific values of T . See Appendix G for a log-log plot.
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in Eq. (100) in the D̆nk = 0 case; here by T �
λ we mean the

more general crossover temperature in the presence of a finite
D̆nk = γext.

The exponents quoted above are found with very good
accuracy from a log-log scale plot [see inset of Fig. 2(a) and
Appendices], regardless of the value of γext; in that sense these
exponents are universal. The influence of (nonuniversal) γext

on the results of Fig. 2(a) is essentially threefold:
(i) Since the full phonon scattering rate is Dnk = γext +

D(1)
nk , unsurprisingly κL(T ) is always a decreasing function of

γext.
(ii) The “bumps” at T ∼ T �

�,� come from the fact that
the x = −1 phonon-magnon scattering rate is much larger
than γext as soon as the gap permits this scattering pro-
cess; therefore, for large enough γext, this feature disappears.
More precisely, one should compare γext with Dnn,� :=
η2 f 2��/Muc, where the dimensionless parameters η, f are
defined by λnn � ηλmm and �1..5 � f J/a. The first bump is
noticeable iff γext � Dnn,1, and the second bump is noticeable
iff max(γext,Dnn,1) � Dnn,0.

(iii) Since γext and the λnn coupling lead to the same scaling
exponent, the T ∼ T �

λ crossover results from a competition
between λmm on the one hand and (γext, λnn) on the other; thus,
the larger γext, the greater the dependence of T �

λ on γext, and
T �
λ (γext ) is an increasing function of γext.

Finally, Fig. 1 shows plots of κL(T ) for several values of the
velocity ratio vm/vph = υ at fixed γext = 10−6. In particular,
we recover, at T � T �

λ , the particularly nontrivial behavior
described in Sec. V E 5; namely, that for all υ values greater
than υ = 3 the high-temperature behavior of κL goes like
T 3−8(υ−1)−1

[Eq. (117)] and the exponent indeed changes signs
at υ = 11/3, i.e., the conductivity increases with increasing
temperature for υ > 11/3.

5. Results for �H

We evaluated numerically 

μν
H for both μν = xy and xz,

in both cases with a net magnetization m0 oriented along
ρ, the axis perpendicular to the Hall plane μν. Results are
presented in Fig. 3. Here the dashed straight lines on the
double logarithmic scale indicate the expected T 4 scaling.

This behavior is consistent with the arguments given in
Sec. V E 4, especially Eq. (108), with d = 2-dimensional
magnons and scaling exponent x = +1, corresponding to the
temperature regime where isotropic exchange dominates over
the phonon-magnon coupling. We expect from Eq. (102) that
deviations from this scaling behavior would be observed at
lower temperatures, not investigated here.

We emphasize that the numerical values of 

xy
H and 
zx

H
are of the same order of magnitude. This is remarkable in a
layered system which has entirely different magnon dynamics
in the xy and xz planes, in this case where magnons are
explicitly two-dimensional, carrying energy only within xy
layers. It can be understood from the fact that here phonons
are isotropic, carrying energy in all three directions, and that
including T -odd scattering exists in all directions, therefore
allowing a Hall effect in both the xy and xz directions.

Numerically evaluating the dependence on υ = vm/vph of

H, we find that |
xy

H /
xz
H | < 1 for all the values of υ studied,

and that the prefactors of 

xy
H , 
xz

H are rapidly suppressed for

FIG. 3. Hall resistivities 

xy
H (T )/
0 and 
xz

H (T )/
0 for three val-
ues of υ = vm/vph. The low temperature saturation of 
xz

H (T )/
0

observed for υ = 10 is due to the nonnegligible contributions of
the λnn term in that range. This is confirmed by the data shown in
empty blue diamonds, which is the result of calculations at the same
value of vm/vph = 10 and approximately the same coupling constants
as the full blue diamonds, except that λnn = 0 there (the values of
λmm are also slightly different but, importantly, the values of λmn are
unchanged).

large υ, as shown in Fig. 3. From a simple analysis, we expect
|
xy

H /
xz
H | ∝ 1/υ for large υ. The reason for the overall sup-

pression of the Hall resistivity with increasing υ is also clearly
due to the diminishing phase space for scattering, but we have
not obtained the exact dependence analytically. Finally, we
note that for our choice of antiferromagnetic order along the
x̂ axis in this model and within linearized spin-wave theory,



yz
H = 0.

6. Results for Dnk

Figure 4(a) shows the angular dependence of Dnk.
Throughout this section, we use k = k(cosφûx + sin φûy),
with φ ∈ [0, 2π [, and kz = k cos θ with θ ∈ [0, π ]. Note that,
in turn, k2 = k2 sin2 θ . Also, since all the results are invari-
ant under kz →−kz i.e., θ → π − θ , we plot results for θ ∈
[0, π/2] only.

(i) In-plane φ(k) angular dependence. We see from
Fig. 4(a) that phonon-magnon scattering is typically larger for
values of φ(k) associated with high-symmetry axes of the sys-
tem, i.e., φ = 0 mod[π/2]. This is inherited from the structure
of L = Tr[λTS] in Eq. (79), which enters the magnetoelastic
coupling, Eq. (69). The latter is by definition invariant under
all symmetries of the crystal, so that components of the strain
tensor couple to functions of the magnetization fields m,n
with the same symmetries.

Now, while the symmetry group of the crystal structure is
tetragonal, the C4 symmetry is spontaneously broken by the
antiferromagnetic order along the x axis, while the C2 and
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FIG. 4. Diagonal scattering rate D(1)
nk /γ0 at fixed temperature T = 0.5T0 and in polarization n = 0. (a) as a function of θ (k) =

arccos(kz/|k|) ∈ [0, π/2] (horizontal axis) and φ(k) = Arg(kx + iky ) ∈ [0, 2π ] (vertical axis) for fixed |k| = 0.5/a. (b) as a function of
θ (k) = arccos(kz/|k|) ∈ [0, π/2] (horizontal axis) and |k|a (vertical axis) for fixed φ(k) = 0. Other parameter values are explored in
Appendix G.

mirror symmetries are preserved when the magnetic field is
along the z axis. More precisely, how does the C4 symmetry
(as acting on the α, β indices) break? Since the S factor in
Eq. (79) has the same structure as the strain tensor itself,
it preserves C4; therefore, the latter can only be broken in
the λ factor. Let us focus on the λmm, λnn cases, since these
coefficients can be nonzero in the absence of a net mag-
netization m0. A broken C4 symmetry then means that 0 �=
λ′ξ,a := λxx

aa;ξξ − λ
yy
aa;ξξ . By inspection of Eqs. (70) and (73),

one sees that there are two ways the latter can be nonzero:
(1) in the (ξ = n) channel, λ′n,a is proportional to anisotropic
exchanges; and (2) in the (ξ = m) channel, λ′m,a contains both
isotropic and anisotropic exchange constants, and is conse-
quently much larger than λ′n,a. From this analysis, it follows

that the deviation from C4 symmetry as captured in D(1)
nk by

λ′ξ,a is largest for values of |k| where the λmm contributions
dominate over the λnn ones, i.e., at large |k| [recall Eq. (97)].
One can check that this is indeed the case, as is shown in
Appendix G.

(ii) Out-of-plane θ (k) angular dependence. The out-of-
plane angular dependence illustrates quite clearly the dynam-
ical constraints satisfied by Dnk, as outlined in Sec. V B 2. By
inspection of Eq. (65), we define

θ− = arctan
(
v−1

ph

√
v2

ph − v2
m

)
, (121)

θ
(1)
+ (|k|) = arcsin

(
v−1

m

√
v2

ph − 4�′/|k|2
)
, (122)

θ
(2)
+ (|k|) = arcsin

(
v−1

m

√
v2

ph − 4�/|k|2
)
, (123)

where �′ = max(�0,�1). Note that outside the domain of
definition of √. . ., by continuity one fixes θ

(1,2)
+ := 0. Fig-

ure 4(a) can then be divided into four areas as follows:
(a) The vertical black band at angles θ (k) ∈ [θ (1)

+ (|k|), θ−]
corresponds to values of (kz, |k|) such that energy and
momentum conservation cannot be satisfied simultaneously
because of the magnon gap �; therefore, D+

nk = 0 = D−
nk.

(b) For angles θ (k) > θ−, scattering of the “ph+m → m”
type becomes possible, i.e., D− > 0. Meanwhile, following
Eq. (65), D+ = 0.

(c) Conversely, for θ (k) < θ
(2)
+ (|k|), scattering of the “ph

→ m+m” type becomes possible, i.e., D+ > 0, while D− =
0.

(d) For θ ∈ [θ (2)
+ , θ

(1)
+ ], scattering of the “ph→m+m” type

is possible only in the valley with the smallest gap, while in
the other no scattering can happen; therefore, in that region
D+ > 0 but its value drops (without vanishing a priori) at the
interface θ (k) = θ

(2)
+ (|k|).

(iii) Dependence on |k|. In Fig. 4(b), we show the depen-
dence of Dnk as a function of the norm |k| and the out-of-plane
angle θ . This plot displays divergences near the singular
lines θ

(1,2)
+ , θ−, which can be attributed to the thresholds for

magnon scattering just above the gaps.
The angular width δθ (k) of the two black and darker

regions bounded from the right by θ−, where scattering is for-
bidden in at least one of the two valleys, varies with |k|. From
Eq. (65), we see that this width scales like δθ ∼ (��/vph|k|)2.
These regions extend down to |k| = 0, reflecting the fact that
phonons with too little energy are unable to excite magnon
pairs. The momentum magnitude thresholds for the excitation
of magnon pairs are naturally given by k1 = 2�/vph and
k2 = 2�′/vph.

7. Results for W�
nkn′k′

Although the angular dependencies of the W
�,qq′
nkn′k′ skew-

scattering rates are more intricate than those of Dnk, a few
general remarks can be made. In particular, in Fig. 5, where
we plot W�,−+ as a function of θ and ϕ at fixed |k′| = 0.8/a,
kx = 0.2/a, ky = 0, kz = 0.1/a (and temperature T = 0.5T0),
we have:

(a) Although kz �= 0, we can still take advantage of the
k′z ↔ −k′z symmetry, and it is sufficient to consider θ (k′) ∈
[0, π/2]. This comes from the fact that, for purely planar
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FIG. 5. Skew-scattering rate W
�,−−
nkn′k′/γ0 as a function of θ (k′) ∈

[0, π/2] (horizontal axis) and ϕ(k,k′) = φ(k′)− φ(k) (vertical
axis) for fixed |k′| = 0.8/a, kx = 0, ky = 0.2/a, kz = 0.1/a, m0 =
0.05ẑ and temperature T = 0.5T0. Other parameter values are ex-
plored in Appendix G. Note that the color bar is not scaled linearly.

magnons, the phonon momenta kz, k′z are not coupled. Mean-
while, there is a priori no ϕ(k,k′) ↔ −ϕ(k,k′) symmetry
except when k is along one of the high-symmetry axes of the
crystal, as is the case here (cf. ky = 0).

(b) The vertical black line at θ (k′) = θ− can still be iden-
tified, and corresponds to magnons being gapped as in D(1)

nk .
However, in W�, the width and position of the gapped (black)
zone now depend also on ϕ(k,k′), due to the second energy
conservation constraint in W� (a feature absent in D(1) where
there is only one energy constraint).

(c) In Appendix G, we explore other orientations of in-
plane (kx, ky), and show that the features of W

�,qq′
nkn′k′ quoted

above still hold. This is consistent with the above observations
being consequences of the energy conservation constraints,
which depend only of the relative angle φ(k)− φ(k′) since
both phonon and magnon dispersions are isotropic in the xy
plane.

(d) In Fig. 5, W
�,−+
nkn′k′ also seems to vanish along cer-

tain special lines, especially those located at ϕ(k,k′) =
0, π/2, π, 3π/2, 2π . These features are not independent of
the orientation φ(k); in fact, they are salient features of the
in-plane momenta being along the high-symmetry axes of the
crystal. Thus, they do not result from energy conservation
constraints, but from subtle effects in the structure of Eq. (66).

Finally, we point out that the values of W� in Fig. 5 are
small compared to the values of D(1) obtained for similar val-
ues of momenta. This can be understood from the combination
of (1) the anti-detailed-balance structure of W�, from which
it follows that W

�,qq′
nk,n′k′ +W

�,qq′
n−k,n′−k′ = O(m0) as shown in

Sec. IV A, and (2) the C2 symmetry of the system around the
ẑ axis, which (since for planar magnons kz ↔ −kz is a sym-
metry) entails W�,qq′

nk,n′k′ =W
�,qq′
n−k,n′−k′ . Thus, W�,qq′

nk,n′k′ = O(m0)
itself. This, together with the analysis given in Sec. V C 4
showing that terms which are odd in m0 are also proportional

to anisotropic couplings, implies that W�,qq′
nk,n′k′ is indeed typi-

cally much smaller than D(1)
nk .

G. Discussion of the results in absolute scales

Here we discuss the absolute scales of κL, 
H and κH we
obtain using the parameter values from Table VI and those
in the figure captions. First, it is instructive to estimate the
basic scales for thermal conductivity and temperature derived
from phonons, which define the scales for our numerical plots.
Using the phonon velocity for CFTD, vCFTD

ph = 4× 103 m s−1

and its in-plane lattice parameter aCFTD = 5.7× 10−10 m, we
find (see Table V),

(a) κCFTD
0 = 0.17 W K−1 m−1,

(b) T CFTD
0 = 54 K,

(c) γ0 = 7.0× 1012 Hz.
Note that these scales do not vary greatly for many

materials. For example, in La2CuO4, we find κLCO
0 =

0.38 W K−1 m−1 and T LCO
0 = 80 K. Importantly, the scale

κ0 is order one in SI units, which allows a roughly direct
comparison with most data.

Next we can use the actual computed values to see what
this mechanism predicts for the “test” material CFTD. We
have at T ≈ 0.5T0 ≈ 27 K,

(a) κCFTD
L ≈ 125κ0 ≈ 22 W K−1 m−1 for any of the γext

values presented in Fig. 2(a),
(b) for γext = 10−4γ0 = 7.0× 108 Hz, T �,CFTD

λ ≈ 0.3T0 ≈
16 K,

(c) for γext = 10−7γ0 = 7.0× 105 Hz, T �,CFTD
λ ≈ 0.1T0 ≈

5.4 K,
(d) 
CFTD

H ≈ 2 · 10−5
0 ≈ 1.2× 10−4 K m W−1,
(e) |θCFTD

H | ≈ 2.6× 10−3,
(f) |κCFTD

H | ≈ 5.8× 10−2 W K−1 m−1.
Note that κL, κH , and θH all depend on the choice of values

for γext.

VI. CONCLUSIONS

A. Summary of results and method

In this paper, we studied the problem of scattering of
phonons due to a weak intrinsic (i.e., without disorder) cou-
pling to a fluctuating field Q, which is itself a quantum
mechanical degree of freedom. Using the T -matrix formalism,
we derived the scattering rates of phonons up to fourth order
in coupling. The result is expressed generally, without any
assumptions on the nature of the fluctuating field (i.e., it can be
highly non-Gaussian), in terms of correlation functions of Q.
Using these scattering rates in the Boltzmann equation leads to
general expressions for the thermal conductivity tensor, and,
when symmetry allows, a nonvanishing thermal Hall effect. A
central result is that the skew scattering of phonons (which
we define sharply as a scattering component which obeys
an anti-detailed-balance relation), and hence the thermal Hall
conductivity, is proportional to a four-point correlation func-
tion of Q, which we give explicitly. We highlight throughout
the various constraints due to symmetry (both exact and ap-
proximate), unitarity, and thermal equilibrium.

As an illustration of the method, we applied these re-
sults to the case where the fluctuating field Q arises from
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spin wave (magnon) excitations of an ordered two-sublattice
antiferromagnet. We model the latter via standard spin
wave theory, for which phase space constraints imply that
the dominant contribution arises from bilinears in the cre-
ation/annihilation operators of the spin waves. We obtain a
general formula for the second- and fourth-order scattering
rates in terms of the dispersion of phonons and magnons,
and the spin-lattice coupling constants. To obtain concrete
results, we focus in particular on the limit in which the
relevant magnons are acoustic, and we assume tetragonal
symmetry and two-dimensionality of the magnons (but we
retain the three-dimensionality of the phonons). Under these
assumptions we obtain all the (seven) symmetry-allowed spin-
lattice coupling interactions, and calculate the second- and
fourth-order scattering rates, and thereby the thermal conduc-
tivity, including a phenomenological parallel scattering rate of
phonons due to other mechanisms, e.g., boundary and impu-
rity scattering. The final formulas are evaluated via numerical
integration for representative model parameters. We observe a
number of distinct scattering regimes, which we identify with
features in the longitudinal thermal conductivity. We obtain a
nonvanishing thermal Hall effect, in agreement with general
symmetry arguments. Please see Sec. V for details.

B. About (anti-)detailed balance

The detailed-balance and anti-detailed-balance relations,
Eq. (4), played an important role in our discussion of the
thermal Hall effect. A few comments on their nature and
implications are appropriate.

Quasiequilibrium assumption: These detailed-balance
relations arise (as generalizations of the Kubo-Martin-
Schwinger relations [32]) from the assumption that the Q
fields relax to equilibrium between two scattering events. This
is typical in a linear response regime, when transport is dom-
inated by the contribution of well-defined quasiparticles and
drag effects are negligible.

Role of the self-energy: Within our treatment, the relations
we obtain rely on the fact that, at the order considered, the
equilibrium phonon distribution is the unperturbed one (this
is shown in particular in Appendix C3). At a general order in
perturbation theory, this is not guaranteed a priori, because
the phonons are renormalized by an interaction-induced self-
energy whose real part shifts the dispersion relation and hence
the equilibrium populations. However, within the quasiparti-
cle picture, it seems likely that this assumption of a preserved
spectrum of bare phonons is not necessary, and the (anti-
)detailed-balance relations should hold for the renormalized
phonon quasiparticles.

No two-point contributions to the Hall effect: The detailed-
balance relations enforce that all terms involved in the
calculation of the thermal Hall conductivity which contain
two-point correlation functions of the Q fields cancel each
other and therefore provide no contributions to κH . This relies
on the linear-response limit: The cancellation occurs when
we expand the collision integral to linear order in the δN
out-of-equilibrium populations.

C. Relation to other work

While we are not aware of any general results on the
intrinsic phonon Hall conductivity due to scattering, there
are a number of complementary theoretical papers as well as
some prior work which overlap a small part of our results.
The specific problem of phonons scattering from magnons
was studied long ago to the leading second order in the cou-
pling by Cottam [24]. That work, which assumed the isotropic
SU (2) invariant limit, agrees with our calculations when these
assumptions are imposed. The complementary mechanism of
intrinsic phonon Hall effect due to phonon Berry curvature
was studied by many authors [10,33–35], including how the
phonon Berry curvature is induced by spin-lattice coupling
in Ref. [11]. The majority of recent theoretical work has
concentrated on extrinsic effects due to scattering of phonons
by defects [36–39]. The pioneering paper of Mori et al.
[9] in particular recognized the importance of higher-order
contributions to scattering for the Hall effect, and is in some
ways a predecessor to our work.

D. General observations

While often times scattering is regarded as a process
which destroys coherence and suppresses interesting dynami-
cal phenomena, our work reveals that higher-order scattering
probes highly nontrivial structure of correlations. Due to the
constraints of detailed balance, the skew scattering, appro-
priately defined, contains only contributions of O(Q4) and
no terms of lower order in Q, and so can in principle di-
rectly reveal subtle structures in the quantum correlations,
without a need for subtraction. Measurements of such skew
scattering of phonons—which a priori include but are not
limited to the thermal Hall effect—might therefore be consid-
ered a probe of the quantum material hosting those phonons.
Taking advantage of this potential opportunity is a chal-
lenge to experiment, as well as to theory, which should
interpret the results and predict systems to maximize the
effects.

We would like to comment on the analysis of thermal
Hall effect experiments in quantum materials. As is well-
known, thermal Hall conductivity is generally a small effect.
In particular, the dimensionless measure of the Hall angle,
θH = tan−1(κxy

H /κxx ) is always much less than π/2 by two or
more orders of magnitude, even in systems where thermal Hall
effect is lauded as “huge”. (An actually large thermal Hall
angle [θH = O(1)] is obtained only the quantum thermal Hall
regime when phonons are ballistic and edge states dominate
over the bulk phonon contributions, which is extraordinarily
difficult to achieve.) For small θH , the skew-scattering con-
tributions are perturbative to the thermal conductivity, i.e.,
proportional to the latter rate 1/τskew. Dimensional reasoning
implies that therefore κH ∼ τ 2/τskew, where τ is the standard,
non-skew-scattering time. This means that the thermal Hall
conductivity has a very strong dependence on τ , which is often
sample-dependent and of course grows with sample quality,
implying that the thermal Hall conductivity is larger in cleaner
samples.

This dependence also means that κH itself, as well as the
dimensionless Hall angle θH ∼ κH/κL depend not only on
the skew scattering but also the ordinary scattering. Since the
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latter receives contributions from many different mechanisms,
which may themselves have strong temperature and field de-
pendence, neither κH itself nor κH/κL are ideal quantities
to examine to probe the physics of skew scattering. Instead,
we suggest that the thermal Hall resistivity, 
H ≡ −κH/κ2

L ,
is the quantity which is most easily interpreted physically.
This quantity is independent of the non-skew scattering, at
least when the latter is largely momentum-independent, and is
always independent of the overall scale of non-skew scatter-
ing. The temperature and field dependence of 
H is generally
expected to be simpler than that of the other quantities, at least
when phonon skew scattering is the dominant mechanism for
the Hall effect. This expectation is true not only when the skew
scattering is intrinsic, as studied here, but also for extrinsic
skew scattering due to defects.

E. Future directions

Our general formalism can be applied very broadly. In
particular, because it does not require any assumptions on
the nature of the Q correlations, it may be applied directly
to exotic states, to quantum or classical critical points, or to
situations in which the Q field is a composite operator. We
will present an application to fermionic systems, including
the spinon Fermi surface spin liquid, in an upcoming paper.
Apart from other specific applications which may be easily
imagined, it would also be interesting to explore further how
general properties of four-point correlations of Q may be
detected via phonon skew scattering. In particular, the cor-
relations which enter the scattering rates are not obviously
time-ordered, and we wonder if these might contain some
information on many-body chaos (Ref. [3]).

Despite the generality of our formulation, it is still
specialized in several ways. We consider only scattering con-
tributions to the phonon Boltzmann equation. In general, the
interactions with fields Q will both induce scattering and
modify the dynamics of the phonons in a nondissipative way,
e.g., induce phonon Berry phases [11]. While we believe it is
usually the case that scattering is dominant, a more complete
treatment including both effects would be of interest. Fur-
thermore, in this paper we fully “integrate out” the electronic
degrees of freedom, and follow the distribution function of
the phonons only. More generally, there are coupled modes
of phonons and electronic states, and one can consider the
distributions for these coupled modes. One expects such ef-
fects are important largely when there are resonances between
phonons and electronic excitations. All these problems could
be addressed via a Keldysh treatment of coupled quantum
kinetic equations, which is an interesting subject for future
work.
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APPENDIX A: STRAIN TENSOR

In Sec. V C we employ a continuum model of the spin-
phonon system. The phonons themselves correspondingly
derive from the theory of continuum elasticity, which has the
Hamiltonian density

Hel = 1

2ρ
#2

μ +
1

2
Cαβγ δEαβEγ δ. (A1)

Within this Appendix, ρ is the mass density (we will take
ρV = MucNuc) and Cαβγ δ is a rank four tensor of elastic
constants, which can be taken to satisfy Cαβγ δ = Cβαγ δ =
Cαβδγ = Cγ δαβ . The canonical variables of this classical field
theory are the displacement field uμ and its canonically con-
jugate momentum #μ. Due to translational and rotational
symmetry, the Hookian potential energy is expressed solely
through the strain tensor,

Eαβ (R) = 1
2 (∂αuβ + ∂βuα ). (A2)

By construction the strain is a symmetric tensor in its two
indices, i.e., ET = E . Define the Fourier transforms

uμ(x) = 1√
V

∑
k

eik·xuμ,k, #μ(x) = 1√
V

∑
k

eik·x#μ,k.

(A3)

Here since uμ(x) and #μ(x) are real fields, we have un,−k =
u∗nk and #n,−k = #∗

nk. The Fourier space fields satisfy the
commutation relations

[#μ,k, uν,k′ ] = iδμνδk+k′,0. (A4)

We obtain

Hel =
∑

k

{
1

2ρ
#μ,−k#μ,k + 1

2
Kαβ (k)uα,−kuβ,k

}
, (A5)

with

Kαβ (k) = Cαγβδkγ kδ. (A6)

The matrix Kαβ is by construction real and symmetric, and
hence has real eigenvalues Kn, which additionally must be
positive for stability. We define the eigenvalues and eigenvec-
tors εαn via

Kαβ (k)εβn (k) = Kn(k)εαn (k), (A7)

with εαn (−k) = [εαn (k)]∗ and the standard normalization∑
α[εαn (k)]∗εαn′ (k) = δnn′ . Now we make the change of basis

uμk =
∑

n

εμn (k)unk, #μk =
∑

n

εμn (k)#nk, (A8)

which gives

[#nk, un′k′] = iδnn′δk+k′,0, (A9)
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and

Hel =
∑
n,k

{
1

2ρ
#n,−k#n,k + 1

2
Kn(k)un,−kun,k

}
. (A10)

Now we can finally define creation/annihilation operators

unk = 1√
2

1

(ρKn)1/4
(ank + a†

n,−k ),

(A11)

#nk = i
1√
2

(ρKn)1/4(ank − a†
n,−k ),

with canonical boson operators

[ank, a†
n′k′] = δnn′δk,k′ , (A12)

and the Hamiltonian

Hel =
∑
nk

ωnka†
nkank, (A13)

and

ωnk =
√
Kn(k)

ρ
. (A14)

Having finally arrived at the canonical phonon operators, we
recombine the several steps of the above procedure to obtain
the expression for the displacement field,

uμ(x) = 1√
V

∑
nk

1√
2ρωnk

(ank + a†
n,−k )εμnkeik·x. (A15)

Now we can use the definition in Eq. (71) of the strain to
obtain

Eμν (x) (A16)

= 1√
V

∑
nk

1√
2ρωnk

(ank + a†
n,−k )

i

2

(
kμενnk + kνε

μ

nk

)
eik·x.

(A17)

Now let us consider the coupling of the strain to the continuum
spin fluctuations, Eq. (72) of the main text. The full spin-

lattice coupling in three dimensions is written as

H ′
s−l =

∑
z

ˆ
dxdy Eαβ (x)λαβ

ab;ξξ ′n
−ξ−ξ ′
0 ηaξxηbξ ′x. (A18)

Note the sum over discrete 2D layers. We now insert the
Fourier expansion of the strain from Eq. (A16) and the cor-
responding Fourier expansion of the magnetic fluctuations,
which we repeat here:

ηaξx = 1√
A2D

∑
q

ηaξq,ze
iq·x. (A19)

In this equation, and in the rest of this section, we are careful
to denote two-dimensional vectors with an underline. Since
magnetic fluctuations in different layers are taken as indepen-
dent, we do not introduce a z component of the wave vector
for the magnons, and simply leave z explicitly as a layer index
for these fields. Note also the prefactor Eq. (A19) therefore
involves the square root of the two-dimensional area of a
single plane, A2D.

With this in mind, we obtain from Eq. (A18)

H ′
s−l =

1√
V

∑
z

∑
k,p

λ
μν

ab;ξξ ′n
−ξ−ξ ′
0

1√
2ρωnk

eikzz

× i

2

(
kμενnk+kνε

μ

nk

)
(ank+a†

n,−k )

× ηaξ,p− 1
2 k,zηbξ ′,−p− 1

2 k,z. (A20)

From here we can see that

Qnk = i

2
√

V

(
kμενnk + kνε

μ

nk

)
√

2ρωnk

∑
ξξ ′,ab

λ
μν

ab;ξξ ′n
−ξ−ξ ′
0

×
∑

z

∑
p

eikzzηaξ,p− 1
2 k,zηbξ ′,−p− 1

2 k,z. (A21)

Next we use Eq. (74) to express this in terms of canonical bosons:

Qnk =
i
(
kμενnk + kνε

μ

nk

)
4
√

2Vρ ωnk

∑
z

∑
p

∑
qq′

∑
ξξ ′ab

λ
μν

ab;ξξ ′n
−ξ−ξ ′
0 eikzz(−1)ξ (δa−1,ξ+ 1+q

2 )+ξ
′
(δb−1,ξ ′+ 1+q′

2 )iξ+ξ
′

× (χ�δa−1,ξ ,p− 1
2 k

)̃ξ/2(
χ�δb−1,ξ ′ ,−p− 1

2 k

)̃ξ ′/2
bq

p− 1
2 k,δa−1,ξ ,z

bq′

−p− 1
2 k,δb−1,ξ ′ ,z

. (A22)

We now define �1 = δa−1,ξ = 0, 1 and �2 = δb−1,ξ ′ , which is inverted by a = 1+ ξ̃ �1 + ξ̄ and b = 1+ ξ̃ ′�2 + ξ̄ ′. This gives

Qnk =
i
(
kμενnk + kνε

μ

nk

)
4
√

2Vρ ωnk

∑
z

∑
p

∑
qq′

∑
ξξ ′�1�2

λ
μν

ξ̃�1+ξ̄+1,ξ̃ ′�2+ξ̄ ′+1;ξ,ξ ′n
−ξ−ξ ′
0 eikzz(−1)ξ (�1+ 1+q

2 )+ξ
′
(�2+ 1+q′

2 )iξ+ξ
′

× (χ��1,p− 1
2 k

)̃ξ/2(
χ��2,−p− 1

2 k

)̃ξ ′/2
bq

p− 1
2 k,�1,z

bq′

−p− 1
2 k,�2,z

. (A23)

From here, we recognize that Qnk = Q−
nk in Eq. (57), and thereby extract B. We use Vρ = NucMuc.
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APPENDIX B: GENERAL HYDRODYNAMICS
OF PHONONS

Our goal is to derive the thermal current carried by the
phonons,

jμ = 1

V

∑
nk

Nnkv
μ

nkωnk, (B1)

to extract the thermal conductivity tensor. This requires
knowledge of the average phonon populations Nnk, which,
in presence of a gradient of temperature, differ from their
equilibrium values. These populations can be obtained by
solving Boltzmann’s equation

∂t Nnk + vnk ·∇rNnk = Cnk[{Nn′k′ }], (B2)

where the collision integral Cnk[{Nn′k′ }] depends on the popu-
lations in all (n′,k′) states. To solve this equation, we expand
the out-of-equilibrium populations around their equilibrium
value as Nnk = Neq

nk + δNnk. Within linear response, the
perturbations can be considered small and we may expand the
collision integral

Cnk[{Nn′k′ }] = Onk +
∑
n′k′

Cnkn′k′δNn′k′ + O(δN
2
), (B3)

around its value Onk in equilibrium. Since the thermal cur-
rent must vanish in equilibrium, Onk must be zero (we go
back to this statement in Appendix C2c). In Eq. (B3), the
“collision matrix” Cnkn′k′ is defined as the first-order Tay-
lor coefficient, and one neglects the quadratic order in the
perturbation. Formally inverting the collision matrix in the
stationary Boltzmann equation [i.e., Eq. (B1) with ∂t N = 0]
leads to

δNnk = C−1
nkn′k′

ωn′k′

kBT 2
(Neq

n′k′ )
2vν

n′k′∂νT . (B4)

From Eq. (B4) and Fourier’s law, we can identify the compo-
nents of the thermal conductivity tensor:

κμν ± κνμ

2
= − 1

2kBT 2

1

V

∑
nkn′k′

ωnkωn′k′v
μ

nkv
ν
n′k′

×
[
C−1

nk,n′k′ eβωn′k′
(
Neq

n′k′
)2 ± (nk ↔ n′k′)

]
. (B5)

This expression shows that a nonzero phonon Hall conductiv-
ity requires the factor in the second line to be nonzero, which
is equivalent to

Cnk,n′k′ eβωn′k′
(
Neq

n′k′
)2 �= Cn′k′,nk eβωnk

(
Neq

nk

)2
, (B6)

where the constraint is now on Cnk,n′k′ instead of its inverse.
In other words, only the antisymmetric in nk ↔ n′k′ part of
Cnk,n′k′ eβωn′k′ (Neq

n′k′ )
2 contributes to the Hall conductivity.

To proceed further analytically, and invert the scattering
matrix, we the separate diagonal from the off-diagonal parts
in Cnkn′k′ = −δnn′δk,k′Dnk +Mnkn′k′ , and assume that Dnk �∑

n′k′ Mnkn′k′ . This ought to be the case whenever the in-
teractions are small, and/or if other damping processes are
large. Then, C−1

nkn′k′ ≈ −δnn′δk,k′D
−1
nk −Mnkn′k′D

−1
nk D−1

n′k′ . The
antisymmetry in nk ↔ n′k′ condition for the Hall conductiv-
ity mentioned above leads to the fact that the diagonal term
contributes to the longitudinal conductivity, but not to the Hall

part, and translates into

κμν − κνμ

2
=:

1

2kBT 2

1

V

∑
nkn′k′

ωnkv
μ

nk

Dnk

ωn′k′v
ν
n′k′

Dn′k′

×
[
Mnk,n′k′ eβωn′k′

(
Neq

n′k′
)2 − (nk ↔ n′k′)

]
.

(B7)

The longitudinal conductivity is

κμμ = 1

kBT 2

1

V

∑
nkn′k′

ωnkωn′k′v
μ

nkv
μ

n′k′

×
[
δnn′δk,k′

Dnk
+ Mnk,n′k′

DnkDn′k′

]
eβωn′k′

(
Neq

n′k′
)2
. (B8)

Note that we will include all other (diagonal) scattering
processes not taken into account here (e.g., boundary scat-
tering, scattering by impurities, phonon-phonon sccattering,
etc.) by adding a phenomenological relaxation rate D̆nk to the
diagonal of the scattering matrix.

APPENDIX C: FROM INTERACTION TERMS
TO THE COLLISION INTEGRAL

1. General method and definitions

We now aim at deriving an expression for the collision in-
tegral of Boltzmann’s equation using kinetic theory methods.
The probability for the system to be found in a given quantum
state |i〉 = |ip〉|is〉 is governed by the master equation

∂t pipis =
∑
fp fs

[
 fp fs→ipis p fp fs − 
ipis→ fp fs pipis ], (C1)

where we will compute the transition rates 
ipis→ fp fs using
scattering theory. The probability of a phonon state |ip〉 is then
obtained by summing over all possible spin configurations of
the system, pip =

∑
is

pipis . Assuming the phonon and spin
probabilities are independent, i.e., pipis = pip pis , and defining
the transition rates 
 fp→ip =

∑
is fs


 fp fs→ipis p fs between
phonon states only, we obtain the master equation for the
probabilities of phonon states. We may in turn express the
collision integral in the right-hand side of Boltzmann’s
equation, which is given by the time evolution of the
populations in each phonon state |ip〉 through the definition
Cnk[{Nn′k′ }] =

∑
ip

Nnk(ip)∂t pip , in terms of transition rates
between phonon states:

Cnk[{Nn′k′ }] =
∑
ip, fp


ip→ fp[Nnk( fp)− Nnk(ip)]pip, (C2)

where Nnk(ip) = 〈ip|a†
nkank|ip〉 is the number of (n,k)

phonons in the |ip〉 state and Nnk =
∑

ip
Nnk(ip)pip is the

average population. The only phonon states involved in
the sums are those whose populations of (n,k) phonons
are different. Now, to obtain the scattering rates between
spin-phonon states, we use Fermi’s golden rule


ipis→ fp fs = 2π
∣∣Tisip→ fs fp

∣∣2δ(Eipis − E fp fs

)
, (C3)

where the factor Nuc ensures that 
ipis→ fp fs is a finite quantity
in the thermodynamic limit, consistent with the choice of H ′
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as a Hamiltonian density. We use Born’s expansion of the
scattering matrix

Tisip→ fs fp = 〈 fs fp|H ′|isip〉

+
∑
nsnp

〈 fs fp|H ′|nsnp〉〈nsnp|H ′|isip〉
Eisip − Ensnp + iη

+ · · · ,

(C4)

where H ′ is the (perturbative) interaction Hamiltonian
between the phonons and the Q fields, and the η → 0+
appearing in the denominator of the second-order term
ensures causality, which will prove crucial in the following.

To describe the interaction between phonon and spin
degrees of freedom, we introduce general coupling terms
between phonon creation-annihilation operators a(†)

nk and gen-

eral, for now unspecified, fields Q
{q j}
{n j k j} which depend on the

spin structure: denoting a+nk ≡ a†
nk and a−nk ≡ ank, and simi-

larly for the Q operators, Q+
{niki} ≡ Q†

{niki} and Q−
{niki} ≡ Q{niki},

we write the couplings

H ′
[1] =

∑
nk

∑
q=±

aq
nkQq

nk, (C5)

H ′
[2] =

1√
Nuc

∑
nk,n′k′

∑
q,q′=±

aq
nkaq′

n′k′Q
qq′
nkn′k′ , (C6)

where Qqq′
nkn′k′ = Qq′q

n′k′nk = (Q−q−q′
nkn′k′ )† ensures the hermiticity

of H ′
[2]. Here and throughout the manuscript, a square bracket

index, e.g., [p] denotes the number of interacting phonons.
By definition the term H ′

[p] involves p phonon creation-
annihilation operators, and as such typically arises from
microscopic models as the pth spatial derivative of orbital
overlaps. Consequently, we assume H ′

[2] to be of the same
order of magnitude as the square of H ′

[1], that is to say, Qq
nk ∼

λ, Qqq′
nkn′k′ ∼ λ2 with λ a small parameter. In this paper, we

keep only the first two terms of the expansion (i.e., we take
H ′ = H ′

[1] + H ′
[2]).

2. Computation at first Born order

In this subsection we consider only the first term of Born’s
expansion. The transition rates associated with H ′ = H ′

[1] +
H ′

[2] at this order derive from the matrix elements:

T [1]
i→f =

∑
nkq

√
Ni

k,n +
q + 1

2
〈 fs|Qq

nk|is〉I(ip
q·nk−→ fp), (C7)

T [2]
i→f =

1√
Nuc

∑
nk,n′k′

∑
qq′

√
Ni

nk +
q + 1

2

√
Ni

n′k′ +
q′ + 1

2

×〈 fs|Qqq′
nkn′k′ |is〉I

(
ip

q·nk−→
q′ ·n′k′

fp
)
, (C8)

where I(ip
qnk−→ fp) means that the only difference between

|ip〉 and | fp〉 is that there is q = ±1 more phonon of species
(n,k) in the final state. Note that the cases where nk = n′k′
require a formal correction. However, at any given order in the
λ expansion, such terms are smaller than all others by a factor
1/Nuc, where Nuc is the number of unit cells, and therefore
vanish in the thermodynamic limit. In this article we thus

take
∑

nk,n′k′ and
∑

nk �=n′k′ exchangeably, unless we specify
otherwise.

We then compute the squared matrix element. “Cross
terms” such as 〈i|H ′

[2]|f〉〈f|H ′
[1]|i〉 (which are of order λ3)

vanish because 〈ip|Â|ip〉 = 0 for any operator Â containing
an odd number of phonon creation-annihilation operators. At
order λ2, there thus remains only 〈i|H ′

[1]|f〉〈f|H ′
[1]|i〉, and at

order λ4, only 〈i|H ′
[2]|f〉〈f|H ′

[2]|i〉.

a. Terms at O(λ2 )

At order λ2, we have therefore∣∣T [1]
i→f

∣∣2 =∑
nkq

(
Ni

k,n +
q + 1

2

)
I(ip

qnk−→ fp)

×〈is|Q−q
nk | fs〉〈 fs|Qq

nk|is〉. (C9)

We then enforce the energy conservation δ(Ef − Ei) =
δ(qωnk + E fs − Eis ) by writing the latter as a time integral,
i.e.,

´ +∞
−∞ dteiωt = 2πδ(ω), identify A(t ) = e+iHt Ae−iHt , use

the identity 1 =∑
fs
| fs〉〈 fs|, and take the spins in the initial

state to be in thermal equilibrium pis = Z−1e−βEis . Finally,
summing over |is〉 and identifying 〈A〉β = Z−1Tr(e−βH A), we
find

W [1];[1]
nkq = 2π

∑
fs,is
〈is|Q−q

nk | fs〉〈 fs|Qq
nk|is〉pis

× δ
(
qωnk + E fs − Eis

)
=
ˆ ∞

−∞
dt e−iqωnkt

〈
Q−q

nk (t )Qq
nk(0)

〉
β
. (C10)

Note that this calculation, in a time-reversal symmetric sys-
tem, leads to the extra symmetry W [1];[1]

nkq =W [1];[1]
n−kq .

The scattering rate between phonon states, for the one-
phonon interaction term at first Born’s order, then reads



[1];[1]
ip→ fp

=
∑
nkq

(
Ni

nk +
q + 1

2

)
W [1];[1]

nkq I(ip
q·nk−→ fp). (C11)

To arrive at the collision integral, the final step involves
summing over final phononic states fp and taking the average
over initial phononic states ip. We find, the contributions to C
at order λ2 to be

O[1];[1]
nk =

∑
q=±

qW [1];[1]
n,k,q

(
Neq

n,k +
q + 1

2

)
, (C12)

−D[1];[1]
nk =

∑
q=±

qW [1];[1]
n,k,q . (C13)

We will address the constant term O[1];[1]
nk (expected to be zero)

in more detail in Appendix C2c. The collision matrix is clearly
diagonal, i.e., M[1];[1]

nk,n′k′ = 0. Therefore, this λ2 contribution to
C may contribute to the longitudinal conductivity, but not to
the Hall conductivity.

b. Terms at O(λ4)

We address the O(λ4) term in a similar fashion. There, the
energy conservation reads δ(Ef − Ei) = δ(qωnk + q′ωn′k′ +

245139-29



MANGEOLLE, BALENTS, AND SAVARY PHYSICAL REVIEW B 106, 245139 (2022)

E fs − Eis ), and we find



[2];[2]
ip→ fp

= 1

2Nuc

∑
nk,n′k′

∑
q,q′=±

W [2];[2]
nkq,n′k′q′I

(
ip

q·nk−→
q′ ·n′k′

fp
)

×
(

Ni
nk +

q + 1

2

)(
Ni

n′k′ +
q′ + 1

2

)
, (C14)

where

W [2];[2]
nkq,n′k′q′ = 2

ˆ +∞

−∞
dte−i(qωnk+q′ωn′k′ )t

× 〈Q−q−q′
nkn′k′ (t )Qqq′

nkn′k′ (0)
〉
β
, (C15)

and W [2];[2]
nkq,n′k′q′ =W [2];[2]

n′k′q′,nkq, by definition. The resulting colli-
sion integral, up to linear order in the perturbed populations
δN contains the following contributions:

O[2];[2]
nk = 1

Nuc

∑
n′k′

∑
q,q′=±

qW [2];[2]
nkq,n′k′q′

×
(

Neq
nk +

q + 1

2

)(
Neq

n′k′ +
q′ + 1

2

)
, (C16)

−D[2];[2]
nk = 1

Nuc

∑
n′k′

∑
q,q′=±

q

(
Neq

n′k′ +
q′ + 1

2

)
W [2];[2]

nkq,n′k′q′ ,

(C17)

M[2];[2]
nk,n′k′ =

1

Nuc

∑
q,q′=±

q

(
Neq

nk +
q + 1

2

)
W [2];[2]

nkq,n′k′q′ . (C18)

As above, we will address the constant term in Appendix C2c.
The diagonal contribution is of order λ4, and we therefore
expect it to be subdominant compared with the λ2 contribution
from the previous section. Finally, the off-diagonal contribu-
tion is nonzero. However, we will show that its contribution
to Cnk,n′k′ eβωn′k′ (Neq

n′k′ )
2 is purely symmetric under nk ↔ n′k′

and therefore contributes only to the symmetric off-diagonal
conductivity but not to the Hall one—see Eq. (B6).

c. Detailed balance

First, we notice that a change of variables is ↔ fs in
Eq. (C10) leads to the detailed-balance relation

W [1];[1]
nk,q =W [1];[1]

nk,−q e−qβωnk . (C19)

An immediate consequence is that O[1];[1]
nk = 0 if we take

the equilibrium phonon population Neq
nk to be Bose-Einstein’s

distribution, as was physically required. Similarly, for the two-
phonon interactions at first order, we find the detailed-balance
relation

W [2];[2]
nkq,n′k′q′ = e−β(qωnk+q′ωn′k′ )W [2];[2]

nk−q,n′k′−q′ . (C20)

Again, taking Neq
nk to be Bose-Einstein’s distribution implies

O[2];[2]
nk = 0. Moreover, the detailed-balance relation also im-

plies

M[2];[2]
nk,n′k′e

βωn′k′
(
Neq

n′k′
)2 = (nk ↔ n′k′), (C21)

i.e., there are no antisymmetric contributions, and hence no
thermal Hall effect at first Born’s order. While we proved
this explicitly for the one-phonon and two-phonon cases, this

is true in general (along with Onk = 0) for any number of
phonon creation-annihilation operators at first order in Born’s
expansion (see Appendix D 2 c).

d. Extra structure

Independently, by writing

Q−q
nk (t )Qq

nk(0) = 1
2

[
Q−q

nk (t ),Qq
nk(0)

]+ 1
2

{
Q−q

nk (t ),Qq
nk(0)

}
,

(C22)

it is straightforward to show that only the commutator term
contributes to W [1](1)

n,k,q −W [1](1)
n,k,−q. The final expression for the

diagonal of the collision matrix Eq. (C12) takes the form of
the spectral function:

D[1];[1]
nk = −

ˆ +∞

−∞
dte−iωnkt 〈[Q−

nk(t ),Q+
nk(0)]〉

β
. (C23)

In the two-phonon case, such a commutator structure does not
naturally appear, and

D[2];[2]
nk = − 2

Nuc

∑
n′k′

∑
q,q′=±

q

(
Neq

n′k′ +
q′ + 1

2

)

×
ˆ
R

dte−i(qωnk+q′ωn′k′ )t
〈
Q−q−q′

nkn′k′ (t )Qqq′
nkn′k′ (0)

〉
β
,

(C24)

at order λ4 and first Born’s order.

3. Energy shift of the phonons

We now address the constant term Onk appearing in the col-
lision integral, which must vanish because there is no current
in equilibrium. Its cancellation is equivalent to a redefinition
of the energies of the phonons, due to their interaction with
the Q degrees of freedom. This energy shift corresponds to
the real part of the associated self-energy. Consequently, the
equilibrium phonon populations Neq

n′k′ are a priori not equal
to NBE

n′k′ , the Bose-Einstein populations for the unperturbed
phonon energies.

In this subsection, we show that the energy shift, although
a priori nonzero, does not alter the results which we obtained
for the thermal conductivities, up to the order λ4 in our pertur-
bative expansion. To understand this, we decompose

Onk
[
Neq

n′k′
] = O(1)

nk

[
Neq

n′k′
]+ O(2)

nk

[
Neq

n′k′
]+O(λ6), (C25)

where, as for Dnk elsewhere in this paper, the upper index O(p)

indicates a term of order λ2p.
We have shown in Appendix C 2 c that O(1)

nk [NBE
n′k′ ] = 0.

However, O(2)
nk [NBE

n′k′] �= 0 a priori, so that an energy shift is
actually required to cancel the equilibrium current. We thus
consider the physical requirement, Onk[Neq

n′k′] = 0, to be an
equation on the unknown Neq

n′k′ .
Now expanding Neq

n′k′ = NBE
n′k′ + δNeq

n′k′ (with δNeq
n′k′ at least

of order λ2), this equation becomes

0 = O(1)
nk

[
NBE

n′′k′′
]+∑

n′k′
δNeq

n′k′∂Neq
n′k′

O(1)
nk

[
NBE

n′′k′′
]

+O(2)
nk

[
NBE

n′′k′′
]+O(λ6). (C26)
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At order λ2, one recovers O(1)
nk [NBE

n′k′] = 0, as is required by
detailed balance (see Appendix D 2 b).

At order λ4, formally inverting this linear equation, one
obtains

δNeq
nk = −

∑
n′k′

(
∂Neq

n j k j
O(1)

niki

[
NBE

n′′k′′
])−1∣∣

nk,n′k′

×O(2)
n′k′
[
NBE

n′′k′′
]+O(λ4). (C27)

This correction Eq. (17) to the phonon equilibrium popula-
tions is of order λ2.

This ensures that using the approximate populations
Neq

n′k′ = NBE
n′k′ leads to a correct estimation of D(1)

nk the lowest-
order contribution to Dnk, of order λ2. However, the next-order
contribution D(2)

nk ∼ λ4 can only be estimated correctly if one
adds to it the correction that δNeq

nk brings to D(1)
nk . Similarly,

using the approximate populations Neq
n′k′ = NBE

n′k′ leads to a

correct estimation of the lowest-order contribution, of order
λ4, to Mnkn′k′ as expressed in the main text. Corrections of
order λ6, not considered in the present work, would require
that the population corrections δNeq

nk be taken into account.

4. Computation at second Born order

As discussed at length, the first Born approximation alone
does not lead to a nonzero thermal Hall effect. Here we com-
pute that which appears when the Born expansion is taken
up to the second Born order. More precisely, we consider
all possible terms up to second Born order that lead to an
off-diagonal scattering rate of order at most λ4. This includes
terms like 〈f|H ′

[1]|n〉〈n|H ′
[1]|i〉 as well as 〈f|H ′

[1]|n〉〈n|H ′
[2]|i〉,

but not 〈i|H ′
[2]|n〉〈n|H ′

[2]|i〉 since this term is already of order
λ4 (thus contributes to |Ti→f|2 at order λ5 at least).

a. Term with one-phonon interactions only

The first of these terms reads

T [1,1]
i→f =

∑
nk,n′k′

∑
q,q′=±

√
Ni

nk +
1+ q

2

√
N f

n′k′ +
1− q′

2
×
∑
ms

〈 fs|Qq′
n′k′ |ms〉〈ms|Qq

nk|is〉
Eis − Ems − qωk,n + iη

I
(
ip

q·nk−→
q′ ·n′k′

fp
)
, (C28)

where the upper index indicates that within Born’s expansion, T [i, j] ∼ 〈 f |H ′
[ j]|m〉〈m|H ′

[i]|i〉
Ei−Em+iη .

The squared T -matrix elements now include cross-terms between the first and second orders of Born’s expansion (although
we keep only terms of order λ4 at most). Here we give details of the calculation of one term, the square of Eq. (C28), |T [1,1]

i→f |2.
In the numerator, the matrix elements of the Q operators can combine themselves in two different ways, which we denote in

the following as (a) 〈is|Qq
nk|ms〉〈ms|Qq′

n′k′ | fs〉〈 fs|Q−q′
n′k′ |m′

s〉〈m′
s|Q−q

nk |is〉 and (b) 〈is|Qq
nk|ms〉〈ms|Qq′

n′k′ | fs〉〈 fs|Q−q
nk |m′

s〉〈m′
s|Q−q′

n′k′ |is〉.
We use the following time integral representation of each of the denominators (using a regularized definition of the sign

function),

1

x ± iη
= PP

1

x
∓ iπδ(x) = 1

2i

ˆ +∞

−∞
dt1eit1xsign(t1)± 1

2i

ˆ +∞

−∞
dt1eit1x. (C29)

and a introduce a third time integral to enforce the energy conservation Ef − Ei = q′ωn′k′ + qωnk + E fs − Eis . The product of the
denominators [cf. Eq. (C29)] leads to four terms, which can be labeled by two signs s, s′ = ±, and we define, for convenience,

�ss′ (t1, t2) := [−sign(t1)]
1−s

2 [sign(t2)]
1−s′

2 . (C30)

Then, the transition rate coming from this part of the total squared matrix element can be written as a sum of eight terms:



[1,1];[1,1]
ip→ fp

=
∑

nk,n′k′

∑
q,q′

(
Ni

nk +
q + 1

2

)(
Ni

n′k′ +
q′ + 1

2

)
·
∑

s,s′=±

∑
i=a,b

W [1,1];[1,1],(i),ss′
nkq,n′k′q′ I

(
ip

q·nk−→
q′ ·n′k′

fp
)
, (C31)

where we defined (notice the order of the first two operators in the correlator and the sign t1 ± t2 in the exponential):

W [1,1];[1,1],(a),ss′
nkq,n′k′q′ =

ˆ
dtdt1dt2�ss′ (t1, t2)ei(qωnk+q′ωn′k′ )t ei(t1+t2 )(qωnk−q′ωn′k′ )

× 〈Q−q
nk (−t − t2)Q−q′

n′k′ (−t + t2)Qq′
n′k′ (−t1)Qq

nk(+t1)
〉
β
, (C32)

W [1,1];[1,1],(b),ss′
nkq,n′k′q′ =

ˆ
dtdt1dt2�ss′ (t1, t2)ei(qωnk+q′ωn′k′ )t ei(t1−t2 )(qωnk−q′ωn′k′ )

× 〈Q−q′
n′k′ (−t − t2)Q−q

nk (−t + t2)Qq′
n′k′ (−t1)Qq

nk(+t1)
〉
β
. (C33)

We will investigate the symmetries of these terms in Appendix C4c and show that only some combinations contribute to the
thermal Hall conductivity. In fact the eight terms from Eq. (C31) can be rewritten as products of (anti-)commutators. Meanwhile,
defining the symmetrized in (nkq ↔ n′k′q′) collision rate,

W [1,1];[1,1],ss′
nkq,n′k′q′ =

∑
i=a,b

W [1,1];[1,1],(i),ss′
nkq,n′k′q′ + (nkq ↔ n′k′q′), (C34)
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we obtain components of the part of the collision matrix due to |T [1,1]
i→f |2:

O[1,1];[1,1]
n,k =

∑
n′k′

∑
q,q′

q
∑
s,s′

W [1,1];[1,1],ss′
nkq,n′k′q′

(
Neq

n,k +
q + 1

2

)(
Neq

n′k′ +
q′ + 1

2

)
, (C35)

−D[1,1];[1,1]
n,k =

∑
n′k′

∑
q,q′

q

(
Neq

n′,k′ +
q′ + 1

2

)∑
s,s′

W [1](2),ss′
nkq,n′k′q′ , (C36)

M[1,1];[1,1]
nk,n′k′ =

∑
q,q′

q

(
Neq

n,k +
q + 1

2

)∑
s,s′

W [1](2),ss′
nkq,n′k′q′ . (C37)

b. Commutators and anticommutators

In what follows, we write �A,B�± = AB ± BA.
Upon replacing Q−q

nk (−t − t2)Q−q′
n′k′ (−t + t2) by Q−q

nk (−t − t2)Q−q′
n′k′ (−t + t2)− �Q−q

nk (−t − t2),Q−q′
n′k′ (−t + t2)�s′ in the defini-

tion of W [1,1];[1,1],(a),ss′
nkq,n′k′q′ in the above (after changing t2 ↔ −t2 if s′ = −), one obtains −W [1,1];[1,1],(b),ss′

nkq,n′k′q′ . Therefore,

W [1,1];[1,1],(a),ss′
nkq,n′k′q′ +W [1,1];[1,1],(b),ss′

nkq,n′k′q′ =
ˆ

dtdt1dt2�ss′ (t1, t2)ei(qωnk+q′ωn′k′ )t ei(t1+t2 )(qωnk−q′ωn′k′ )

× 〈�Q−q
nk (−t − t2),Q−q′

n′k′ (−t + t2)�s′Q
q′
n′k′ (−t1)Qq

nk(+t1)
〉
β
. (C38)

Similarly, upon replacing Qq′
n′k′ (−t1)Qq

nk(t1) by Qq′
n′k′ (−t1),Qq

nk(t1)− �Qq′
n′k′ (−t1),Qq

nk(t1)�s into W [1,1];[1,1],(a),ss′
nkq,n′k′q′ +

W [1,1];[1,1],(b),ss′
nkq,n′k′q′ , i.e., Eq. (C38) (after changing t1 ↔ −t1 if s = −), one obtains −W [1,1];[1,1],(b),ss′

n′k′q′,nkq −W [1,1];[1,1],(a),ss′
n′k′q′,nkq . Therefore,

the only nonzero contribution to W [1,1];[1,1],(a),ss′
nkq,n′k′q′ +W [1,1];[1,1],(b),ss′

n′k′q′,nkq + (nkq ↔ n′k′q′), i.e., Eq. (C34), takes the form

W [1,1];[1,1],ss′
nkq,n′k′q′ =

ˆ
dtdt1dt2�ss′ (t1, t2)ei(qωnk+q′ωn′k′ )t ei(t1+t2 )(qωnk−q′ωn′k′ ) (C39)

× 〈�Q−q
nk (−t − t2),Q−q′

n′k′ (−t + t2)�s′�Qq′
n′k′ (−t1),Qq

nk(+t1)�s

〉
β
, (C40)

where s, s′ = + corresponds to an energy conservation con-
straint, i.e., to on-shell scattering event, while s, s′ = −
corresponds to a PP(Ei − En)−1 term, i.e., off-shell scattering
(with i, n, f the initial, intermediate, and final states in the
second-order process).

Note that, in a time-reversal symmetric system, these sat-
isfy the symmetry

W [1,1];[1,1],ss′
nkq,n′k′q′ = ss′W [1,1];[1,1],s′s

n−kq,n′−k′q′ , (C41)

reflecting the role of ±iη in the denominators in terms of
causality.

c. Detailed balance

Using the method of the previous subsection Ap-
pendix C2c, we show the following (“anti-”)detailed-balance
relations

W [1,1];[1,1],(a),ss′
nkq,n′k′q′ = ss′W [1,1];[1,1],(a),s′s

n′k′−q′,nk−q e−β(qωk+q′ωk′ ), (C42)

W [1,1];[1,1],(b),ss′
nkq,n′k′q′ = ss′W [1,1];[1,1],(b),s′s

nk−q,n′k′−q′ e−β(qωk+q′ωk′ ). (C43)

From this, the same holds for the symmetrized in nkq ↔
n′k′q′ scattering rate:

W [1,1];[1,1],ss′
nkq,n′k′q′ = ss′e−β(qωk+q′ωk′ )W [1,1];[1,1],ss′

nk−q,n′k′−q′ . (C44)

We now identify

W
�,[1,1];[1,1],qq′
nk,n′k′ = Nuc

∑
s=±

W [1,1];[1,1],s,−s
nkq,n′k′q′ , (C45)

W
⊕,[1,1];[1,1],qq′
nk,n′k′ = Nuc

∑
s=±

W [1,1];[1,1],ss
nkq,n′k′q′ , (C46)

complete expressions of which are given in the main text.
By construction, these enforce

W
σ,[1,1];[1,1],qq′
nk,n′k′ = σ e−β(qωk+q′ωk′ )W

σ,[1,1];[1,1],−q−q′
nk,n′k′ , (C47)

where σ = ⊕ (respectively, σ = �) indicates that W

enforces detailed balance (respectively, “anti-detailed
balance”).

d. All contributions

As mentioned at the beginning of this subsection,
other terms of order λ4 contribute to the thermal con-
ductivity at second Born’s order. In the following, we
use the shorthand �A(−t ),B(t ′)� = sign(t + t ′)[A(−t ),B(t ′)]
and

ffl
t,{t j} (respectively,

ffl ′
t,{t j}), j = 1, .., l , denotes the set

of 1+ l inverse Fourier transforms evaluated once at
�

n′k′q′
nkq = qωnk + q′ωn′k′ and l times at �

n′k′q′
nkq = qωnk −

q′ωn′k′ , i.e.,
ffl

t,{t j } =
´

dtdt1..dtl e
i�n′k′q′

nkq t ei�n′k′q′
nkq (t1+..+tl ), (re-

spectively, once at qωnk and l times at q′ωn′k′ , i.e.,
ffl ′

t,{t j} =´
dtdt1..dtl eiqωnkt eiq′ωn′k′ (t1+..+tl )).
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One contribution comes from the “cross-term”
2Re{(T [2]

i→f)∗T [1,1]
i→f }, which contributes to the scattering

rates in the form of

W
�,[1,1];[2],qq′
nkn′k′

= 2N1/2
uc

h̄4 Im

 
t,t1

〈
Q−q,−q′

nkn′k′ (−t ){Qq′
n′k′ (−t1),Qq

nk(t1)}〉,
(C48)

W
⊕,[1,1];[2],qq′
nkn′k′

= −2N1/2
uc

h̄4 Im

 
t,t1

〈
Q−q,−q′

nkn′k′ (−t )�Qq′
n′k′ (−t1),Qq

nk(t1)�
〉
,

(C49)

The last contribution comes from considering the second
Born’s order matrix element

T [2,1]
i→f =

1√
Nuc

∑
nk,n′k′

∑
q,q′=±

(
Ni

n′k′ +
1+ q′

2

)

×
√

Ni
nk +

1+ q

2
I(ip

q·nk−→ fp)

×
∑
ms

{
〈fs|Q−q′

n′k′ |ms〉〈ms|Qqq′
nk,n′k′ |is〉

Efs − Ems − q′ωn′k′ + iη

+ 〈fs|Qqq′
nk,n′k′ |ms〉〈ms|Q−q′

n′k′ |is〉
Eis − Ems + q′ωn′k′ + iη

}
, (C50)

which contains two-phonon operators, of order λ2. At order
λ4, it is thus involved in the “cross-term” 2Re{(T [1]

i→f)∗T [2,1]
i→f },

which contributes to scattering rates in the form of
W

[2,1];[1],qq′
nkn′k′ =∑

s=±W
[2,1];[1],qq′
nkn′k′|s , where

W
[2,1];[1],qq′
nkn′k′|s

= N1/2
uc

h̄4 Im

 ′

t,t1

〈
Q−q

nk (−t )[sign(t1)]
1−s

2 �Q−q′
n′k′ (−t1),

× Qqq′
nkn′k′ (0)�s

〉
, (C51)

and we recall the shorthand �A,B�± = AB ± BA.
The first two terms enforce the usual, “two-phonon” (anti-

)detailed-balance relations

W
σ,[2];[1,1],qq′
nkq,n′k′q′ = σ e−β(qωk+q′ωk′ )W

σ,[2];[1,1],qq′
nkq,n′k′q′ , (C52)

with σ = ⊕,�. Meanwhile, the last term satisfies “one-
phonon” (anti-)detailed balance,

W
[2,1];[1],qq′
nk,n′k′|s = s e−qβωnkW

[2,1];[1],−q−q′
nk,n′k′|s , (C53)

where we used a different notation (s = ± as a lower in-
dex) to emphasize the difference with the other terms derived
above.

5. Computation at third Born’s order

The only third-order element of Ti �→f which can appear in a term of order λ4 in |Ti �→f|2 is

T [1,1,1]
i→f =

∑
nkq,n′k′q′

√
Ni

nk +
1+ q

2

(
Ni

n′k′ +
1+ q′

2

)
I(ip

q·nk−→ fp)×
∑
ms,m′

s

{
〈 fs|Q−q′

n′k′ |m′
s〉〈m′

s|Qq′
n′k′ |ms〉〈ms|Qq

nk|is〉
(Eis − Ems − qωnk + iη)(E fs − Em′

s
− q′ωn′k′ + iη)

+ 〈 fs|Q−q′
n′k′ |m′

s〉〈m′
s|Qq

nk|ms〉〈ms|Qq′
n′k′ |is〉

(Eis − Ems − q′ωn′k′ + iη)(E fs − Em′
s
− q′ωn′k′ + iη)

+ 〈 fs|Qq
nk|m′

s〉〈m′
s|Q−q′

n′k′ |ms〉〈ms|Qq′
n′k′ |is〉

(Eis − Ems − q′ωn′k′ + iη)(E fs − Em′
s
+ qωnk + iη)

}
,

(C54)

which is involved in the scattering rate

W
[1,1,1];[1],qq′
nkn′k′ = 2Re

[
(T [1,1,1]

i→f )∗T [1]
i→f

] = ∑
s,s′=±

W
[1,1,1];[1],qq′
nkn′k′|ss′ , (C55)

where we denote

W
[1,1,1];[1],qq′
nkn′k′|ss′ = −1

2h̄4 Re

 ′

t,t1,t2

〈
Q−q

nk (−t )
⎧⎩Q−q′

n′k′ (−t1), Qq
nk(0), Qq′

n′k′ (t2)
⎫⎭

s,s′

〉
,⎧⎩A(t ),B(t ′),C(t ′′)

⎫⎭
s,s′
= [sign(t − t ′)]

1−s
2 [sign(t ′ − t ′′)]

1−s′
2 (A(t )B(t ′)C(t ′′)+ sB(t ′)A(t )C(t ′′)+ s′A(t )C(t ′′)B(t ′)). (C56)

This term enforces an unusual version of (anti-)detailed
balance, namely,

W
[1,1,1];[1],qq′
nkn′k′|ss′ = ss′e−qβωnkW

[1,1,1];[1],−q,q′
nkn′k′|ss′ , (C57)

where the index q′ remains unchanged.

APPENDIX D: GENERALIZATIONS

1. Generalized model and higher perturbative orders

To describe the interaction between phonon and another
degree of freedom, we introduce general coupling terms

245139-33



MANGEOLLE, BALENTS, AND SAVARY PHYSICAL REVIEW B 106, 245139 (2022)

between phonon annihilation (creation) operators a(†)
nk and

general, for now unspecified, fields Q
{q j}
{n j ,k j } which are oper-

ators acting in their own Hilbert space, i.e., we write H ′ =∑
l H ′

[l], with

H ′
[l] =

1√
Nl

uc

∑
{niki}

∑
{qi=±}

(
m∏

j=1

a
qj

n j k j

)
Q
{q j }
{n j k j}. (D1)

In this expression, m is the number of phonon creation-
annihilation operators coupled to Q

{q j}i=1..l

{n j k j}i=1..l
. In terms of the

perturbative expansion introduced in the main text and the
other Appendices, this means Q

{q j}i=1..l

{n j k j}i=1..l
∼ λl ; note that since

the perturbative expansion is considered (formally) up to in-
finite order in this Appendix, we make this specification only
for the sake of clarity. To avoid ambiguities, we assume that all
the n jk j indices involved in a given term of H ′

[l] are distinct;
this is correct in the thermodynamic limit. Note also that,
for the sake of clarity in the following developments, the
normalization factors of Nuc are not defined following the
same convention as in the rest of the paper.

In what follows, we take special notations for the first two
indices: n1k1 ≡ nk, n2k2 ≡ n′k′. Using the model Eq. (68)
and following the general procedure described in Appendix C
and in the main text, one can then (at least formally) derive
the collision integral which always takes the form

Cnk =
∞∑

p=1

1

N p
uc

∑
{niki}i=2,..,p

∑
{qi}i=1,..,p

q1

×
[

p∏
i=1

(
Nniki +

qi + 1

2

)]
W (p),{qi}
{niki} , (D2)

where the index (p) denotes a term of order λ2p. The scattering
rate W (p),{qi}

{niki} =W
(p),{qi}i=1,..,p

{niki}i=1,..,p
is the sum of all the scatter-

ing rates of the [l1, .., lm]; [l ′1, .., l ′m′ ] kind (according to the
nomenclature introduced in the main text) such that

∑m
i=1 li +∑m′

j=1 l ′j = 2p. In terms of physical process, each of these
terms corresponds to the interference between two scattering
channels, [l1, .., lm] and [l ′1, .., l ′m′ ], such that in all, 2p phonon
creations or annihilations occur between the initial i and final
f states. Note that in the present paper, we compute explicitly
this expansion up to p = 2.

We then expand the phonon average populations as Nniki =
Neq

niki
+ δNniki . Following Eq. (11), the diagonal scattering rate

is obtained as Dnk = −∂Nnk
Cnk|N=Neq . It can be decomposed as

Dnk =
∑∞

p=1 D(p)
nk , where

D(p)
nk = −1

N p
uc

∑
{niki}i=2,..,p

∑
{qi}i=1,..,p

q1

×
[

p∏
i=2

(
Neq

niki
+ qi + 1

2

)]
W (p),{qi}
{niki} . (D3)

Similarly, the off-diagonal scattering rate is obtained as

Mnk,n′k′ = ∂Nn′k′
Cnk|N=Neq . It can be decomposed as Mnk,n′k′ =∑∞

p=2 M (p)
nk,n′k′ , where

M (p)
nkn′k′ =

1

N p
uc

∑
{niki}i=3,..,p

∑
{qi}i=1,..,p

q1

×
(

Neq
nk +

q1 + 1

2

)[ p∏
i=3

(
Neq

niki
+ qi + 1

2

)]
W (p),{qi}
{niki} .

(D4)

Like in the equations for p = 1, 2 derived explicitly in
Appendix C, q1 always factorizes in the collision integral, as
the change in number of nk phonons due to the scattering
event.

2. Special properties of first Born’s order

a. Definitions and basic results

At first order of the Born expansion, all contributions to
the collision integral are “semiclassical,” in the sense defined
in Sec. III D 3; i.e., an operator Qq1,..,ql

n1k1,..,nl kl
does only appear in

the collision integral as |Qq1,..,ql

n1k1,..,nl kl
|2.

To make this statement more precise, we rewrite

H ′
[l] =

1√
Nl

uc

l∑
r=0

∑
{niki}i=1..l

(
r∏

j=1

a+n j k j

)(
l∏

j=r+1

a−n j k j

)

× 1√
r!(l − r)!

Q+,..,+|−,..,−
n1k1..nr kr |nr+1kr+1..nl kl

, (D5)

where the upper indices of Q are r times “+” and l − r
times “−,” and Q is by definition symmetric under permu-
tation of its lower indices in the two blocks {niki}i=1,..,r

and {niki}i=r+1,..,l separately. Hermiticity is guaranteed by
Q+,..,+|−,..,−

n1k1..nr kr |nr+1kr+1..nl kl
= (Q+,..,+|−,..,−

nr+1kr+1..nl kl |n1k1..nr kr
)†. Note that at

first Born’s order, distinct scattering channels [l] and [l ′] do
not interfere for l �= l ′; one can thus study independently the
contribution of each H ′

[l] to the collision integral.

The contribution to the squared T matrix obtained from H ′
[l] at first Born’s order is

∣∣T [l]
i→f

∣∣2 = 1

Nl
uc

l∑
r=0

1

r!(l − r)!

∑
{niki}i=1..l

[
r∏

j=1

(
Ni

n j k j
+ 1

)][ l∏
j=r+1

(
Ni

n j k j

)]

× I(ip

+{n j k j}r1−−−−−−−→
−{n j k j}lr+1

fp) 〈is|Q+,..,+|−,..,−
{n j k j}lr+1|{n j k j}r1

| fs〉〈 fs|Q+,..,+|−,..,−
{n j k j}r1|{n j k j}lr+1

|is〉. (D6)
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Summing over all scattering channels, the first Born’s order contribution to the collision integral is

C1Bnk =
∞∑

l=1

1

Nl
uc

l∑
r=0

∑
{niki}i=1,..,l

r∏
j=1

(
Nnj k j + 1

) l∏
j=r+1

(
Nnj k j

)( rδn,n1δk,k1

r!(l − r)!
− (l − r)δn,nr+1δk,kr+1

r!(l − r)!

)
W [l];[l]
{n j k j}r1|{n j k j}lr+1

, (D7)

where

W [l];[l]
{n j k j}r1|{n j k j}lr+1

=
ˆ

dte−i(
∑r

j=1 ωn j k j−
∑l

j=r+1 ωn j k j )t
〈
Q+,..,+|−,..,−
{n j k j}lr+1|{n j k j}r1

(t ) Q+,..,+|−,..,−
{n j k j}r1|{n j k j}lr+1

〉
. (D8)

Following the same steps as in Appendix C2c, it is easy
to see that W [l];[l]

{n j k j}r1|{n j k j}lr+1
always enforces detailed balance,

namely,

W [l];[l]
{n j k j}r1|{n j k j}lr+1

=e−β(
∑r

j=1 ωn j k j−
∑l

j=r+1 ωn j k j )W [l];[l]
{n j k j}lr+1|{n j k j}r1

.

(D9)

We now prove two important properties of the collision
integral, as obtained from first Born’s order, which derive
therefrom.

b. No equilibrium current

The equilibrium current is due to Onk = Cnk[Nn′k′ �→
Neq

n′k′], the constant term in the collision integral.

In the present case, by performing a change of index
r �→ l − r in the second term of (· · · − . . . ) in Eq. (D7), and
resorting to the detailed-balance relation Eq. (D9) and taking
Neq

n′k′ = 1
eβωn′k′ −1

, one can easily show that

O1B
nk = C1Bnk

[
Nnj k j �→ Neq

n j k j

] = 0. (D10)

This means that no shift of the phonons’ energies is needed at
first Born’s order to guarantee cancellation of the equilibrium
current.

c. No phonon Hall effect

The off-diagonal contribution to the collision matrix at first
Born’s order, M1B

nk,n′k′ = ∂Nn′k′
C1Bnk , reads

M1B
nk,n′k′ =

∞∑
l=1

1

Nl
uc

l∑
r=0

∑
{niki}i=1,..,l

r∏
j=1

(
Neq

n j k j
+ 1

) l∏
j=r+1

(
Neq

n j k j

)
W [l];[l]
{n j k j}r1|{n j k j}lr+1

× 1

r!(l − r)!

⎧⎩rδn,n1δk,k1 [(r − 1)δn′,n2δk′,k2 + (l − r)δn′,nr+1δk′,kr+1 ]

− (l − r)δn,nr+1δk,kr+1 [rδn′,n1δk′,k1 + (l − r − 1)δn′,nr+2δk′,kr+2 ]
⎫⎭. (D11)

After some algebra, following essentially the same steps as outlined above, it is possible to show that

M1B
nk,n′k′e

βωn′k′
(
Neq

n′k′
)2 = M1B

n′k′,nkeβωnk
(
Neq

nk

)2
. (D12)

This, as was illustrated several times in the main text and the Appendices, entails that M1B does not contribute to κH—see
Eq. (B6). We have thus shown that no contribution to the thermal Hall conductivity can possibly come from first Born’s
order, regardless of the number of phonon operators in the Hamiltonian and of the nature of the operators Q to which they are
coupled.

APPENDIX E: APPLICATION—FURTHER TECHNICAL DETAILS

1. Solving the δ functions

To solve the two simultaneous δ functions, we use the following rewriting of W�:

W
�,qq′
nk,n′k′ =

64π2

h̄4N2D
uc

∑
p

∑
{�i,qi}

F �3,�1,�2|q4,q1,q2
p,qk,q′k′ Im

{
Bn�2�3|q2q3q

k,p+ 1
2 qk+q′k′

Bn′�3�1|−q3q1q′

k′,p+ 1
2 q′k′

×PP

[ Bn�1�4|−q1q4−q
k,p+ 1

2 qk
Bn′�4�2|−q4−q2−q′

k′,p+qk+ 1
2 q′k′

2vmq1
( q1qωnk

vm
+ �̂�1,p − q1q4�̂�4,p+qk

) + (n, q,k, q4) ↔ (n′, q′,k′,−q4)

]}

× δ

[
vmq1

(
q1�

qq′
nkn′k′

vm
+ �̂�1,p + q1q2�̂�2,p+qk+q′k′

)]
δ

[
− 2vmq1

(
q1q′ωn′k′

vm
+ �̂�1,p − q1q3�̂�3,p+q′k′

)]
, (E1)
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where �̂�,p = ��,p/vm and

F �3,�1,�2|q4,q1,q2
p,qk,q′k′ = q4[2nB(��3,p+q′k′ )+ 1][2nB(��1,p)+ q1 + 1][2nB(��2,p+qk+q′k′ )+ q2 + 1] (E2)

is a product of thermal factors [note F̂ = q1F , cf. Eq. (94)]. Now collapsing the δ functions, we can write

W
�,qq′
nk,n′k′ =

8a2

h̄4v2
m

∑
j

∑
�,{qi}

Im

{
Bn��|q2q3q

k,p j+ 1
2 qk+q′k′

Bn′��|−q3q1q′

k′,p j+ 1
2 q′k′

PP

[ Bn��|−q1q4−q
k,p j+ 1

2 qk
Bn′��|−q4−q2−q′

k′,p j+qk+ 1
2 q′k′

2vmq1
( q1qωnk

vm
+ �̂�,p j − q1q4�̂�,p j+qk

)
+ (n, q,k, q4) ↔ (n′, q′,k′,−q4)

]}
JW(p j )F �,�,�|q4,q1,q2

p j ,qk,q′k′ , (E3)

where, when they exist, the solutions, j = 0, .., 3 take the form (recall vi = vi, wi = wi, p j = p
j
)

p j = t� j/2�v� j/2� + u( j̃ [2])
� j/2� w� j/2�, (E4)

where, for i = 0, 1,

vi = a2k1 + (−1)ia1k2, wi = ẑ× vi, (E5)

ti = a2k2
1 + (−1)ia1k2

2 − a1a2(a1 + (−1)ia2)

2v2
i

, u(±)
i =

−Bi ±
√

B2
i − 4AiCi

2Ai
, (E6)

Ai = 4a2
i+1(v2

i − (k1 ∧ k2)2),

Bi = (−1)i4ai+1(k1 ∧ k2)[a2
i+1 − k2

i+1 + 2(vi · ki+1)ti],

Ci = −[ai+1(ai+1 − 2δ�)− k2
i+1

][
ai+1(ai+1 + 2δ�)− k2

i+1

]− 4(a2
i+1 − k2

i+1)(vi · ki+1)ti + 4[a2
i+1v2

i − (vi · ki+1)2]t2
i , (E7)

and JW(p j ) is given in the main text, Eq. (96).

2. Choice of polarization vectors

Below, we enumerate possible explicit choices for a basis
of polarization vectors (ε0,k, ε1,k, ε2,k ). In the numerical cal-
culations, we use choice 2.

a. Choice 1

A simple choice is that of momentum-independent po-
larization vectors, which can be, for example, ε0(k) = x̂,
ε1(k) = ŷ, ε2(k) = ẑ.

b. Choice 2

Below, we describe the choice of polarization vectors used
in the numerical implementation. Its polarization vectors εn,k
form an orthonormal basis in which k points along the [1,1,1]
axis, so that k · εn,k = |k|√

3
∀n. This, as explained in the main

text, ensures that the structure factor Sα,β does not vanish for
α = β, corresponding to the largest coupling constants �1..5

(as opposed to anisotropic �6,7 for which α �= β).
The starting point is the orthonormal basis made of three

vectors en, n = 0, 1, 2, defined as

e0 = 1√
3

(√
2x̂ + ẑ

)
,

e1 = 1√
6

(−x̂ +
√

3ŷ +
√

2ẑ
)
,

e2 = 1√
6

(−x̂ −
√

3ŷ +
√

2ẑ
)
; (E8)

in this basis, ẑ = [1, 1, 1]. To rotate the ẑ axis into k̂’s direc-
tion, we define the polar angles of k̂,

θ = arccos(kz/|k|), (E9)

φ = Arg(kx + iky), (E10)

so that a good choice for the three polarization vectors is

εn,k = i Rẑ(φ)Rŷ(θ )diag[s(k), 1, 1] · en (E11)

for n = 0, 1, 2. In the above, we defined Rμ̂(γ ) to be the direct
rotation matrix around the μ axis by an angle γ , and we used
the “sign” function

s(k) =
{+1 if k ∈ D+,
−1 if k ∈ D−,

(E12)

with respect to two domains D±, corresponding (up to unim-
portant details in a set of null measure contained in the kz = 0
plane) to the “upper” (kz > 0) and “lower” (kz < 0) halves of
R3, and more precisely defined by

D+ = (k| kz > 0 or {kz = 0

and [ky > 0 or (ky = 0 and kx > 0)]}), (E13)

D− = (k | kz < 0 or {kz = 0

and [ky < 0 or (ky = 0 and kx < 0)]}) (E14)

such that R3 = D+ ∪D− ∪ {0}. The role of this s(k) function
is to help ensure that this choice of polarizations enforces
εn(−k) = εn(k)∗, as well as all the tetragonal symmetry
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group of the crystal. This last statement means that under a
symmetry operation g belonging to D4h the symmetry group
of the crystal, they transform as

εn(g · k) =
∑

n′
cg

nn′ (k) g · εn′ (k), (E15)

where g· denotes the action of g on a vector, and most im-
portantly the cg

nn′ coefficient either is δnn′ or exchanges the
n = 1 and n = 2 polarizations, depending on whether k is in
a high-symmetry position. Indeed, n = 1, 2 are constructed
degenerate (as eigenvectors of the dynamical matrix) at the
high-symmetry planes and axes of the Brillouin zone. See
Ref. [27] for details and further discussion on the behavior
of polarization vectors under symmetry operations.

c. Choice 3

One may also use the Hall-plane-dependent basis for the
polarization vectors and label εnk, assuming μν is the Hall
plane, ρ is the direction transverse to the plane, and μνρ

forms a direct orthonormal basis:

ε0,k = ik/|k| (longitudinal),

ε1,k = i
ûρ × k
|ûρ × k| (transverse, in Hall plane),

ε2,k = ε0,k × ε1,k = kρk − k2ûρ

|k||ûρ × k| (transverse). (E16)

Then, ifα, β, μ, ν, ρ ∈ {x, y, z}, we can write

Sq;αβ
0k = 1√

ω0k

2qi

|k| kαkβ,

Sq;αβ
1k = 1√

ω1k

qi

|ûρ × k| [k
μ(kαδβ,ν + kβδα,ν )

− kν (kαδβ,μ + kβδα,μ)],

Sq;αβ
2k = 1√

ω2k

−1

|k||ûρ × k| [k
2(kαδβ,ρ + kβδα,ρ )

− 2kαkβkρ], (E17)

so that L0 ∝ k · λ · k, L1 ∝ [k × (λ · k)]ρ , L2 ∝ [k2(λ · k)−
(k · λ · k)k]ρ .

For this choice of polarization vectors, the phonon-magnon
coupling constants can be decomposed in such a way that
their behavior under operations of the D4h point-group defined
in the (μ, ν, ρ) basis becomes transparent, in other words in
terms of the basis harmonics of the “Hall geometry” point-
group. Note that, because the magnetic space group of the
system is a priori independent of the symmetries associated
with the choice of “Hall geometry,” the coefficients of the har-
monics need not be independent. (In the the square lattice case
discussed here, some of the symmetries of the system coincide
with those of the Hall geometry, so that these coefficients
are not entirely independent. Note that this causes additional
constraints for the existence of a nonzero Hall effect.)

3. Numerical implementation

We define λ̂
�1,�2;αβ
ξ,ξ ′ = λ

αβ

ξ̃�1+ξ̄+1,ξ̃ ′�2+ξ̄ ′+1;ξξ ′ , so that, in par-
ticular,

λ̂
�1,�2;αβ
1,1 = λ

αβ

�1+1,�2+1;11,

λ̂
�1,�2;αβ
0,0 = λ

αβ

�̄1+1,�̄2+1;00
,

λ̂
�1,�2;αβ
1,0 = λ

αβ

�1+1,�̄2+1;10
(E18)

(note the bars), and

Lq,�1,�2
nk;ξ,ξ ′ = Tr

[(
λ̂
�1�2

ξξ ′
)T · Sq

nk

]
=

∑
α,β=x,y,z

λ̂
�1,�2;αβ
ξ,ξ ′ Sq;αβ

nk .

(E19)

Moreover, given (i) our choice of isotropic elasticity, (ii) a
given Hall plane μν and perpendicular Hall axis, ρ, (iii)
�1 = �2 = �, λ̂ is a function of �

ξ (′ )
1,..,7 contains 72 values,

which can be parametrized by a single index i = 0, .., 71
through, e.g., i = 36ξ + 18ξ ′ + 9�+ 3α + β if we identify
(x, y, z) with (0,1,2) for α and β, S is a complex function of
n, ρ,k, q, �, α, β.

4. Details of the derivation of the general
forms of the scaling relations

Here we give details about the results and calculations in
Sec. V E 5.

a. Dimensionless functions

The functional forms of the scaling functions introduced in
Eq. (110) are

c̃η(ỹ) = 1

2
[| sin θ | + ηυ−1X (ỹ)],

�̃
±η

� (ỹ) = 1

2

√
sin2 θX 2(ỹ)+ υ−2 ± 2η| sin θ |υ−1X (ỹ),

(E20)

with

X (ỹ) =
√

1+ 4
ỹ2

sin2 θ − υ−2
, (E21)

and

f̃s=1
η (ỹ) = �(υ−2 − sin2 θ − 4|ỹ|2),

f̃s=−1
η (ỹ) = δη,1�(sin2 θ − υ−2),

J̃ s
D(ỹ) =

∣∣∣∣∣∑
r=±1

s(r−1)/2rc̃r (ỹ)√
c̃r (ỹ)2 + ỹ2

∣∣∣∣∣
−1

. (E22)

Inserting the expressions for L and F into that of B, we find

Bn,��|+s−
k;−p(η)

�,k (y)+ k
2

= −i

2
√

2Muc

∑
ξξ ′

n−ξ−ξ ′
0

∑
α,β=x,y,z

λ̂
��;αβ
ξξ ′ iξ (si)ξ

′
(−1)(ξ+ξ

′
)�

× kαε
β

nk + kβεαnk√
ωnk

[
χ�

�p(η)
�k

(y)
]ξ− 1

2
[
χ�

�p(−η)
�k

(y)
]ξ ′− 1

2 ,

(E23)
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because Fξq�(−p) = Fξq�(p). Then, for δ� = 0, and defining
k̂α = (k̂)α , the B̃ξξ ′ introduced in Eq. (110) are

B̃nn = isχ−1v−1
m

2
√

2Mucvph

∑
α,β=x,y,z

λ̂
��;αβ
00

(
k̂αε

β

nk + k̂βεαnk

)
× [�̃η(ỹ)�̃−η(ỹ)]−

1
2 , (E24)

B̃mm = −in−2
0 χvm

2
√

2Mucvph

∑
α,β=x,y,z

λ̂
��;αβ
11

(
k̂αε

β

nk + k̂βεαnk

)
× [�̃η(ỹ)�̃−η(ỹ)]

1
2 , (E25)

and

B̃mn = (−1)�n−1
0

2
√

2Mucvph

∑
α,β=x,y,z

(
k̂αε

β

nk + k̂βεαnk

)
× {λ̂��;αβ

01 [�̃η(ỹ)]−
1
2 [�̃−η(ỹ)]

1
2

+ s λ̂
��;αβ
10 [�̃(η)(ỹ)]

1
2 [�̃(−η)(ỹ)]−

1
2
}
. (E26)

b. Details of the behavior of the scaling function F

Here we derive the behavior of the scaling functions
Fx(κ, υ, θ ) defined in Eq. (112) at small and large κ.

Let us first consider the large-κ limit. The hyperbolic sines
in the denominator of the integrand grow exponentially in this
limit [because the two �̃

±η

� (ỹ) functions cannot be simultane-
ously be made to vanish], so that they can be approximated by
their leading exponential forms. An application of the saddle
point method then shows that the integral is dominated by
region around ỹ = 0, and is exponentially suppressed for large
κ. For υ| sin θ | > 1, i.e., when the azimuthal angle of k is
smaller than υ−1, this suppression exceeds the exponential
growth of the sinh κ/2 prefactor, and the scaling function
decays exponentially:

Fx(κ, υ > | sin θ |−1) ∼
κ�1

exp

[
κ

2
(1− υ| sin θ |)

]
. (E27)

For smaller angles where υ| sin θ | < 1, F does not decay
exponentially in the large κ limit. Here Eq. (E27) is correct to
exponential accuracy, i.e., it is asymptotically correct for ln(F)
at large κ. To this accuracy, the asymptotics are independent
of x.

Now consider the small κ limit. The naïve result for the
scaling function is obtained by expanding both the hyperbolic
sine in the numerator and the two in the denominator of the

integrand around zero leads to

F(s)
x (κ 
 1, υ, θ )

∼
?

1

κ

(3− s)a2

2πvm h̄2υ2

ˆ +∞

−∞
dỹ

×
∑
η

f̃s
η(ỹ)J̃ s

D(ỹ)
∑
�

C̃x(ỹ)

�̃
+η

� (ỹ)�̃−η

� (ỹ)
. (E28)

This expression is correct provided the integral in the second
line converges. The convergence is problematic only at large ỹ
for the case s = −1 (in the case s = 1, the integral is confined
by the f̃s=1 factor to a finite domain). In this limit the Jacobean
J̃ s=−1 grows linearly in ỹ as does �̃, while the factor C̃x(ỹ)
behaves as ỹ2x. As a result, the integral converges for the case
x = −1 and the 1/κ scaling is correct in this case. In the cases
x = 0, 1, the integral is logarithmically and quadratically di-
vergent at large ỹ, respectively.

In the latter two cases, we must reconsider the naïve result
in Eq. (E28). The divergence in this equation is an artificial re-
sult because the hyperbolic sines in the original expression in
Eq. (112) grow rapidly once �̃ > κ

−1 and ensure convergence
of the integral (i.e., the large ỹ > |υκ|−1 contribution is negli-
gible). Proper behavior is restored for small κ by simply using
the expanded form of Eq. (E28) but only integrating up to an
upper cutoff |ỹ| < |κυ|−1. This regulates the divergences and
one obtains additional ln(1/κ) and κ

−2 factors multiplying
the 1/κ form for the cases x = 0, 1, respectively. Collecting
the above results we see that

F(−1)
x (κ) ∼

κ
1

⎧⎪⎨⎪⎩
1
κ

3 x = 1,
ln(1/κ)

κ
x = 0,

1
κ

x = −1.

(E29)

This function is nonzero for |υ sin θ | > 1, while F (+1) is
nonzero when |υ sin θ | < 1.

In the latter case, as mentioned above, the integral over ỹ
always converges because the set of integration is an ellipse
instead of a half-hyperbola. Therefore, the naïve scaling is
the correct one and the F(+1)

x (κ) ∼
κ
1

1/κ behavior holds for

all x.

APPENDIX F: APPLICATION—FURTHER
PHYSICAL DETAILS

1. Microscopic derivation of the coupling constants

We consider the most general coupling between the strain
tensor and bilinears of the m,n fields, exhibiting all the
symmetries allowed by the crystal symmetry group in the
paramagnetic phase: the D4h tetragonal point-group; trans-
lations of one unit cell—which forbids interactions of the
manb type and time-reversal. The corresponding Hamiltonian
density (where for the sake of readability we have replaced
n0 → 1) reads

H′
tetra = �

(m)
1 (mxmxExx +mymyEyy)+�

(n)
1 (nxnxExx + nynyEyy)+�

(m)
5 mzmzE zz +�

(n)
5 nznzE zz (F1)

+�
(m)
2 (mxmxEyy +mymyExx )+�

(n)
2 (nxnxEyy + nynyExx ) (F2)
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+ (�(m)
3 mzmz +�

(n)
3 nznz )(Exx + Eyy)+�

(m)
4 (mxmx +mymy)E zz +�

(n)
4 (nxnx + nyny)E zz (F3)

+ 4�(m)
6 mxmyExy + 4�(n)

6 nxnyExy + 4�(m)
7 (mxmzExz +mymzEyz )+ 4�(n)

7 (nxnzExz + nynzEyz ). (F4)

We now propose a microscopic origin to the �
(ξ )
I coeffi-

cients appearing in it.
We start from a generic spin exchange Hamiltonian of the

form

Hex =
∑
R,R′

∑
a,b

Sa
RJab

R−R′Sb
R′ , (F5)

where R,R′ indicate the actual locations of the sites in the
distorted lattice, and each sum spans the whole distorted
lattice.

We then express R = r + ur, where r belongs to the
undistorted lattice and ur is the displacement field at site r.
Taylor-expanding the coefficients Jab

R−R′ with respect to the
displacement field (and identifying Sa

R = Sa
r ), we thus obtain

Hex = H0
ex + H ′

ex + O(u2), where H0
ex = Hex|R,R′ �→r,r′ and

H ′
ex =

∑
r,r′

∑
ab,ν

Sa
r

(
uν

r − uν
r′
)
∂ην Jab

η

∣∣
η=r−r′S

b
r′ . (F6)

Then, identifying Eαβ = 1
2 (∂αuβ + ∂βuα ) the symmetric rank-

2 elasticity tensor (i.e., strain tensor), we identify H ′
ex =

H ′
ssε + . . . , where

H ′
ssε =

1

2

∑
r,η

Sa
r+ηSb

r [ηα∂ηβ + ηβ∂ηα ]Jab
∣∣
η
Eαβ (r)+ · · · ,

(F7)

where a, b = x, y, z is a spin axis index, α, β = x, y, z is a
spatial index, and “+ . . . ” encompasses terms featuring ωαβ

the antisymmetric rank-2 elasticity tensor, as well as higher-
order derivatives of the displacement field.

Note that in this microscopic derivation, we identify Sa
R �→

Sa
r . In fact, also expanding the magnetization fields (and not

only the magnetic exchange) with respect to displacement
yields an interaction term which is formally of the same order
as that derived here. However, magnetization in an ordered
magnet is a slow variable, while J varies over distances of
the order of the lattice parameter a, therefore such terms are
quantitatively much smaller by a factor O(kBT a/vm ), both
within and beyond the Born-Oppenheimer approximation.

Finally, we take the particular case of a square lat-
tice with tetragonal symmetry, and describe the spins in
terms of m, n fields as in the main text, namely, Sr =
(−1)rμ0n(r)+ a2m(r). We identify H ′

ssε =
∑

r H′
tetra (r)+

. . . where “+ . . . ” is made of rapidly oscillating (time-
reversal breaking) terms, and H′

tetra is as displayed in Eq. (F1),
with identification

�
(m),αβ
ab = 1

2

∑
η

(ηα∂β + ηβ∂α )Jab
∣∣∣
η
, (F8)

�
(n),αβ
ab = 1

2

∑
η

eiπη(ηα∂β + ηβ∂α )Jab
∣∣∣
η
, (F9)

where the sum over η spans the whole direct (two-dimensional
square) lattice, and π = ( π

a
, π
a

) with a the square lattice pa-
rameter.

2. Contributions to intervalley couplings

In the main text, the na,ma fields live in the valleys identi-
fied by:

� = 0 : ny,mz,

� = 1 : nz,my. (F10)

Therefore, intervalley couplings are of the form λab;ξξ ′ with
δξξ ′ + δab = 1. More explicitly, using Eq. (73), they are

λ
αβ

yz;00 = �(n),αβ
yz ,

λ
αβ

yz;11 = �(m),αβ
yz ,

λ
αβ

yy;01 =
−1

n0

[
my

0�
(m),αβ
yx + mz

0�
(m),αβ
zx + my

0�
(n),αβ
yx

]
,

λ
αβ

zz;01 =
−1

n0

[
mz

0�
(m),αβ
zx + my

0�
(m),αβ
yx + mz

0�
(n),αβ
zx

]
.

(F11)

Also recall from Eq. (70) that

�(ξ ),xy
yx = �(ξ ),yx

yx = �(ξ ),xy
xy = �(ξ ),yx

xy = �
(ξ )
6 ,

�(ξ ),xz
zx = �(ξ ),zx

zx = �(ξ ),yz
yz = �(ξ ),zy

yz = �
(ξ )
7 , (F12)

and all other values of α, β yield 0 for this set of lower
indices. From this, it is clear that the �

(ξ )
7 couplings always

mix valleys, regardless of m0, and contribute a λyz;ξξ term.
This intervalley coupling is a small contribution which does
not contribute to T breaking. Meanwhile, the T -odd λyy;01 and
λzz;01 intervalley couplings both contain contributions from
both �

(ξ )
7 mz

0 and �
(ξ )
6 my

0.

3. Derivation of the gaps from a sigma model

Here we provide a heuristic microscopic argument for
expressing the gaps in terms of spin-spin couplings. We ig-
nore spin-lattice coupling, and just consider corrections to the
isotropic Heisenberg model. We assume the addition of a term
of the XXZ anisotropy form:

HXXZ = gJ
∑
〈i j〉

(
2Sz

i Sz
j − Sx

i Sx
j − Sy

i Sy
j

)
. (F13)

This is to be added to the isotropic Heisenberg model, along
with a Zeeman coupling to the transverse field.

Carrying out the long-wavelength expansion in terms of m
and n fields, we obtain the corrected potential part (i.e., with-
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out gradient terms) of the nonlinear sigma-model Eq. (50):

Hg,h
NLS =

1

2χ
|m|2 + 2gJa2

(
2m2

z −m2
x −m2

y

)
− 2gJ

μ2
0

a2

(
2n2

z − n2
x − n2

y

)− hymy − hzmz. (F14)

Note that the first term includes an m2
x term, which is absent

in the quadratic expansion describing linear spin waves in
the main text. Indeed, this term is higher order in the small
fluctuations around an x-ordered state when carrying out a
zero field spin wave expansion, which was the case in the
main text where the external field had already been integrated
out to yield the nanb mass term. We also included an external
uniform field which lies in the y-z plane.

Expanding around the x-ordered state, using that mx =
−myny −mznz and nx = 1− 1

2 [n2
y + n2

z + 1
n2

0
(m2

y +m2
z )],

yields

Hg,h
NLS =

1

2χ

(
m2

y +m2
z

)+ 2gJa2
(
2m2

z −m2
y

)
− 2gJ

μ2
0

a2

(
2n2

z − n2
y

)− hymy − hzmz

+
(

1

2χ
− 2gJa2

)
(m2

yn2
y +m2

z n2
z

+ 2mymznynz )+ 2gJ
μ2

0

a2

×
{

1− 1

2

[
n2

y + n2
z +

1

n2
0

(
m2

y +m2
z

)]}2

. (F15)

Note that the first term on the second line is of the form (m⊥ ·
n⊥)2, where the ⊥ indicates the components of the vectors
normal to the ordering direction. Since we in the next step
shift the magnetization by its value induced by the field, this
is proportional to (h · n)2, as is postulated in the main text on
symmetry grounds.

We now show this explicitly. We shift the definition ma =
ma + χaha for a = y, z, and expand the result to quadratic
order in m, n. Here χz = (1/χ + 4gJa2)−1 and χy = (1/χ −
2gJa2)−1.

This gives

Hg,h
NLS =

1

2χ

(
m2

y + m2
z

)+ 2gJa2
(
2m2

z − m2
y

)
− 2gJ

μ2
0

a2

(
2n2

z − n2
y

)+ ( 1

2χ
− 2gJa2

)
(χ2

y h2
yn2

y

+χ2
z h2

z n2
z + 2χyχzhyhznynz )

− 2gJ
μ2

0

a2

[
n2

y + n2
z + · · · ], (F16)

where the “· · · ” in the last brackets account for terms higher
order in field, magnetization fluctuations, etc.

The anisotropy coefficients, denoted by 
ab in the text, can
now be extracted. The terms in Hg,h

NLS which are quadratic in

the ny, nz fields read

Hnn = χ2
y h2

y

(
1

2χ
− 2gJa2

)
n2

y +
[
χ2

z h2
z

(
1

2χ
− 2gJa2

)
− 6gJ

μ2
0

a2

]
n2

z + 2χyχzhyhz

(
1

2χ
− 2gJa2

)
nynz.

(F17)

Note that the two terms proportional to n2
y from the right-most

contributions on each line of Eq. (F16) above canceled. That
means the the coefficient of n2

y in Eq. (F17) vanishes if hy = 0.
This occurs because of Goldstone’s theorem and the assumed
XXZ form of the anisotropy: if the field is purely along the
z direction, XY symmetry of the Hamiltonian under rotations
about the z axis is preserved, and this makes one of the spin
wave modes remain gapless. Conversely, for a field along the
y direction, and in the presence of anisotropy, both modes are
generally gapped.

We can simplify the above expression if we assume |g| 

1, which means χ−1

y ≈ χ−1
z ≈ χ−1 = 4a2J and therefore

1/χ � gJa2; hence,

Hnn ≈
χh2

y

2
n2

y +
[
χh2

z

2
− 6gJ

μ2
0

a2

]
n2

z + χhyhznynz. (F18)

The above shows that if hz is small or zero, stability requires
g < 0. This can be understood from the fact that, if the field
is along y, then HXXZ is the only term, in the pure spin
Hamiltonian, breaking explicitly the O(2) symmetry in the
x-z plane. It should therefore favor antiferromagnetic align-
ment along the x axis, which is the initial assumption of this
derivation. It also proves the χ

2 prefactor used in the main
text.

The coefficients in Eq. (F18) give contributions to 
yy, 
zz,
and 
yz, respectively. In this Appendix, as opposed to the more
general expressions given in the main text, we assume they are
the only contribution.

Since taking the magnetic field purely along one of the
two axes y, z guarantees that 
yz = 0, so that (as explained
in the main text) the two magnon valleys are independent, let
us assume that the field is along the y axis. Then one gap is
�1 = |hy|, the Zeeman energy associated with the field along
y. The other gap gets contributions both from the anisotropy
and the Zeeman energy associated with the field along z.

Note that the anisotropy-induced gap involves the square
root of the anisotropy, i.e., �0|hz=0 = 4

√
3|g|Jμ0, which

is not necessarily very small for reasonably small values
of g.

APPENDIX G: APPLICATION—SUPPLEMENTAL
FIGURES

Here we present further calculations of scattering rates and
(diagonal) thermal conductivity for the model of Sec. V, as
supplemental figures (Figs. 6–10).
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FIG. 6. Diagonal scattering rate Dnk with respect to θ (k) ∈ [0, π/2] (horizontal axis) and φ(k) ∈ [0, 2π ] (vertical axis) for fixed tempera-
ture T = 0.5 T0, polarization n = 0, and momentum (1) |k| = 0.0625/a, (2) |k| = 0.125/a, (3) |k| = 0.25/a, (4) |k| = 0.5/a, (5) |k| = 1.0/a,
(6) |k| = 2.0/a. Color scales vary from figure to figure. Note that the C4 symmetry is approximately preserved for small |k| but broken at
large |k|, as stated in the main text. Also note how scattering processes at θ (k) < θ− become allowed for ωnk � 2�, 2�′, then dominant at
large |k|.

FIG. 7. Diagonal scattering rate Dnk with respect to θ (k) ∈ [0, π/2] (horizontal axis) and φ(k) ∈ [0, 2π ] (vertical axis) for fixed temper-
ature T = 0.5T0, momentum |k| = 0.5/a, and polarizations (1) n = 0, (2) n = 1, and (3) n = 2. Color scales are different in (1) and (2, 3).
Subfigure (1) is reproduced from the main text. Note that with our choice of polarization vectors εn,k, results for n = 1 and n = 2 are simply
related by the mirror symmetry φ �→ π − φ.
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FIG. 8. Diagonal scattering rate Dnk with respect to θ (k) ∈ [0, π/2] (horizontal axis) and |k|a (vertical axis) for fixed temperature T =
0.5T0 and (1) φ(k) = 0 and n = 1, (2) φ(k) = π/2 and n = 0, and (3) φ(k) = π/2 and n = 1. Color scales are different for the three subfigures.
The φ(k) = 0 and n = 0 case is displayed in the main text. Note that polarizations n = 1 and n = 2 yield the same results here. Note also that
the general features are the same for polarizations n = 1, 2 as for n = 0: although the scattering rates of n = 1, 2 polarizations for energies
ωnk � 2� are not as clearly visible as they are for n = 0, they are finite (of order 10−4 in our units) and are only parametrically smaller than
those for the n = 0 polarization, due to purely geometrical factors (Sq;αβ

nk in the main text).

FIG. 9. Longitudinal thermal conductivity κL with respect to temperature T , in log-log scale, (left) for four different values of γext =
1× 10−z(vph/a), z ∈ �4, 7�, from darker (z = 4) to lighter (z = 7) shade, (right) for four different values γext = 1× 10−z(vph/a), z ∈ �6, 9�,
from darker (z = 6) to lighter (z = 9) shade. Note that the two “bumps” come from the competition between γext and Dnn,� for valley index
� = 0, 1, as explained in the main text.

FIG. 10. Skew-scattering rates (1) W�,−−
nkn′k′ and (2, 3) W�,−+

nkn′k′ , with respect to θ (k′) ∈ [0, π/2] (horizontal axis) and ϕ(k,k′) = φ(k′)−
φ(k) (vertical axis), for fixed magnetization m0 = 0.05ẑ, temperature T = 0.5T0, momentum |k′| = 0.8/a, kz = 0.1/a, and (1, 2) kx = 0.2/a,
ky = 0 and (3) kx = 0, ky = 0.2/a. The case W�,−−

nkn′k′ , kx = 0, ky = 0.2/a is in the main text. The color bars are different for each figure and not
linearly scaled. Note that thanks to anti-detailed-balance, angular dependencies of W�,++

nkn′k′ ,W
�,+−
nkn′k′ are identical to those of W�,−−

nkn′k′ ,W
�,−+
nkn′k′ ,

respectively, for an isotropic phonon dispersion.
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