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Using the parton construction, we build a three-dimensional (3D) multilayer fractional quantum Hall state
with average filling »=1/3 per layer that is qualitatively distinct from a stacking of weakly coupled Laughlin
states. The state supports gapped charge e/3 fermionic quasiparticles that can propagate both within and
between the layers, in contrast to the quasiparticles in a multilayer Laughlin state which are confined within
each layer. Moreover, the state has gapless neutral collective modes, a manifestation of an emergent “photon,”
which is minimally coupled to the fermionic quasiparticles. The surface sheath of the multilayer state re-
sembles a chiral analog of the Halperin-Lee-Read state, which is protected against gap-forming instabilities by
the topological character of the bulk 3D phase. We propose that this state might be present in multilayer
systems in the “intermediate tunneling regime,” where the interlayer tunneling strength is on the same order as
the Coulomb energy scale. We also find that the parton construction leads to a candidate state for a bilayer
v=1/3 system in the intermediate tunneling regime. The candidate state is distinct from both a bilayer of v
=1/3 Laughlin states and the single layer v=2/3 state but is, nonetheless, a fully gapped fractional quantum

Hall state with charge e/3 anyonic quasiparticles.
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I. INTRODUCTION

While the fractional quantum Hall effect is firmly rooted
in two dimensions (2D), anisotropic three-dimensional (3D)
electron systems—such as multilayer systems in a perpen-
dicular magnetic field—can exhibit fractional quantum Hall
(FQH) states, at least in principle. The simplest example of
such a 3D multilayer state is a stacking of N-decoupled
Laughlin states.'> At the next level of complexity, one can
construct states with interlayer correlations such as the
(3,3,1) bilayer state.> More generally, multicomponent
Chern-Simons theory allows one to construct a myriad of
N-layer analogs of the (3,3,1) state.*

These states are quite general but they suffer from a limi-
tation: they all have a fixed number of electrons in each
layer. This restriction could be problematic for describing
certain multilayer systems, especially those with appreciable
interlayer tunneling. Therefore, alternative constructions of
3D multilayer FQH states are desirable theoretically.

On the experimental side, a number of experiments on 3D
semiconductor multilayers have explored the behavior of
stacked integer quantum Hall states,’>” including the novel
vertical transport due to the conducting surface sheath.!8-14
More recently, experiments on bismuth crystals in high mag-
netic fields have revealed intriguing anomalies in the ul-
traquantum limit—the limit where the magnetic field is suf-
ficiently large that only the lowest Landau level is (partially)
occupied.!d It has been suggested that a novel 3D fractional
quantum Hall type state might be present. While these are
not layered materials, strong electron correlations could
drive a transition wherein the electrons spontaneously form a
weak-layered structure, as suggested in recent work.'® Bulk
graphite also reveals transport anomalies in the ultraquantum
limit,'-' which have been attributed to a charge-density
wave (CDW) transition in this layered material. The ob-
served quantum Hall effect in graphene,’*2? and future pros-
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pects for graphene multilayers, provides further impetus to
explore 3D layered quantum Hall phenomena.

Motivated by these experiments and the lack of previous
theoretical exploration, we revisit the behavior of multilayer
systems in the fractional quantum Hall regime. Generally, we
are interested in addressing the following class of questions:
what is the fate of a weakly coupled stacking of 2D frac-
tional quantum Hall states when the interlayer electron tun-
neling becomes strong enough to close the quantum Hall
gap? In particular, are new fractional quantum Hall type
states possible when the Coulomb interaction is comparable
to the interlayer tunneling strength? We believe that this in-
termediate tunneling strength regime is both experimentally
accessible and theoretically novel.

Answering these questions definitively for a specific mi-
croscopic model is quite challenging and likely requires ex-
tensive numerical calculation. Here, we are less ambitious.
Our goal is simply to find candidate ground states for the
intermediate tunneling regime. This is already a nontrivial
problem since, as we mentioned earlier, most multilayer
states—such as those obtained from Chern-Simons mean-
field theory—have a fixed number of electrons in each layer
and hence are unnatural unless the interlayer tunneling is
weak.

In this paper, we construct a candidate ground state for the
simplest possible multilayer system: spinless (or spin polar-
ized) electrons with an average filling of v=1/3 per layer.
We speculate that the candidate state may be realized at in-
termediate tunneling strength. However, our arguments for
the candidate state are indirect, as we do not make any de-
tailed analysis of energetics.

We construct our candidate state using a slave-particle
gauge theory approach known as the “parton
construction.”?*?3 The basic idea of the parton construction
is to write the electron creation operator as a product of
several (in our case, 3) fermionic parton creation operators.

©2009 The American Physical Society
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By choosing different mean-field parton states, and including
(gauge) fluctuations, one can construct different FQH states.
The advantage of the parton construction is that it naturally
leads to states with electron number fluctuations in each
layer. Thus, parton FQH states may be particularly natural in
the intermediate tunneling regime. In addition, the particular
state we construct has the interesting property that one can
tune from it to a decoupled multilayer Laughlin state by
changing a single coupling constant in the parton gauge
theory. Given that the multilayer Laughlin state is likely re-
alized at weak interlayer tunneling, this is an additional rea-
son we consider our state to be a candidate ground state for
intermediate interlayer tunneling.

We analyze the candidate state for both a finite number of
layers N and for the 3D limit N— <. For a finite number of
layers N, we find that the state is a fully gapped FQH state
(when N=1, it is simply the Laughlin state). The quasiparti-
cle excitations are anyonic and carry charge e/3. We find that
the quasiparticle excitations are described by a K matrix?° of
dimension (3N-2) X (3N-2), along with a charge vector of
length (3N-2).

In the 3D limit, the candidate state exhibits more unusual
physics. It supports two types of excitations: gapped charge
e/3 fermionic quasiparticle excitations and gapless electri-
cally neutral collective modes. The e¢/3 fermionic quasipar-
ticle excitations (which are essentially the “deconfined” par-
tons) are truly 3D quasiparticles and can move freely
between layers. This should be contrasted with the e/3 exci-
tations in the multilayer Laughlin state which are confined to
individual layers. (In this sense, our candidate state is “more
3D” then the multilayer Laughlin state). As for the gapless
electrically neutral collective modes, these are the emergent
U(1) gauge bosons or “photons” which originate from fluc-
tuations about the mean-field parton state. Unlike Maxwell
photons, these excitations have only one polarization state
and have an anisotropic dispersion of the form wi~k2l+k;t
(for layers oriented in the xy plane). The e/3 fermionic qua-
siparticles are minimally coupled to these photon modes and
thus have long-range interactions.

The edge physics of the N-layer and 3D systems is also
interesting. In the case of a finite number of layers N, the
edge theory is a chiral boson conformal field theory with
3N-2 chiral modes. The edge Lagrangian can be read off
from the bulk K matrix using the standard formalism.?® The
edge (or surface) physics in the 3D limit is more complex.
For a 3D system with layers in the xy plane and a boundary
in the xz plane, the three flavors of dispersing edge modes
form a “sheath” of chiral fermions. At the mean-field level
these fermions are noninteracting, but with fluctuations in-
cluded are minimally coupled to the gapless bulk photons.
The surface sheath, then, resembles a chiral analog of the
Halperin-Lee-Read?’ state, which is protected against gap-
forming instabilities by the topological character of the bulk
phase.

This paper is organized as follows. In Sec. II we speculate
about phase diagrams of multilayer v=1/3 systems and we
describe the intermediate tunneling regime in more detail. In
Sec. III we construct our candidate state. In Secs. IV=-VII, we
analyze the bulk physics of the candidate state for single
layer, bilayer, N-layer, and 3D systems. In Sec. VIII we in-
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vestigate the crossover between 2D and 3D physics in sys-
tems with a large but finite number of layers. In Sec. IX we
describe the relationship between the candidate state and the
multilayer Laughlin state. Finally, in Sec. X we analyze the
edge physics of the candidate state for N-layer and 3D sys-
tems.

II. MODEL AND POSSIBLE PHASE DIAGRAMS

In this section, we discuss the physics of N-layer v=1/3
FQH systems in more detail. We speculate about possible
phase diagrams and we explain what the intermediate tunnel-
ing regime is and why it is interesting.

Consider a geometry where the layers are oriented in the
xy plane and neighboring layers are spaced a distance a in
the z direction. There are four energy scales in the problem:
two intralayer and two interlayer scales. The intralayer en-
ergy scales are the cyclotron energy fiw.=fheB/m and the
characteristic intralayer Coulomb energy scale E.=e”/lp.
The interlayer scales are the interlayer Coulomb energy e*/a
and the interlayer tunneling strength z,. In the following dis-
cussion, we will focus on the regime where (1) Zw, is much
larger than any of the other energy scales and (2) a is com-
parable to, but larger than Iz so that the interlayer Coulomb
energy scale is smaller than but on the same order as the
intralayer energy E. In this regime, there is only one dimen-
sionless parameter in the problem: the ratio g=t,/E.

Let us think about the phase diagram as we vary the di-
mensionless ratio g=t,/E. To begin, suppose N=2. When
g=0, there is no interlayer tunneling and we expect that the
ground state is given by two decoupled Laughlin v=1/3
states, with perhaps small quantitative modifications due to
the interlayer Coulomb interaction. Since the Laughlin state
is gapped, it will be stable to small interlayer hopping, i.e.,
g <<1. In the opposite limit, with very large interlayer tunnel-
ing g> 1, all of the electrons will be in the “bonding band:”
the band consisting of symmetric combinations of Landau
orbitals in the two layers. The system is thus an effective
single layer system at filling v=2/3. The weak Coulomb
interactions will presumably lead to an Abelian v=2/3 state
with gap of order E.

Now, consider the regime g~ 1. Starting from the decou-
pled limit, when g is increased one expects that the quasipar-
ticle gap in each layer will diminish and presumably be
driven to zero at some critical value g;. On the other hand,
when g is brought down from large values, the gap of the
“single layer” v=2/3 state will diminish (due to Landau-
level mixing into the “antibonding band”) and be driven to
zero at some value (g,). Generally, there is no reason to
expect that g;=g,, although it is possible that there is a direct
first-order transition between the 1/3+1/3 decoupled phase
and the 2/3 single layer state. If g,> g/, there will be a third
FQH phase (or phases) for g; <g<g,. This potential phase
is the “intermediate coupling” phase we consider in this pa-
per.

One can imagine a similar scenario for the 3D limit
N—. Again, at weak interlayer tunneling, g<<1, the stack
of Laughlin states is stable and can be readily analyzed.' On
the other hand, the nature of the strong tunneling phase with
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g>1 1is nontrivial. In the noninteracting limit, the lowest
Landau level in each layer will form a band that disperses in
the z direction, with energy -, cos(k,a). The noninteracting
ground state consists of completely filling all of the lowest
Landau-level band states with |k|<kp=/3a. This de-
scribes a gapless state. In a Wannier basis of orthonormalized
lowest Landau-level wave functions with guiding centers sit-
ting on the sites of a regular 2D lattice (say triangular), one
can view the system as an array of one-dimensional (1D)
noninteracting electron systems. Gapless particle-hole exci-
tations exist across the two Fermi points in each of the 1D
“wires.” This noninteracting state is likely to be unstable in
the presence of arbitrarily weak Coulomb interactions E.
#0 due to the nested 2k backscattering interactions be-
tween nearby wires. The simplest scenario would be the de-
velopment of a fully gapped Q=2kr=27/(3a) CDW state,
which corresponds to a tripling of the unit cell along the z
axis. Naively one would expect the CDW gap to scale as
Acpw ~t. exp(—const- g).282° This CDW state can be loosely
thought of as an effective system with N/3 layers, each one
at filling v g=1.

As in the bilayer case, increasing g from small values will
presumably close the Laughlin quasiparticle gap in each of
the layers, destroying the decoupled phase at some g;. Simi-
larly, when g is decreased from very large values down to
order 1, the CDW state will become disfavored due to the
increasing intralayer Coulomb repulsion. One expects the
CDW state to be destroyed for some g<<g,. As for N=2, it is
possible that there is a third phase for g; <g<g,: an “inter-
mediate tunneling phase.”

The possibility of such an intermediate tunneling phase
for either the finite N case or the 3D limit N— is the
starting point for this paper. One reason we feel it is a par-
ticularly interesting possibility is that the interlayer tunneling
and the Coulomb interaction are both of paramount impor-
tance in such a putative phase. This poses a theoretical chal-
lenge since the obvious FQH states—such as those con-
structed from Chern-Simons mean-field theory—have a fixed
number of electrons in each layer and are therefore unnatural
except for very weak interlayer tunneling. On the other hand,
if one tries to construct a state by treating the N-layer system
as an effective single layer system at filling N/3, the result is
unnatural except for very strong interlayer tunneling. In this
paper, we use a different approach—a slave-particle con-
struction with fermionic “partons”—to build a candidate
state that overcomes these difficulties.

III. PARTON CONSTRUCTION

Our candidate state can be described most naturally using
the parton construction.>*? Let us first describe the construc-
tion in the case of the single layer system; we will then
generalize to multiple layers.

Our starting point is the single layer electron Hamiltonian.
As it will be convenient in what follows, we regularize this
Hamiltonian, replacing the 2D continuum by a square lattice.
We take the flux through each plaquette in the lattice to be
2/ M, the electron density to be 1/3M, and we consider the
limit M —cc. In this limit, the lattice model behaves like a
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2D continuum with electrons at filling fraction v=1/3.
The regularized electron Hamiltonian can be written as

H=-, (tciem%icmi + H.c.) + interactions, (1)
xi

where gx’i is a lattice gauge field with A]gxyz—Azgx,]

=2m/M, and A is periodic with unit cell of size M. Here,
A; denotes a lattice derivative in the X; direction: Af
Ef x+)€i_f x*

In the parton construction, we think of the electron as a
composite of three fermionic partons d”, p=1,2,3,

c=d'd*d’. (2)

We then substitute the expression for ¢ into this Hamiltonian
and expand around a saddle point. The result is a noninter-
acting mean-field Hamiltonian for the partons. Many differ-
ent saddle points can be stabilized depending on the details
of the interactions. Different saddle points correspond to dif-
ferent FQH states.

Here, we consider a particular saddle point. The saddle
point we are interested in is associated with the mean-field
Hamiltonian

Hye== 2 [1,(d) eid? . +H.e], )

xip

where A,; is a lattice gauge field with AA, ,—AyA
=2m/3M, and A,; is periodic with unit cell of size 3M.
Notice that the flux 27/3M is exactly the right size so that
the partons are at filling =1 (the partons, like the electrons,
are at density 1/3M). We have also assumed that the hopping
amplitudes 7, are different for the three species of partons.
What is the physics of this parton state? At the mean-field
level, the parton state is a gapped state with fermionic exci-
tations. However, this mean-field result is not quite correct
since we have not taken into account the effect of fluctua-
tions about the saddle point. These fluctuations are described
by fluctuations in the hopping amplitudes 7, of the form
tpetpe’oﬂ with 6,+6,+6;=0. We can parametrize them in
terms of two U(1) gauge fields AY, g=1,2 by setting 6,
=0,,A? where g=1,2, and Q,,=(1,0,-1), Q,,=(0,1,-1).
The effect of fluctuations is thus to couple the partons to two
U(1) gauge fields A?. [Note that the structure of the gauge
fluctuations is closely tied to the symmetries of the saddle
point. For example, at the symmetric saddle point t,=f,=13
the fluctuations are described by SU(3) gauge fluctuations

=ty UZ’ rather than the U(1) X U(1) fluctuations present

here®’]. Including these fluctuations, our Hamiltonian is
given by

H=H,+H,, (4)

where H, describes the parton hopping and H, describes the
gauge-field dynamics,

Hy=- 2 [t,(d)} eiquAii“‘Ax,fdgﬁi +Hecl, (5)

xip
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HAE(

xtq

)i- ZJcos =041, (6)

The parton state we are interested in is described by the
above Hamiltonian in the weak gauge fluctuation regime,
e.g., g<J,t,,.

Generalizing this construction to the N layer case is
straightforward. In this case, the mean-field parton Hamil-
tonian is given by

Hype== 2 [1, () e"wid], ;) +He]
xzip
- D [t,5(dh) dl, )+ Hell, (7)
xzp

where z is the layer index and 7, ,1,; are the intralayer and
interlayer hopping amplitudes.
Including the U(1) X U(1) gauge fluctuations, we arrive at

N
H=2(
z=1

N-1
Hzt+ HzA) + 2 (Hz(z+1)t + Hz(z+1)A), (8)

z=1

where H,,H_, describe the intralayer hopping and gauge-
field terms,
i d +i
H,=- 2 [tpL(dﬁz)Te Opeftee it (x+x )+ Hel], ©)

xip

H,=> 8 S - S 7, cos(A,A1

xiq xq

AZA)qcz’l) El

xz,2

(10)

and H,.y),H 41)a describe the interlayer hopping and
gauge-field terms,

Z(z+1)t E [

dp)lelquAx gdp(z_‘_l) +H.c. ]

HZ(Z+1)A = 2 ( Xz, 3)2 2 ‘13 COS(A sz 3 AZZ i +Ax(z+1) l)

xq xiq
(1

Again, we assume that the gauge fluctuations are weak: g3
<J3,1,3.1,, and g, <J | ,1,3,1,,. In the following sections,
we analyze the physics of this state.

IV. SINGLE LAYER

We begin with the simplest case: the single layer parton
state. We rederive the well-known result that the single layer
parton state is precisely the Laughlin state.*?>

To understand the properties of the single layer parton
state, we need to analyze the low energy physics of the
Hamiltonian (4). One way to do this is to introduce U(1)
gauge fields a‘z to describe the parton number currents,

1
jh= z—eMVaMaﬁ. (12)
T

The low-energy effective theory for the parton hopping terms
H, can then be written as

PHYSICAL REVIEW B 79, 235315 (2009)

1
L= EE €*"ald,a’ + minimal coupling to A

(13)

Including the minimal coupling to A7 gives
1
=—2> eMalg,ab+ —eWquA‘fa a.  (14)
4",

Adding the gauge-field terms H,, expanding the cosines to
quadratic order, and taking the continuum limit, we arrive at
the low-energy effective theory

1
= EE Erald, ab + —e)"“’QMA"& a
p

1 JI?
+ 2 —(dA? - GAY? - X (5,49 - $,A9?,
iq 28 g 2
(15)

where [ is the lattice spacing. The last two terms are irrel-
evant to the low-energy physics since integrating out the a’;
field produces a Chern-Simons term for A9 (which has one
less derivative then the above Maxwell terms). Dropping

these terms and integrating out A leaves us with

1
= EE e’\“”a’iaﬂa’; (16)
p
together with the constraints d,a —o” a —é’ a . Letting a,
—al—az—a3 we get
L ! €'*3a,d (17)
=— ayd,a,.
4ar Nty

If we include the coupling to the physical electromagnetic
gauge field Agy;, assigning electric charges e;,e;,e3 to the
partons with e;+e,+e3=¢, we find

1
L=—€\'“V3a)\(9 a,+ _6)\ AEM)\ (18)
4

(irrespective of the values of e;,e,,e3). This is the low-
energy effective theory for the Laughlin state. We conclude
that the single layer parton state is in the same universality
class (e.g., quantum phase) as the Laughlin state.

V. BILAYER

In this section, we analyze the parton state in the next
simplest case: a bilayer. In this case, the parton Hamiltonian
(8) reduces to

H=2 (H,+H.,) +(Hy+Hpy), (19)

where H,,H_, describe the intralayer hopping and gauge-
field terms,

H,=- 2 [1, (d) e itsidl . +He], (20)
Xip

X+X;)z
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g
H,=> ?(Ejz,i)2 -2 J, cos(A A%,

xiq xq

- AZAZZ, 1) )
21

and H;,,,H,, describe the interlayer hopping and gauge-
field terms,

Hpy=-2 [fp3(dﬁ1)T€iQ”"A§"3dfz +H.c.], (22)
p

83
Hppy= 2, Z(E§1,3)2 -2 cos(AAT, 5 - A+ AL ).
xq xiq

(23)

As before, we can derive the low-energy physics of this
Hamiltonian by introducing U(1) gauge fields a?, to describe
the parton number currents in each layer,

1
= el (24)
m™

Mmzve

Expanding the cosines in the gauge-field terms to quadratic
order, and putting everything together, we arrive at the effec-
tive theory

1 1
L= o2 gl 5 2 SN,
zp z

1
L 2
+ 20:d (9A] 5= AT o+ A% )

J
-> f(aiA?j — A +A%)%, (25)
iq

where a is the layer spacing. (As in the single layer case, we
have dropped the intralayer Maxwell terms as they are irrel-
evant to the low-energy physics). To proceed further, we
choose the gauge A{;=0 and define new fields A? =
=AY = A4 Expressing the Lagrangian in terms of these fields
gives

= LE erval a,al
4ar »

LAY uH v
Lz MY [A"t& P+ b Y] 1 A97)2
+47T - Op AV d,(d} , = db )]+ 2g3a2( &)
I3, o
-2 T’ (26)
iq

As in the single layer case, the final step is to integrate out
the gauge fields AY*. Integrating out A9+ generates the

PHYSICAL REVIEW B 79, 235315 (2009)

. 1 2 3L : -
constraints EzaMaz,VzEZ&MaZ,fEZ&Ma%,V, integrating out A?
generates a Maxwell term for a” which is irrelevant to the
low-energy physics due to the presence of the Chern-Simons
term.

We thus arrive at the Lagrangian
= LE RN (27)
A7 " ANz,

. . 1 2 3
together with the constraints EZ&MaZ’,FEZ&MaZ’fEZ&MaZ,V.
There are four independent gauge fields left which we can
parametrize by a1=a},a2=a%,a3=a?,a4=21a;=Eza§=Eza§’.

In terms of these variables, we have
1 nv 1 J
L= ETGA Kua)\o"luay, (28)

where

2 0 0 -1

0o 2 0 -1
K= . (29)
0o 0 2 -1

-1 -1 -1 3

Including the coupling to the physical electromagnetic gauge
field Agy;, assigning charges e, e,,e; to the partons with e;
+e,+e3=e, we find

1 e
L= ;Tex”"K,]aiﬁﬂa{}+ ;TE)\MVIIAEM’)\(?MQL, (30)

where t7=(0,0,0,1) (irrespective of the values of e, e,,es).

The parton state is completely specified by the above K
matrix and charge vector ¢ (or more accurately, the universal
properties of this quantum state are completely specified).
We now analyze the basic properties of this state.

We begin with the quasiparticle statistics. According to
the K-matrix formalism, the quasiparticle excitations can be
labeled by integer vectors [. The exchange statistics of a
quasiparticle [ is given by 6.,=m(I"K~'l). The mutual statis-
tics of two quasiparticles / and [, e.g., the phase associated
with braiding one particle around another, is given by 6,
=2m(I"K~'1").

In principle, these formulas completely specify the quasi-
particle statistics of the parton state. However, it is conve-
nient to describe the statistics of the parton state in a more
concise way. A general way to do this is to find a subset of
quasiparticles with the property that one can generate all to-
pologically distinct quasiparticles by taking composites of
these basic quasiparticles. One can then describe the com-
plete quasiparticle statistics by specifying the statistics of
this generating subset of quasiparticles. For the above state,
the three parton excitations corresponding to [;
=(1,0,0,0),,=(0,1,0,0),15=(0,0,1,0) generate all the
others. [One way to see this is to note that the excitation
(0,0,0,1) is topologically identical to (2,0,0,0)]. Simple alge-
bra shows that the three parton excitations have exchange
statistics
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21
6,=m(I}K'1,) = 5 (31)

and mutual statistics

(1 +36, r)’ﬂ'
Oy =2m(0K'1,0) = % (32)
This gives a complete description of the quasiparticle statis-
tics of the bilayer parton state. The electric charges of the
quasiparticles are also easy to obtain. Again, it suffices to
specify the parton charges, which are given by

=e(f'k'l,) = (33)

w|<\

Now that we have computed these properties, we can see
that the bilayer parton state is distinct from a bilayer of de-
coupled v=1/3 Laughlin states as well as the conventional
v=2/3 state. Indeed, one can distinguish the states by noting
that the e/3 excitation in the parton state has a statistical
angle 27/3, while the e/3 excitation in the other two states
has an angle /3.

One can also distinguish the states by their ground-state
degeneracy on a torus. This quantity is particularly easy to
measure in numerical calculations. The ground-state degen-
eracy for the bilayer parton state is just the determinant of K
which is 12. On the other hand, the degeneracy of a bilayer
of decoupled v=1/3 Laughlin states is 9, and the degeneracy
of the v=2/3 state is 3.

A final way to distinguish the states is via their thermal
Hall conductances. Recall that each chiral boson edge mode

gives a contribution of i3—hT to the thermal Hall conduc-
tance, with the sign determined by the chirality of the mode.
Thus, the thermal Hall conductance can be computed by
counting the number of positive and negative eigenvalues of
K. In the case of the bilayer parton state, there are four posi-

tive elgenvalues so the thermal Hall conductance is 4 (in

units of 3—hT) On the other hand, the thermal Hall conduc-
tance for the bilayer of Laughlin states is 2 and the thermal
Hall conductance for the »=2/3 state is 0.

VI. N-LAYER SYSTEM

The bilayer results can be easily generalized to the
N-layer case. For general N, one finds a K matrix of dimen-
sion (3N-2) X (3N-2). The result is shown below for the
case N=3,

2 1 0 0 0 0 -1
1 2 0 0 0 0 -1
0 0 2 1 0 0 -1
k=l 0 0 1 2 0 0 -1]| (39
o 0 0 0 2 1 -1
o 0 0 0 1 2 -1

-1 -1 -1 -1 -1 -1 3

The corresponding charge vector is '=(0,0,0,0,0,0,1).
The generalization to arbitrary N is clear: along the diagonals

PHYSICAL REVIEW B 79, 235315 (2009)

there are three (N—1) X (N—1) blocks of the form 1+ ; i
while the last row and column is made up of —1’s with a 3 in
the bottom right-hand corner.

As before, the K matrix and charge vector determine all
the universal properties of the FQH state such as the quasi-
particle statistics and charges. Also, just as before, one can
summarize the quasiparticle charges and statistics more con-
cisely by specifying the statistics and charges of the three
parton species [which correspond to 7,=(1,0,0,0,0,0,0),
,=(0,0,1,0,0,0,0), and /3=(0,0,0,0,1,0,0) in the N=3
case].

One finds that the parton excitations have exchange sta-
tistics

(BN-=-2)mr
=, 35
P 3N (33)
mutual statistics
_ [2+ (6N - 6)5pp,]7-r
pp' - 3N ’ (36)
and charge
e

VIIL 3D LIMIT

In this section, we analyze the parton construction in the
3D limit N—oo. Recall that the parton Hamiltonian is given
by

H= E (H+ Hop + Hyry+ Hyza1)a) s (38)
where
—2[ (@) e Ot tid] o +He], (39)
and
Hy=> 5% 5 SS(E1)? - 2T, cos(AAL , - AAY ),
xiq xq
(40)

and

Z(Z+l 2 [tp:i( )T lquAx 3d§(2+1 +H.C.],

83
Hz(z+l)A = 2 ( 3)2 2 J% COS(Alez 3 Azz,i +Az(z+]),i)'

xq xiq

(41)

As usual, we derive a low- energy effective theory by intro-
ducing U(1) gauge fields a to describe the parton number
currents in each layer,
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1
N v
=" d,. (42)

2

Expanding the cosines in the gauge-field terms to quadratic
order, and putting everything together, we arrive at the effec-
tive Lagrangian

L=Lu+LA +LL¢A’ (43)
where
! mv P P
L,= _772 eral\a,al (44)
p
and

1 J, P
Ly= 2 (AL = GAL0) = 2 (AT, = AL

zig “81 2q

1
+
2q

2g:a”

2
(GAL; = ALy + AL,

J3
- E(aiAgﬁ — AL+ AL ),

ziq

(45)
and

1
L= ;TE E0,AT Al . (46)
Z

To proceed further, we integrate out the gauge fields a cor-
responding to the parton excitations. Note that this is differ-
ent from the approach we took in the single layer and bilayer
cases where we integrated out the gauge fields A7 instead.
We could have used this approach in those cases as well. The
advantage of this approach is that it leads to a simpler de-
scription of the bulk low-energy physics: the low-energy ef-
fective theory for the N-layer case is simply a 2 X2 Chern-
Simons theory coupled to fermionic partons [instead of a
(BN-2) X (3N-2) Chern-Simons theory coupled to bosons].
The disadvantage is that the edge physics cannot be easily
read off from the bulk effective theory. Here our primary
interest is in the bulk physics; thus we choose to integrate out
the fields a’.

Integrating out the a field (e.g., the partons) produces a
Chern-Simons term for the A field. We can then drop the J
and g, Maxwell terms, as they are irrelevant at long dis-
tances. The resulting Lagrangian is given by

1 '
Ly = EE MK AL AL,
z

1
2ga°

(AT - AL+ A?+1,o)2

+
q

J
- 2 0L, - AL+ AL (47)

z+1,0
ziq

where
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-2 -1
qul= _1 _2 .

The full low-energy effective theory is described by fermi-
onic partons minimally coupled to this gauge theory with

gauge charges Q,,,

(48)

L =L+ Ly esps (49)
where
Lpu= 2 (d) (idy + QA2 !
)24
l T .
D bl CAKCRL W IOR
ipz pL

- fp3(df)-r€[Q"‘1Ag»3df+l +H.c. (50)

pz

[Here, m,, =1/(2t,,1?)]. We now analyze the physics of this
low-energy effective theory. We begin with the excitations in
the bulk. There are two types of excitations: gapped parton
excitations described by d” and gapless gauge boson excita-
tions described by the above U(1) X U(1) gauge theory.

Let us try to understand the gapless gauge boson excita-
tions in greater detail. We can derive the dispersion relation
for these gapless modes by going to Fourier space. Going to
Fourier space and taking k small, we have

1 ' 1
L=—e"K, Alik AL + X —— (kA - k:A})?
ma q 283a
Jza
- 2 (kAL - kA D,
iq

Defining Ai:%(A‘ +A?), K is diagonalized and our

Lagrangian becomes

(51)

1 1
L=—2 é"*mAlik Al + >, — (koAl - kzA%)?
47m§ mANik, AS §2g3a( 0Ad - k3A9)

Jsa
= 2 7 (kAT - kAT, (52)
iq
where m.=-3,—1 are the two eigenvalues of K.
We can write this as
L=2 (A%) M (A7), (53)

q

where
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k3 imk,  imgk, koks
2gsa 4ma  4ma - @
imk,  Jsaky  imgk, Jsak ks
S dma 2 4ma 2
M,=1 . . > (54)
imgk, imgk Jzaks Jzakoks
dAma  4dma 2 2
koks — Jsakiks Jsakoks ki Jsa(kl+ kD)
T 2ga 2 2 2ga 2
Choosing the temporal gauge A(=0, we can reduce M, to the 3 X3 submatrix
2 4ma 2
= - i%q@ B Jsak; Jsakoks (55)
ma 2 2
Jsakiky  Jyakoks ki Jsa(kl + kD)
2 2 2gsa - 2

Setting the determinant to 0, we find one gapless mode for
each g==* with dispersion
2
4772J3a4k4
2 K3
My

w* = J3830% (ki + k3) + (56)
In principle, these gapless modes should be visible in inelas-
tic light-scattering measurements. Thus, such measurements
could be used to distinguish the 3D parton state from other
candidate states such as the decoupled Laughlin state. In Sec.
X we describe another experimental signature of the 3D par-
ton state, involving surface excitations.

In addition to the gapless gauge excitations, the 3D state
also contains gapped parton excitations. These excitations
are fermions and carry electric charge g=e/3 as in the
N-layer case (37). They are minimally coupled to the gapless
gauge bosons and therefore have long-range interactions.
Note that these excitations are truly 3D quasiparticles; they
can propagate freely both within layers and between layers.
This should be contrasted with the charge e/3 particles in the
decoupled Laughlin state, which are confined to individual
layers. In this sense, the parton state is more 3D than the
decoupled Laughlin state.

VIII. CROSSOVER FROM 2D TO 3D

In the previous sections, we referred to the 3D limit as the
limit N— . However, the 3D limit can also be accessed
when there are a finite number of layers provided that we
probe the system at appropriate length and energy scales. In
this section, we discuss this crossover from 2D to 3D phys-
ics.

Consider an N-layer system with N> 1. This system is
described by three species of partons minimally coupled to
the the gauge theory (47). According to the analysis follow-

ing Eq. (47), the low-energy modes of this gauge theory
satisfy the dispersion relation (56). Since N is finite, k; is
quantized in multiples of 77/ Na. For each value of k3, there is
a corresponding 2D mode.

The mode with the smallest gap corresponds to
ky=m/Na; the dispersion relation for this mode is
47270
* = 1,832k} + 13) + —3 i (57)
My

We see that this mode has a gap A~ J3/ N? and a correlation
length é~ N%avgs/J;.

The gap A and correlation length £ are the important en-
ergy and length scales in the 2D/3D crossover. If one probes
the system at energies less than A or lengths larger then &
(parallel to the layers), all the modes with k3 # 0 will freeze
out and the system will behave like a gapped 2D system. The
physics is then described by the gapped FQH state in Sec.
VI. On the other hand, if one probes the system at energies
greater than A or lengths smaller then & the system will
behave like a 3D system. In this case, the physics is de-
scribed by partons coupled to the gapless gauge theory (47).

One example of this crossover is the following thought
experiment. Imagine adiabatically braiding one charge e/3
parton excitation p around another e/3 parton excitation
p’—say of a different species—using a braiding path parallel
to the layers (see Fig. 1). First, consider the case where the
separation r between the partons is kept larger than £. In this
case, the mode (56) will be effectively frozen at this distance.
While the presence of parton p’ will change the gauge flux
seen by parton p, the gauge flux will be localized to within a
distance & of p’ and will be exponentially suppressed near
the braiding path. Thus, the only interaction between the two
partons will be a statistical interaction: the presence of parton
p' will change the total gauge flux enclosed by the braiding
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FIG. 1. If r> ¢, the Berry phase associated with braiding a par-
ton p around another parton p’ is given by the 2D formula 6,,
=27/3N. If r<<¢, it depends on the details of the path and can be
calculated from the 3D gapless gauge theory (47).

path of parton p. The Berry phase associated with braiding
one parton around the other is then given by the 2D mutual
statistics formula 6,, =27/3N.

Now, consider the case where the separation r between
the partons is kept much smaller than & In this case, the
mode (56) will not be frozen out and the partons will expe-
rience long-range interactions. The phase associated with
braiding one parton around the other will depend on the de-
tails of the path and can be calculated using the 3D gapless
gauge theory (47).

As for the crossover between the two regimes, we expect
that the Berry phase in the 3D regime scales with the sepa-
ration between the partons according to some power law.
When the separation is on the order & we expect that the
phase is on the order 1/N so that it agrees with the phase in
the 2D regime.

IX. RELATIONSHIP TO DECOUPLED »=1/3 LAYERS

An interesting feature of the parton construction is that it
can describe the decoupled v=1/3 layered state within the
same framework as the 3D parton state. One can tune from
one state to the other by changing a single coupling constant
in the parton gauge theory.

To see this, let us go back to the original parton Hamil-
tonian (8). So far we have analyzed the physics of this
Hamiltonian in the limit of weak gauge fluctuations:
83<Js,1,3,1,, and g, <J,1,3,1,,. We found that in this
regime, the low-energy physics was described by the 3D
parton state.

However, by increasing g; one can also access a regime
where (interlayer) gauge fluctuations are strong. More spe-
cifically, suppose that g3>J3,1,3,7,, . In this case, the com-
pactness of the U(1) gauge field becomes important. Since
the lattice electric field is integer valued and gj is large, the
interlayer field E is essentially fixed at E4=0. Nonzero val-
ues of Ef cost energy on the order g;. As a result, the inter-
layer tunneling terms H,.;, and interlayer flux terms
cos(AAT —AY +AY ), in Eq. (8) are suppressed and can
be dropped from the Hamiltonian. At low energies, the phys-
ics is then described by H=2_(H 4+ H_,); the effective theory
for decoupled v=1/3 states.

On an intuitive level, the basic physics is that large inter-
layer gauge fluctuations prohibit partons from tunneling be-
tween the layers, leading to a decoupled layer state. One can
also think about the transition between the 3D state and the
decoupled layer state in terms of Higgs condensation. Con-
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sider, for example, the bilayer case. Recall that the interlayer
gauge-field term (23) in the bilayer parton Hamiltonian is
given by

Hypy=2 gz_S(EZLs)z - 2 Ty cos(AAY s - A+ AL ). (58)
xXq Xiq

Let us view the operator ¢%13 as the creation operator of a
boson at site x, while EY, ; is the number operator which
measures the number of bosons at site x. The first term is
then a potential-energy term which describes the energy as-
sociated with having a certain number of bosons on a given
site, while the second term is a kinetic-energy term which
describes a boson hopping from one site to a neighboring
site. The presence of the combination A{;,~A%; in the argu-
ment of the cosine tells us that the boson is minimally
coupled to the gauge field A{;-A7,.

It is illuminating to think about the strong and weak gauge
fluctuation regimes in this language. When g3 > J5, the boson
is massive (e.g., in a Mott insulating phase) and is therefore
irrelevant at low energies. The interlayer gauge terms can
then be dropped and the low-energy effective Hamiltonian
(19) consists of two decoupled layers H=32(H_+H._,).
The ground state is thus two decoupled v=1/3 states.

On the other hand, when g;<<J;, the boson condenses.
Since the boson is minimally coupled to the gauge field
A{,;=Aj,, this boson condensation is a kind of Higgs conden-
sation where the Higgs boson is coupled to a Chern-Simons
gauge field.>! When such a Higgs boson condenses, the result
is another gapped FQH state; in this case, the bilayer parton
state.

Because one can tune from the decoupled state to the
parton state by changing a single coupling constant g3, one
can speculate that these states are in some sense neighboring
or proximate phases. This is one of the reasons that we pro-
pose the parton state as a candidate for an intermediate tun-
neling phase.

X. EDGE (AND SURFACE) STATES

In this section, we discuss the edge states for the N-layer
system: both for finite N and in the 3D limit N— . First,
consider the case of finite N. In this case, the edge theory can
be read off from the K matrix and charge vector ¢ described
in Sec. VI, using the standard formalism.2® The result is a
chiral boson theory with 3N—-2 modes, qSI,I:l,... ,3N=-2.
The Lagrangian is of the form

1
L=~ (Ko, #'0.¢" = Viyo.d'd.¢"), (59)

where V;; is a positive-definite velocity matrix which de-
scribes the velocities of each of the modes and the density-
density interactions between different modes. Quasiparticle
excitations are parametrized by integer vectors / and are cre-
ated by operators of the form exp(il,¢'). The electric charge
corresponding to a quasiparticle / is given by g=e(t'K~'1).

As many aspects of the edge theory depend on micro-
scopic details of the edge and can be affected by edge recon-
struction, let us discuss two simple quantities which are uni-
versal. The first quantity—the electric Hall conductance—is
given by
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e*  Ne?
Oy = (tTK_ll‘); = E (60)
Of course, this is exactly what we expect since the parton
state has v=1/3 per layer.
A more interesting quantity is the thermal Hall conduc-

tance. Recall that each chiral boson edge mode gives a con-

tribution of *= %T to the thermal Hall conductance, with the
sign determined by the chirality of the mode. Thus, the ther-
mal Hall conductance can be computed by counting the num-
ber of edge modes. Since the K matrix has 3N—-2 positive
eigenvalues and no negative eigenvalues, there are 3N-2
modes propagating in one direction and no modes propagat-

ing in the opposite direction. We conclude that the thermal

2
Hall conductance is 3N-2 (in units of %T).

Before concluding this section, let us briefly discuss the
3D limit N—. In this case, the boundary is two dimen-
sional and the edge states are actually surface states. Let us
focus on the most interesting kind of boundary: a boundary
in the xz plane (with layers oriented in the xy plane).

The analysis of the surface states is complicated by the
fact that the bulk has gapless modes. Because of this, we will
not analyze the surface in detail but rather sketch the basic
qualitative picture which is evident in mean-field theory. In
mean-field theory, the surface modes are given by three
species of noninteracting 2D fermions, which are chiral in
the x direction but nonchiral in the z direction. The modes
form a sheath of chiral fermions with Fermi surface k,
~1, cos(k.a).! When one goes beyond mean-field theory and
includes gauge fluctuations, these fermions will become
minimally coupled to the bulk photon mode. The gauge fluc-
tuations will certainly affect the surface theory; however, we
know that they cannot gap out the surface modes entirely.
Indeed, the gaplessness of the edge modes is protected by the
nonzero electric Hall conductivity in the bulk (e?/3h per
layer). The surface sheath therefore resembles a chiral analog
of the Halperin-Lee-Read?’ state which is protected against
gap-forming instabilities by the topological character of the
bulk phase.

These surface states may provide the simplest experimen-
tal signature of the 3D parton states. In particular, consider
the z-axis surface longitudinal conductance o,. In mean-
field theory, o,, behaves just like the conductance of the
layered integer quantum Hall system studied in Ref. 1. Thus,
o, ~const as T— 0. Including gauge fluctuations, we expect
that this constant will be renormalized, but o, will remain
finite at zero temperature. This should be contrasted with the
behavior of o, in the decoupled v=1/3 Laughlin state. In
that case, o,,~T° as T—0.! Thus, a measurement of o,
could, in principle, distinguish the 3D parton state from the
decoupled Laughlin state.

XI. CONCLUSION

In this paper, we have constructed a candidate state for a
multilayer FQH system with average filling v=1/3 per layer.
We have proposed that the state may be realized in the inter-
mediate tunneling regime where the interlayer tunneling
strength is on the same order as the Coulomb energy e?/l5.
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Our construction is based on a slave-particle approach
known as the “parton construction.”

We have analyzed the state for both a finite number of
layers N and in the 3D limit N—oc. In the case of a finite
number of layers N, the state is a gapped FQH state and is
described by a (3N-2) X (3N-2) K matrix. Its quasiparticle
excitations are anyonic and carry charge e/3.

In the 3D limit N— o, the state is more unusual. It sup-
ports two types of excitations: gapped e/3 fermionic quasi-
particle excitations and gapless neutral collective modes. The
quasiparticle excitations are truly 3D quasiparticles and can
propagate freely both within and between layers. (This is in
contrast to the charge e/3 excitations in the multilayer
Laughlin state, which are confined to individual layers). The
gapless neutral collective modes are emergent photon modes
originating from the slave-particle gauge theory. Unlike
Maxwell photons, they come in only one polarization and
have an anisotropic dispersion wﬁ~ki+k?. The ¢/3 fermi-
onic quasiparticles are minimally coupled to these photon
modes so that they have long-range interactions.

The edge physics of the finite layer and 3D systems is
also interesting. When N is finite, the edge theory is de-
scribed by a conformal field theory with 3N -2 chiral boson
modes. In the 3D limit, the edge modes are more complex. In
mean-field theory, the edge (or more accurately, surface)
modes are described by three different species of noninter-
acting 2D fermions which propagate chirally in the x direc-
tion (e.g., the direction parallel to the layers) and nonchirally
in the z direction (e.g., the direction perpendicular to the
layers). Going beyond the mean-field theory, we expect that
these fermions are minimally coupled to the gapless bulk
photon modes. However, we have not analyzed the surface
physics in detail. This is an interesting direction for future
research.

Another direction for future research would be to con-
struct other types of layered FQH states. For example, it
would be interesting to build multilayer states with average
filling v=1/2 per layer, in particular, multilayer states which
are related to the Moore-Read? v=1/2 state or the compos-
ite Fermi liquid v=1/2 state?” (instead of the Laughlin »
=1/3 state which we have investigated here). One possible
approach for this problem would be to employ a parton con-
struction where one writes an electron as c=d;d,f, where
dy,d, are fermionic partons carrying charge e/2 and f is a
neutral fermionic parton. One could then consider mean-field
states where, in each layer, d,,d, are in integer quantum Hall
states and f is in a p+ip superconducting state or a Fermi-
liquid state. In this way, one may be able to construct
multilayer and 3D relatives of the Moore-Read or composite
Fermi-liquid states.

In general, there are clearly many possibilities for 3D
multilayer FQH states, most of which have not been ex-
plored. We hope that the parton construction provides a use-
ful tool for constructing and analyzing these states of matter.
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