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Low-energy electronic structure of �unbiased and undoped� bilayer graphene consists of two Fermi points
with quadratic dispersions if trigonal warping is ignored. We show that short-range �or screened Coulomb�
interactions are marginally relevant and use renormalization group to study their effects on low-energy prop-
erties of the system. We find that the two quadratic Fermi points spontaneously split into four Dirac points.
This results in a nematic state that spontaneously breaks the sixfold lattice rotation symmetry �combined with
layer permutation� down to a twofold one, with a finite transition temperature. Critical properties of the
transition and effects of trigonal warping are also discussed.
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This Rapid Communication is motivated by the observa-
tion that in noninteracting systems with susceptibilities di-
verging as the temperature approaches zero, the inclusion of
arbitrarily small interaction leads to a finite but also arbi-
trarily small transition temperature into an ordered state. The
analytical method of choice in this case is the renormaliza-
tion group �RG�, which has the virtue of unbiased determi-
nation of the leading instability.1 Here we apply the RG
method to the bilayer graphene with A-B stacking.2–5 While
in general, the motion of the noninteracting electrons in such
potential does not lead to diverging susceptibilities due to
trigonal warping,3,4 if only nearest-neighbor �nn� hopping is
considered each set of four Dirac points merges into a single
degenerate point with parabolic dispersion �see Fig. 1�. As
the nearest-neighbor hopping amplitudes are the largest, the
latter is the natural starting point of theoretical analysis.6,7

The finite density of states associated with the parabolic dis-
persion leads to screening that renders Coulomb interaction
short ranged and to diverging susceptibilities in several chan-
nels. We find that the leading instability triggered by the
run-away RG flow is in the nematic channel, which effec-
tively makes hopping amplitudes stronger along preferred
direction �see Eqs. �17� and �18��, and leads to spontaneous
splittings of the Fermi points and breaking of the lattice ro-
tation symmetry. Among other effects, this should lead to
anisotropic transport in sufficiently clean samples, as well as
suppression of the low-energy density of state: an effect, in
principle, observable in STM.

We start with the tight-binding Hamiltonian for electrons
hopping on the bilayer honeycomb lattice with Bernal stack-
ing

H= �
�rr��

�trr�c�
†�r�c��r�� +H.c.�+

1

2�
rr�

�n̂�r�V�r − r���n̂�r�� ,

�1�

where, in the nn approximation, the �real� hopping ampli-
tudes t connect the in-plane nn sites belonging to different
sublattices and, for one of the sublattices, also the sites ver-
tically above it with amplitude t�. Since there are four sites
in the unit cell, there are four bands whose dispersion for the

above model comes from the solution of the eigenvalue
problem,
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FIG. 1. �Color online� �Upper left inset� Honeycomb bilayer
unit cell. Atoms in the lower layer �2� are marked as smaller �black�
circles; atoms in the upper layer �1� are larger �red� circles. As a
starting point, only the intralayer nearest-neighbor hopping ampli-
tudes t and the interlayer hopping amplitudes t� are considered.
�Upper right inset� Schematic constant energy contours of the re-
sulting dispersion. �Main figure� The energy dispersion of the four
bands along the vertical cut in the Brillouin zone. The band splitting
at the K �and K�� points is t�. �Middle inset� Magnification of the
dispersion �in units of t� near the degeneracy point �solid black� as
well as the dispersion in the nematic state �dashed red� with
�x�0 �see Eq. �17��.
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We find E�k�= � � 1
2 t��
�dk�2+ 1

4 t�
2 �, with dk

= t�2 cos�

3
2 kya�e−�i/2�kxa+eikxa�. Two of the bands are gapped

�at K ,K� by t�� and become separated from the low-energy
pair, which touches at k=0 �see Fig. 1�. The resulting density
of states at zero energy is therefore finite.

The repulsive interaction V�r−r�� in Eq. �1� is taken to
have a finite range �, which is much larger than the lattice
spacing a. This is assumed to be the correct starting point
since the full Coulomb interactions is screened8 at low en-
ergy due to the finite density of states. Following Nilsson et
al.,9 we project out the gapped bands. The resulting low-
energy effective �imaginary time� action �which includes
both K and K� valleys� is

S =� d�d2r�†� �
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	adp
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where the four component Fermi �Grassman� fields
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y =
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2m
, 	x = 1�x, 	y = �z�y ,

	z = �z�z. �5�

The Pauli matrices � j act on the layer indices 1–2 and the �
matrices act on the valley indices K-K�. The effective mass
is m=2t� / �9t2�, and � represents N

2 copies of the four com-
ponent pseudospinor. N=4 for spin 1/2, and, e.g., for
s=1, . . . ,N, �†	z��r ,��=��s

† 	�
z �s. Note that 	’s

have the same multiplication table as the Pauli �’s:
	�	�=14���+ i����	� and are traceless too. 
 is a momen-
tum cutoff, which restricts the modes to the vicinity of the
K-K� points and whose order of magnitude is �
2mt�.

The coupling constant g1=�d2rV�r�, while g2 and g3 are
zero in the starting action, but they get generated in the
momentum-shell RG.1 From simple power counting, the �en-
gineering� scaling dimension of the field � is L−1 and L2 for

�. This makes g1, g2, and g3 marginal �at the tree-level� and
the question is how they flow upon inclusion of the loop
corrections. To answer this, we need to evaluate the diagrams
in Fig. 2. The RG equations obtained by integrating fermion
modes within a thin shell 
 and 
 /s �centered at the K
point�, and �−�

� d�
2� , are
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= �− 4g1g3�

m

4�
, �6�
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2�
m

4�
. �8�

We now analyze the qualitative nature of the above RG
flows. Note that

dg3

d ln s �0 which means that, unless
g1=g2=g3=0 when the equality holds, g3 strictly decreases
under RG rescaling. We can therefore trade the parametric
dependence on s of g1 and g2 for their dependence on g3 and
retain the direction of the RG flow. For g3�0��0�, an in-
crease in d log s therefore corresponds to an increase �de-
crease� in

dg3

g3
. Since the system is autonomous, we can elimi-

nate log s and arrive at a system

dg1

dg3
= f�g1

g3
,
g2

g3
�,

dg2

dg3
= g�g1

g3
,
g2

g3
� , �9�

where

f�x,y� =
− 4x

− x2 − y2 − 2�N + 2� + 2x + 2y
, �10�

g�x,y� =
− 4�N − 1�y2 + 4 + 4xy − 12y

− x2 − y2 − 2�N + 2� + 2x + 2y
. �11�

The system of Eqs. �9�–�11� is in turn homogeneous and can
therefore be written as
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The above system has three fixed points, all of which have
g1 /g3=0, while g2 /g3=m1 ,m2 ,m3. As shown in Fig. 3,
m1�−0.525 and m3�13.98 are sinks, while m2�0.545 has
one attractive direction and one repulsive. This means that
once g3 gets to be negative, only g2 and g3 become important

FIG. 2. Diagrams appearing at
one-loop RG. The vertices are ei-
ther �� or 	�

� .
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�their ratio being fixed� while g1 is too small compared to g3.
To see that this is indeed what happens if the starting point is
g1�s=1��0 and g2�s=1�=g3�s=1�=0, note that Eqs. �6�–�8�
imply that finite g1 generates finite and negative g3 upon first
iteration, while g2 remains zero until the second iteration.
This means that we start with g1 /g3→−� and g2 /g3=0,
which is below the �red� separatrix; thus, the flow is into the
region of attraction of m1 �Fig. 3�.

From Eqs. �6�–�8�, we see for the fixed ratios g1 /g3=0
and g2 /g3=mj, g3 becomes large and negative, indicating a
runaway flow. Given the flow of g’s, we can determine the
susceptibilities toward the formation of ordered states. We
consider coupling the fermions to external sources, which
correspond to the possible broken-symmetry states and intro-
duce additional terms in the action

�S = − �ph
Oi� d�d2r�†Oi��r,��

− �pp
Oi� d�d2r���O�

i ����r,�� . �14�

Such terms, with infinitesimal �’s explicitly break the sym-
metry. The question of instability is answered by finding the
renormalization of the vertices.10 The one with the strongest
divergence determines the broken-symmetry state. After a
straightforward calculation, we find that for a general
particle-hole order parameter Oi=����, where
� ,�=0,1 ,2 ,3 and �0=�0=1,

�ph,ren
����

= �ph
�����1 + �Ag1 + Bg2 + Cg3�

m

4�
ln s� , �15�

where the coefficients A, B, and C are given in Table I.
Similarly, for a general particle-particle order parameter
���O�

�i� ���,

�pp,ren
����

= �pp
�����1 + �A�g1 + B�g2 + C�g3�

m

4�
ln s� , �16�

where the coefficients A�, B�, and C� are given in Table I.
The instability toward a particular order occurs at an en-

ergy scale �i.e., temperature� at which the corresponding co-
efficient of the ln s in Eqs. �15� and �16� diverges. Since N
=4 and the fixed-point value of g2 /g3�−0.525, with g3 large
and negative, it can be seen from Table I that the instability
appears in the 	x,y channel, which as we discuss next corre-
sponds to a nematic order. The numerical integration of the
RG equations �6�–�8�, starting with g1�s=1��0 and
g2�s=1�=g3�s=1�=0 shown in Fig. 4, indeed confirms that
the susceptibility diverges fastest in this channel. Within the
continuum model and in weak coupling, the instability is
therefore toward the order parameter, which we can param-
etrize by a complex field

�nem�r� � �x�r� + i�y�r� = ��†�r��	x + i	y���r�� .

To see that this is indeed a nematic order, note that at
q=0, it is both translationally invariant and even under rota-

TABLE I. �Upper half� The susceptibility coefficients A ,B ,C in
Eq. �15� for different particle-hole order parameters �†Oi�. In the
physical case N=4. �Lower half� The susceptibility coefficients
A� ,B� ,C� in Eq. �16� for different particle-particle order parameters
���O�

�i� ���.

�†����� �=0 �=x �=y �=z

�=0 0,0,0 1 ,−1 ,−2N 1,−1,0 2 ,2 ,−4

�=x 1,−1,0 0,0,0 2 ,2 ,−4 1,−1,0

�=y 1,−1,0 0,0,0 2 ,2 ,−4 1,−1,0

�=z 0,0,0 1 ,−1 ,0 1 ,−1,−2N 2,2−4N ,−4

��s��������s�
�=0 −1,−1,0 −2,2 ,−4 0,0,0 −1,−1,0

�=x −2,2 ,−4 −1,−1,0 −1,−1,0 0,0,0

�=y −2,2 ,−4 −1,−1,0 −1,−1,0 0,0,0

�=z −1,−1,0 −2,2 ,−4 0,0,0 −1,−1,0
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FIG. 3. �Color online� RG flow diagram of the ratios g1 /g3 and
g2 /g3 for g3�0. While the ratio g1 /g3 flows to zero �even if the
starting point is g2=g3=0 and g1�0�, the ratio g2 /g3 flows to a
fixed value, indicating two stable and one unstable rays with slopes
m1�−0.525, m3�13.98, and m2�0.545, respectively.
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FIG. 4. �Color online� Numerical integration of the susceptibili-
ties in Eq. �15� for g1�s=1�=0.01 and g2�s=1�=g3�s=1�=0. The
strongest divergence is toward the nematic order. �Inset� Numeri-
cally determined nematic transition temperature in units of cutoff
T
� t� as a function of the dimensionless coupling g1

m
4� .
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tions by �. In fact, as the low-energy Hamiltonian is invari-
ant under arbitrary rotations by an angle �, i.e.,

U†���HU���=H, where U�=e−i�L̂ze−i�	z
, Lz=x �

�y −y �
�x , we

find that under a rotation by �

�nem�r� → �nem�r�e2i�.

This shows that the order parameter is even under rotations
by � and odd under rotations by � /2, which makes it nem-
atic. For uniform �nem�r�, the quadratic degeneracy point is
split into two �massless� Dirac points by an amount propor-
tional to the magnitude of the order parameter and the direc-
tion given by the nematic director.

The underlying lattice further breaks the full rotational
symmetry of the effective Hamiltonian down to hexagonal
symmetry centered on a2−b1 site, where the standard opera-
tions of C6v must be accompanied by the appropriate layer
permutations. The two components of the order parameter,
which give finite expectation values of, for instance,

�x�r� =�a1�
† �r�b2��r − ax̂� −

1

2 �
s=�

b2��r +
a

2
x̂ + s


3

2
ŷ��

+ H.c.� , �17�

and

�y�r� =�a1�
† �r�
3

2 �
s=�

sb2��r +
a

2
x̂ + s


3

2
ŷ�� + H.c.� ,

�18�

form a two-dimensional representation of the hexagonal
group. Note that the nematic order parameter remains even
under � rotation followed by the layer permutation.

We expect that the lattice has an important effect on the
critical nature of the phase transition, which would otherwise
be of Kosterlitz-Thousless kind. The reason is the existence
of the third-order invariant �x

3−3�x�y
2. As a result, the finite

temperature phase transition should be described by the ef-
fective Hamiltonian

Hnem = �
�xx��

− J cos�2���x� − ��x���� + h�
x

cos�6��x�� ,

�19�

where �x�x�+ i�y�x�=e2i��x�, �� �0,2��, and the sum runs
over the vertices of the triangular sublattice spanned by a1
sites. This corresponds to the p=3 case of the two-
dimensional planar model studied by José et al.11 and the
concomitant absence of the Gaussian spin-wave phase. In-
stead, there is a continuous transition between the low-
temperature phase, where the director locks into one of three
values, and a high-temperature phase, where vortices unbind.
Such transition is believed to belong to the two-dimensional
three-state Potts model universality class12 with exponents13

�=5 /6 and �=4 /15.
Finally, we discuss the effects of the trigonal warping,

which splits each of the quadratic degeneracies into four
massless Dirac points, which were ignored up to now. If we
denote the energy scale associated with such terms as Ttrig,
below which the dispersion must be modified, then the tran-
sition will still occur provided that the mean-field transition
temperature Tc estimated from the above model and plotted
in the inset of Fig. 4 satisfies Tc�Ttrig. For screened Cou-
lomb interactions8 g1

m
4� �O�1�, leading to Tc� t�. Since the

current estimates of Ttrig are of the same order of
magnitude,14 the ultimate test is experimental.

Recently, we became aware of Ref. 15 where lattices with
fourfold and sixfold rotational symmetries are constructed
with the parabolic degeneracy points protected by the point-
group symmetry. In there, the degeneracy point maps unto
itself under time reversal, unlike our K and K�. Within mean-
field approximation, the nematic was also found.

Note added in proof. Recently, other papers that discuss
related material have appeared.16,17
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