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A logical foundation of equilibrium state density functional theory in a Kohn-Sham-type formulation is
presented on the basis of Mermin’s treatment of the grand canonical state by exploiting functional Legendre
transforms. It is simpler and more satisfactory compared to the usual derivation of the ground-state theory and
free of most remaining open points of the latter. The existence of the functional derivative of the corresponding
density functional F�n� at all densities of grand canonical equilibrium states is proved even in the spin-density
matrix version of the theory. It may, in particular, be relevant with respect to cases of spontaneous symmetry
breaking such as noncollinear magnetism and orbital order.
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I. INTRODUCTION

Modern ground-state �GS� density functional theory
�DFT� for an inhomogeneous system of identical particles,
having early roots in the work by Thomas and Fermi, was
pioneered with the seminal papers by Hohenberg, Kohn, and
Sham.1,2 It was later generalized to the constrained search
concept by Levy3 and finally put on a mathematically rigor-
ous basis of functional Legendre transforms by Lieb.4 Mean-
while, DFT for the quasiparticle self-energy labeled by
acronyms such as GW or local-density approximation
�LDA� plus dynamic mean-field theory �DMFT�, and time-
dependent DFT for dynamical processes, related to Keldysh
Green’s functions, where developed, and all these theories
laid the ground for enormously successful model approaches
�by use of model functionals� to simulation of molecules and
solids of any complexity.

A generalization of the ground-state DFT to thermody-
namic equilibrium states by Mermin5 appeared shortly after
the work of Hohenberg, Kohn, and Sham. It has been con-
sidered from time to time �e.g., Refs. 6, 7, 9, and 10�. Ref-
erence 8 presents a first claim of the existence of the func-
tional derivative of Mermin’s density functional for
temperature T�0. However, this paper does not specify the
variational spaces for densities and potentials and hence does
not even say what is meant with functional derivative. It also
incorrectly bases the existence of the derivative on claims
that a strictly concave and bounded above functional would
always have a maximum. A simple counterexample is the
function f�x�=−exp�x� which is strictly concave and
bounded above for all x and has no maximum and hence also
no maximizing value of x. While strict concavity yields
uniqueness of the maximum if it exists, it does not guarantee
its existence on a noncompact domain. �In an infinite-
dimensional space norm-compact neighborhoods do not ex-
ist, every �-ball contains an infinite number of nowhere clus-
tering vectors.� Below it is shown by complete functional
analysis arguments that the Legendre transform approach for
T�0 removes so far remaining weak points in the rigorous
logical foundation of DFT.

As it sometimes happens,11 a formalism for temperature
T=0 need not be equivalent to that for T↓0 which latter case
is always the relevant case in physics. Although ground-state

DFT is largely settled now, some uneasy feeling remains in
connection with the density functional failing to be differen-
tiable in some cases �where n�v is not unique�, notably in
spin DFT.12,13 As is well known, Lieb’s Legendre transform
approach readily extents to the spin density case, see, e.g.,
Refs. 14 and 15. However, since rather any practical appli-
cation of DFT is based on equating the first variation in the
density functional to zero, the existence and uniqueness of
the first functional derivative of the density functional is pre-
supposed in those applications. In Ref. 12 it is argued that
these problems may reduce to the ordinary well-understood
gap problem, now for the spin subsystems separately, if one
restricts consideration to homogeneous external magnetic
fields only. This might seem a reasonable restriction since
static applied fields in laboratory can hardly vary over mi-
croscopic distances. However, in the very topical cases of
spontaneous symmetry breaking with respect to the interplay
of noncollinear magnetism with orbital order, in a statistical
treatment one has to resort to the trick of Bogolubov’s
quasimeans by applying a suitable infinitesimal symmetry-
breaking external field, otherwise statistical ensembles would
not reproduce the broken symmetry. They would instead av-
erage over the energy-degenerate values of the order param-
eter. In the just mentioned cases this implies a microscopi-
cally inhomogeneous symmetry-breaking field and one
would like to rely on a situation where everything is fine at
least in an infinitesimal vicinity of such a field.

The good news is that the needed functional derivatives
always exist for T�0, although not necessarily in the com-
mon Kohn-Sham �KS� approach. This is shown with the help
of Mermin’s approach in the sequel. DFT is a rigorous theory
for volume V�� and for temperature T�0. For V=+� a
ground-state wave function �WF� may not exist and for T
=0 the functional derivative of the density functional may
not exist. The theory then may be applied for V�+�, T
�0 and for the results the limits V→� �as is routinely done
with refinement of the grid in k space; a discrete regular k
grid means periodic boundary conditions with a finite peri-
odicity volume� and T↓0 may be considered. �Contrary to
the case of adiabatic molecular dynamics7 the temperature of
a finite system in an equilibrium state has a well-defined
meaning in the average over states the system may be in after
in had for a long time been in contact with a large thermal
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bath.� Kohn-Sham theory, as shown below, further on rests
on an assumption.

II. SUBTLETIES OF HOHENBERG-KOHN-SHAM
THEORY

Originally1 DFT was built for systems in an �arbitrarily
large� box of finite volume which conveniently can be re-
placed by periodic boundary conditions meaning to treat the
position space of the particles as a three torus T3 of finite
volume �T3�, for instance x�x+L, y�y+L, z�z+L, and
�T3�=L3.

Let the Hamiltonian be

Ĥ = T̂ + Ŵ + V̂ , �1�

T̂ =
�2

2m
� ��̂†�x� � �̂�x�dx , �2�

Ŵ =� �̂†�x��̂†�x��w�r,r���̂�x���̂�x�dx�dx , �3�

V̂ =� �̂†�r,s�v�r��̂�r,s�dx , �4�

where �̂�x�, x= �r ,s� with particle position r and spin vari-
able s, is the field operator of the particle field and
�dx=	s�d3r.

Then, given any particle number N, a normalized GS WF
��x1 , . . . ,xN� and a GS density n�r� exist for any reasonable
external potential v�r� and for any non-negative pair interac-
tion w�ri ,r j�. In the infinite position space, r�R3, a GS
would often not exist even for common potentials. For in-
stance the potential v�r�=−1 /r created by a proton at the
origin cannot bind three electrons interacting by Coulomb
repulsion w; for N�3 there are only scattering states for
which there is no normalizable stationary WF. In a position
space T3 of finite volume even a repulsive potential, for in-
stance v�r�=1 /r, has a well-defined GS WF for any number
N of mutually repulsive particles. On could think that any-
how only pairs �v ,N� are of interest for which a GS WF
exists, however, then the admissible densities n for which the
density functional F�n� is defined and which form the do-
main of allowed density variations would not be known.
Hence, the variational principle would even not be defined.
This is why a box of finite volume was already introduced in
the seminal paper by Hohenberg and Kohn �HK�.

As is now standard,4 one allows for all potentials with the
only condition that �T3�v�3/2d3r��, that is, v�L3/2�T3�. Po-
tentials of arrays of finitely many point charges in the T3

belong to this space,4,14 and the Hamiltonian Ĥ0= T̂+ V̂ of
interaction-free fermions is bounded below for any such po-
tential �another mandatory condition for the theory�. Then,
this also holds true for Hamiltonians �1�, if w�r ,r���0.
Since the space T3 has finite volume, all considered Hamil-
tonians have discrete spectra with at most finite degrees of
level degeneracy. The functional space L3/2 for admissible

potentials was introduced by Lieb4 as the dual to the func-
tional space L3 for admissible densities n ���n�3d3r���,
so that �nvd3r is always finite due to Hölder’s inequality.
The condition n�L3 on the other hand comes from
an inequality by Sobolev in three dimensions yielding

�3 /2�3�	 /2�4��n�3d3r
 
T̂�3, so that n�L3 for every WF
with finite kinetic energy. �Lieb allowed the position space to
be the real vector space R3 of infinite volume which caused
many problems with the continuous part of the spectrum of
Hamiltonians, that is, scattering states toward the infimum of
total energy. He then had to restrict n�L3�R3��L1�R3�
since the density must integrate to a finite particle number N
over the infinite space R3. This led him allow for potentials
v�L3/2�R3�+L��R3�. In the three torus every function
n�L3�T3� may be normalized to integrate to a given N, that
is, L3�T3��L1�T3�.�

Recall that if X is a real normed functional space and F is
a functional on X, that is, a real-valued function on X, the
functional derivative �Fréchet derivative, total differential�
at point n0, n0 ,�n�X, if it exists, is a continuous linear
functional 
��F /�n� �n0

,�n� on X so that F�n0+�n�−F�n0�
= 
��F /�n� �n0

,�n�+o���n��, where ��n� means the norm of
�n and o� · � means of higher than linear order in the argu-
ment. If X is the space Lp��� of p-summable functions n�x�,
x��, 1
 p��, that is, of functions n for which �n�p

=���n�x��pdx��, then any continuous linear functional

u ,n� on X may be written as ��u�x�n�x�dx with some
q-summable function u�x�, �u�q=���u�x��qdx�� where p−1

+q−1=1. In this sense, a function u�x��Lq���, the dual of
Lp���, may be considered to be the functional derivative of a
functional F on Lp���. �The in Physics well known special
case is the real Hilbert space L2��� with scalar product
�� �� for which the Riesz lemma says that every continuous
linear functional is given as �� �� with some ��L2���.
That is, the real Hilbert space is self-dual.�

The lemma by Hohenberg and Kohn1 states the unique
mapping n� �v mod const.� from GS densities �degenerate
GSs allowed4� to external potentials, on which basis the
Hohenberg-Kohn density functional

FHK�n� = E�v�n�,N� − 
n,v�n�� �5�

is defined for any ground-state density n�AN,

AN = n coming from an N-particle GS-WF� . �6�

In Eq. �5� v�n� means the potential causing a WF-GS density
n, and henceforth we use the notation of linear functionals


n,v� = �
T3

n�r�v�r�d3r . �7�

As is easily seen, 
n ,v� cancels an equal term in the GS
energy E�v�n� ,N�, so that FHK does not any more depend
separately on v�n�. The functional F=FHK might be used in
the variational principle by Hohenberg and Kohn

E�v,N� = min
n

F�n� + 
v,n��
1,n� = N� , �8�

where A �B� means a set of elements A with property B and

1,n� abbreviates �T3n�r�d3r. The crucial point for the pos-
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sibility to solve this problem with the help of Euler’s equa-
tion is the knowledge of the variational domain for n and the
existence of the functional derivative of F. Would the deriva-
tive of F at the minimizing density nmin exist, it would be
�F /�n �nmin

=−v+�, where � is the Lagrange multiplier for
the constraint in Eq. �8�. For FHK, unfortunately neither the
domain of definition AN is explicitly known nor is anything
known about the existence of the functional derivative. We
know that AN�L3�T3� but Lieb has shown4 that AN is not
convex. There are densities n=	icini, ci�0, 	ici=1, which
are not in AN while the ni all are in AN. This is, why nowa-
days more general definitions of F�n� are used.

As the theory can be build for any reasonable pair inter-
action w, the interaction-free case w=0 is of some help. Fur-
ther on this case will be denoted by a superscript 0 but the
corresponding density functionals F0 will as usually be de-
noted by T since they obviously reduce to the kinetic energy
of an interaction-free system with GS density n. In this case,
an alternative to Eq. �5� is the density matrix �DM�, that is,
ensemble state functional

TDM�n� = min
pk,k�

0
pk
1

�k�k��=�kk�

��	
k

pk�k�t̂�k��	
k

pk�k�2 = n� �9�

with t̂=−�2� /2m. For any N-particle DM state �not only
GS�,

T�pk,k�� = 	
k

pk�k�t̂�k� ,

0 
 pk 
 1, 	
k

pk = N, �k�k�� = �kk�, �10�

is the general expression of the kinetic energy �with the set
of orthonormal orbitals k depending on the state�. Given a
potential v, the orbitals with �t̂+v�k=k�k and occupation
numbers pk=1 for �k��N, pk=0 for �k��N minimize Eq.
�9� for the corresponding GS density n�ADM,N

0 since the
potential energy is fixed for fixed n. The GS is unique if the
highest occupied level �N is not degenerate. The GSs and
their energies are obtained from the KS variational principle

E0�v,N� = min
pk,k�

0
pk
1,	pk=N

�k�k��=�kk�

�T�pk,k�� + 	
k=1

N

�k�v�k��
�11�

while Eq. �9� is defined for the density n integrating to any
real N�0 �in a quantum ensemble sense�, that is,4 on the
domain

JN = n�n�r� � 0,��n1/2� � L2�T3�,
1,n� = N� �12�

which is a convex subset of L3�T3�. �The inequality

�1 /2�����n1/2��2d3r
 
T̂� is another estimate for the kinetic
energy demonstrated in Ref. 4 together with the fact that a
minimum, Eq. �9� exists for every n�JN.�

Let for the sake of simplicity v have a nondegenerate
N-particle �N integer� GS �which is a single determinant of
orbitals in this case� with density n. Any admissible variation
must keep the orbitals orthonormal. It is easily seen from
general properties of a determinant that the most general
variation around this n permitted by Eq. �10� is a linear com-
bination of �k=�k̃k�, �k
�N, �̃k �k��=0, and �k→0. To
lowest order in the �k it yields �TDM=2 Re	k��k̃k�t̂�k�
=−2 Re	k��k̃k�v�k�=−2 Re	k��k�v�k�=−
v ,�n�, where
�t̂+v�k=�kk and �̃k��k�k�=�k�̃k �k�=0 was used. Lin-
ear combinations of these variations reach every N-particle
single determinant state in a neighborhood of the considered
GS �with respect to the H1�T3N�-norm ���2=�����2
+ ����2�d3Nr�. Since4 single determinant states map continu-
ously onto JN, the corresponding �n is a general variation in
a neighborhood ��n��� of n in JN �relative to the L3�T3�
norm�, and hence the functional derivative of the convex
functional TDM exists at n as a �Fréchet� derivative in JN
and equals −v. The argument can be generalized to the case
of a degenerate GS, that is, for all n�ADM,N

0 �JN. It even
extents to noninteger N since a minimum energy ensemble
state with noninteger N is always a linear combination
of GSs with neighboring integer N. This is true since Ha-
miltonian �1� commutes with the particle number operator

N̂=��̂†�r ,s��̂�r ,s�dx and hence energy eigenstates may be

chosen as eigenstate of the particle number operator N̂ which
has integer eigenvalues.

Since N= 
1,n� is fixed in JN, any spatially constant po-
tential term � annihilates every density variation in
JN , 
� ,�n�=�
1,�n�=0; hence it does not contribute to a
derivative in JN although it contributes to a derivative in
L3�T3� in directions leading out of JN by changing N.

Now, let n�JN \ADM,N
0 . Such densities exist, for instance

densities having zeros cannot be in ADM,N
0 . �In any ground

state with N�0 at least the orbital lowest in energy is occu-
pied whose density contribution is nowhere zero.� Assume
that the derivative of TDM �with respect to the L3�T3� norm
exists at that n. Since derivatives of functionals of n
�L3�T3� are given through functions u�L3/2�T3� this means
that there is some u�L3/2�T3� with �TDM= 
u ,�n� for all
permitted �n. For a convex function f�x� which has a deriva-
tive f� at x0 it holds that f�x0�− f� ·x0=minxf�x�− f� ·x�.
Since TDM was shown4 to be a convex function, the assump-
tion implies that n minimizes TDM�n��− 
u ,n�� and hence is a
GS density to the potential −u in contradiction to the presup-
position. TDM has nowhere outside of ADM,N

0 a functional
derivative.

KS theory in the interacting case w�0 now uses the split-
ting

F�n� = TDM�n� + EH�n� + EXC�n� , �13�

which defines the density functional EXC�n� through the pre-
ceding ones. �The term EH�n� is explicitly given by
�1 /2��n�r�w�r ,r��n�r��d3rd3r�.� While this definition is cor-
rect, nothing can be said on the existence of the functional
derivative of EXC�n� for GS densities n�ADM,N of the inter-
acting system since we do not know the sets ADM,N

0 and
ADM,N and cannot assume ADM,N�ADM,N

0 . �Recall that there
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exist densities n�JN which are not in ADM,N
0 .� Even though

F has a functional derivative for n�ADM,N �see below�,
EXC�n� can only have one there if TDM has one which as
shown above is only the case in ADM,N

0 .
Like in Eq. �11�, with n=	kpk�k�2 a KS variational prin-

ciple is set out with the KS equation as the corresponding
Euler equation. Now one assumes that there is a representa-
tion

TDM�n� + EXC�n� = min
pk,k�

0
pk
1

�k�k��=�kk�

��	
k=1

N

pk�k�t̂�k�

+ EXC�pk,k���	
k=1

N

pk�k�2 = n� .

�14�

This leads to a KS equation with a �nonlinear� exchange and
correlation �XC� potential operator

1

pk

�EXC

�k
��r�

= v̂XCk�r�, �v̂XCk�� = v̂XCk
�, �15�

if one further assumes that EXC depends on pk and on a
Hermitian form of the k only. A trivial candidate for EXC is
EXC�pk ,k��=EXC�n�pk ,k��� which as a constant for con-
stant n can be taken out of the variation in Eq. �14� and
which is mostly considered in literature. The disadvantage of
this choice is that the derivative with respect to pk and k
does not exist where the derivative with respect to n does not
exist while this need not be the case in the more general
setting, Eq. �14�. �For instance the derivative of T with re-
spect to pk, one-sided derivative at the interval ends pk=0
and pk=1, respectively, and with respect to k exists every-
where while that of TDM�n�pk ,k��� of course exists only for
pk ,k� yielding n�ADM,N

0 .� However, the existence with an
everywhere differentiable EXC�pk ,k�� which can figure in
Eq. �14� is not proven so far, only EX�pk ,k�� is a simple
explicitly known expression. Anyhow, as the example T
shows, the setting of the right-hand side of Eq. �14� has more
potential for the derivatives with respect to pk, k to exist.
Moreover, as will be shown below and in the next section,
there is an F�n� which has functional derivatives �in JN� for
all such GS densities n�ADM,N which uniquely determine
the external potential v mod const. �see lemma by Hohen-
berg and Kohn�. Then, of course, F�n�pk ,k��� has deriva-
tives with respect to pk, k there, and, as shows Eq. �13�,
EXC, if it exists, has them also since all other terms corre-
sponding to the right-hand side of Eq. �13� have them.

Hence, v̂XC need in general not be a local potential func-
tion, it may, in particular, be orbital dependent �v̂X is nonlo-
cal, its orbital dependence is canceled by inclusion of the
orbital-dependent self-interaction in both vH and vX; the
model XC potentials with partial self-interaction correction
or in LDA+U models are nonlocal and orbital dependent�.
Would vXC exist as a local potential, then this would be the
functional derivative of EXC�n� at n�ADM,N �E�pk ,k��
=EXC�n�pk ,k��� would be enough�. The KS equation

would, however, always yield a solution n�ADM,N
0 �GS of

an interaction-free system with external potential v�=v+vH
+vXC� and hence there would be ADM,N�ADM,N

0 which can
by no means be taken for granted. Even though the existence
of the more general right-hand side of Eq. �14� is not yet
proven, it provides a more general frame for modeling func-
tionals than the assumption of the existence of the functional
derivative of EXC�n�.

Who considers the necessity of the determination of the
variational space with its topology and of the proof of exis-
tence of the functional derivative to be just a mathematical
sophistry may for instance consider the minimum of the
seemingly harmless “action integral”

S = �
0

1

L�x, ẋ,t�dt, L =
1

1 + ẋ2

for x�0�=0=x�1�. The Euler-Lagrange equation would yield

d

dt

ẋ

�1 + ẋ2�2 = 0

and hence ẋ=c with a first integration constant c. The bound-
ary conditions now demand c=0 and hence x�t��0 yielding
S0=1 as a candidate for the minimum of S. However, con-
sider the sequence of trajectories xn�t�=n−1/4 sin�n	t�, n
→� which uniformly converges to x�t��0 and where each
of the xn obeys the boundary conditions. The integral S is
easily estimated from above by estimating the integrand
from above by 1 for ẋ2
	2n1/2 and by 	−2n−1/2 for ẋ2

�	2n1/2 which yields

S � 2cnn−1/2 + �1 − 2cnn−1/2�	−2n−1/2, cn → 1,

so that in fact inf S=0. Now you may correctly say that you
saw without any calculation that S0=1 was an extremum in
this case, namely, the maximum of S. Right but the infimum
S=0 is not at all provided by the Euler-Lagrange equation
and worse, it is approached by trajectories uniformly con-
verging to the maximal trajectory. There, the functional de-
rivative of S�x� does not exist in any naive understanding.

The only density functional F for which the issue of the
existence of the functional derivative can be addressed in
general is the Legendre transform4 �see next section for the
meaning of X��

FN�n� = sup
v�X�

E�v,N� − 
n,v�� �16�

for both cases, w=0 and w�0. It is convex and defined on
the whole functional space X �it takes on the value +� in part
of X, in particular, if n is negative on some domain of non-
zero measure, and also if 
1,n��N�, and if, given n, there
exists a unique maximizing v, then −v is the functional de-
rivative of FN�n� in the hyperplane 
1,n�=N. Since v is in-
deed up to a constant uniquely determined by any GS n, the
functional derivative of FN exists at least for n�ADM,N as a
derivative �gradient, more precisely Fréchet derivative� in
the hyperplane n�X � 
1,n�=N� containing JN.

As just stated, for every given N there is a separate func-
tional FN�n� given by Eq. �16� which is +� for 
1,n��N. As
was shown in Ref. 14, one may use

HELMUT ESCHRIG PHYSICAL REVIEW B 82, 205120 �2010�

205120-4



H�n� = inf
N

FN�n� �17�

instead of F�n� in the variational principle, Eq. �8� and obtain
the convex hull of all E�v ,N�, N integer. The undetermined
potential constant of the theory with N fixed takes now on
the role of the chemical potential ��T=0�. The derivative of
H�n� for n�L3�T3� in a direction which changes N is dis-
continuous at integer N. This is the reason for the failure of
model functionals which do not correctly model this discon-
tinuity to reproduce ionization potentials and electron affini-
ties of molecules and semiconductor gaps of solids.

Less clear is the situation in spin DFT.12 Now, also F need
not have a derivative for GS densities even when N is kept
fixed.

III. A FEW ESSENTIALS ON LEGENDRE TRANSFORMS

Let X=X�� and X� be two mutually dual functional
spaces, that is, X� comprises all norm-continuous linear func-
tions on X and vice versa. ��RN��=RN is the space of all
gradient vectors to real functions on RN; �L3�T3���

=L3/2�T3� is the space of all norm-continuous linear func-
tionals 
u ,n� of n�L3�T3�, and vice versa.� Consider real
functions on X or X� which may take on the “value” +� but
not −�, however, with at least one finite value in their range.
The Legendre transform f��n� , n�X of such a function
f�u� , u�X� is defined as

f��n� = sup
u�X�


n,u� − f�u�� . �18�

A second Legendre transformation yields

f���u� = sup
n�X


u,n� − f��n�� . �19�

All we need is �1� f��n� is a convex function of n, no matter
what f�u� is; if f�u� is convex, then f���u�= f�u�; in general
f���u�
 f�u�. �2� f�u�+ f��n�� 
u ,n�; if, for convex f and
some u and n, f�u�+ f��n�= 
u ,n�, then u��f��n� and n
��f�u�.

In the second statement �f��n� is the subdifferential of the
convex function f� at point n: the set of all linear functions

u ,n�� so that f��n��� f��n�+ 
u , �n�−n�� for all n��X. If
this set consists of a single linear function only, then this
linear function is the �total� differential df��n�, that is, u is
the derivative �generalized gradient� of f� at n.

To elucidate these properties one may consider convex
functions of one real variable, f�N� and f���� �see, e.g., Fig.
11 of Ref. 14 with f�N�=E�N�, f����=G����. Put a support-
ing tangent to the graph of f at point N �a line having the
common point �N , f�N�� with the graph of the function and
being nowhere above�. The tangent has a slope �. The sign
carrying distance from the intersection point of this line with
the f axis to the coordinate origin is f����. If f has a deriva-
tive at N, then its value is �. It is easily seen that, if the
derivative of f jumps at N, then there is a �closed if finite�
interval ��1 ,�2� from the left derivative �1 to the right de-
rivative �2 ��1 may be −� or �2 may be +��, and f���� is
linear on this interval, the interval being the subdifferential
�f�N�. Inversely, if the convex function f is not strictly con-

vex but has a linear dependence on some interval with slope
�, then the derivative of f� jumps at that �.

This simple geometric picture readily transfers to the gen-
eral case: let f��n� be convex and take a tangent hyperplane
f��n0�+ 
u , �n−n0�� supporting the graph of f��n� at some n0.
The distance from its intersection point with the f� axis to the
origin is f���u�= f�u�. If the derivative of f� jumps at some n
�and hence does not exist there�, then there is a convex do-
main �including its boundary� in u space on which f�u� is
linearly depending on u, and vice versa.

If the GS density n uniquely determines the external po-
tential v mod const. as it does by virtue of the lemma by
Hohenberg and Kohn in the spin independent theory, then the
derivative of FN�n� exists for those n on the hyperplane

1,n�=N, that is, for �n with 
1,�n�=0. If, however, the GS
wave function is independent of some potential change �v
called a “phantom” potential perturbation in Ref. 13, then the
GS density n does also not change and the GS energy has a
linear dependence E�v+�v�=E�v�+ 
�v ,n�. Consequently,
the functional derivative of FN�n� defined by Eq. �16� does
not exist at that n. This is precisely the role of phantom
potential perturbations in DFT.

IV. UNIQUE MAPPINGS FOR T�0

We now move to temperature T�0 and to grand canoni-
cal states. We also generalize to spin DFT and allow for
external magnetic fields coupling to the particle spin but not
to its charge �diamagnetic couplings as usually in spin DFT
are neglected�. Consider a system of identical particles in an
external field vss��r�. Let the system be confined to a large
box, or, placed in a large three torus equivalent to periodic
boundary conditions �regular k grid�. Let the Hamiltonian be
that of Eqs. �1�–�3� but Eq. �4� generalized to

V̂ = 	
ss�
� �̂†�r,s�vss��r��̂�r,s��d3r . �20�

The particle number operator is N̂=��̂†�x��̂�x�dx so that Ĥ

−�N̂ depends on the combination v−�=vss��r�−��ss� only.
Fix the temperature �=1 /kT, the chemical potential �

and the external potential v. Then, the grand canonical state
is

���v − �� =
e−��Ĥ−�N̂�

tr e−��Ĥ−�N̂�
. �21�

If ��0, tr �=1, is any state �density matrix�, then tr ��V̂
−�N̂�=��v−��n���dx with the particle �spin� density

n��� = ns�s�r� = tr ��̂†�r,s��̂�r,s�� . �22�

In the following tr will always mean the trace in the Fock

space of the �̂. Also, the natural abbreviation

	
ss�
� �vss��r� − ��ss��ns�s�r�d3r = 
�v − ��,n� �23�

will be used.
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Now, fix the particle interaction w and, following
Mermin5 �we try carefully to trace functional dependences
and in doing so slightly deviate from Mermin’s notation�,
consider for various external potentials v the functionals

�v��� = tr ��Ĥ − �N̂ +
1

�
ln �� . �24�

As easily seen by direct substitution of Eq. �21�, the grand
canonical potential ���v−�� is obtained as

���v − �� = −
1

�
ln tr e−��Ĥ−�N̂� = �v����v − ��� . �25�

Moreover, as shown in Ref. 5, for any ��0, tr �=1, it holds
that

�v��� � �v����v − ��� = ���v − �� for � � ���v − �� .

�26�

In Mermin’s approach, this inequality replaces the corre-
sponding GS energy property. It immediately implies that
���v−��=min� �v��� is concave in v by the simple reason-
ing �we write in short vi for vi−�i�

����v1 + �1 − ��v2� = min
�

tr ���Ĥ1 + �1 − ��Ĥ2 +
1

�
ln ��

� �min
�1

tr �1�Ĥ1 +
1

�
ln �1�

+ �1 − ��min
�2

tr �2�Ĥ2 +
1

�
ln �2�

= ����v1� + �1 − �����v2�,

0 
 � 
 1 �27�

because a joint minimum of a sum cannot be below the sum
of the independent minima of the items.

As another advantage over the standard zero-temperature
theory, it follows immediately from Eqs. �21� and �22� that
the mappings �v−������n are unique. There is no prob-
lem with degenerate states since degenerate states automati-
cally get equal statistical weight in �� of Eq. �21�. Also in
contrast to the GS WF for given N, for fixed v different
values of � yield different states ��. However, as usual spon-
taneous symmetry breaking is not covered by this statistical
approach; it has to be treated by an infinitesimal symmetry
breaking external potential v in the spirit of Bogolubov’s
quasimeans in Statistical Physics. Nevertheless, by virtue of
Eq. �26� which also holds in the spin case, in the standard
way Mermin proved the analog of the Hohenberg-Kohn
lemma: n� �v−�� is unique �even without mod const., � is
now the thermodynamic chemical potential and not just that
of the noninteracting reference system of KS theory� for any
n coming from a grand canonical ensemble at temperature
1 /k�. In summary, there are the unique mappings

�v − �� ← n

↓ ↑
grand canonical ��

�28�

On the functional domain �which may depend on Ŵ�

D� = n coming from some ��, � fixed� �29�

one can write �v−����n� and also Ĥ��n� and ���n�, as well
as n��v−��=n����v−��� on the domain of admissible po-
tentials v. �Denoting the distinct functions ���n� and ���v�
by the same symbol �� will not cause confusion.�

Moreover, from the unique dependence of v−� on �� it
follows now also that �v��� for different vi−�i is minimized
by different �i, and hence the inequality in Eq. �27� is sharp-
ened into a strict inequality: ���v� is strictly concave. If
equality would hold in Eq. �27�, this would imply that the
minimizing � is also a minimizing �1 for v1 and a minimiz-
ing �2 for v2. This is the principal difference from the T=0
theory where E�v ,N� is not always strictly concave in vss�
and is never strictly convex in N.

V. DENSITY FUNCTIONAL

As was already said, for electron systems it is well justi-
fied to allow for all potentials

v − � � L3/2�T3� = X� �30�

for which the integral �T3�v−��3/2d3r over the three torus �of

finite volume� is finite. Recall that the Hamiltonian Ĥ0= T̂

+ V̂ of interaction-free fermions is bounded below for any
such potential, that this also holds true for Hamiltonians
�1�–�3� and �20�, if w�r ,r���0, and that since the space T3

has finite volume, all considered Hamiltonians have discrete
spectra with at most finite degrees of level degeneracy. Then,
���v−�� of Eq. �25� is well defined on X� and smooth in the
norm topology.

In view of the concavity of ���v�, introduce the Legendre

transform4,14 of −���v� as F̃��−n�

F��n� = F̃��− n� = sup
v

− 
n,v� + ���v�� �31�

which as a Legendre transform is a convex functional of −n
�or likewise of n�, the dual variable to v :n�X��=X
=L3�T3�.

Since the functional space X is reflexive, L3�T3�
= �L3�T3����, the Legendre back transformation from Eq.

�31�, −���v�=supn−
v ,n�− F̃��−n�� or,

���v� = inf
n

F��n� + 
v,n�� �32�

represents the generalized Hohenberg-Kohn theorem �where
equality holds since ���v� is concave in v�. The chemical
potential � is further on put to zero which simply means that
single particle energies and potentials are measured from the
chemical potential. Note that the constraint in Eq. �8� does
not figure any more here, instead of the particle number N
the chemical potential is fixed in a grand canonical state �.
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For any density n�D� from Eq. �29�, in analogy to the
original Hohenberg-Kohn functional one may define

���n� = �v����n�� − 
v,n�, n � D� �33�

and, from Eq. �26�, have

���v� = min
n�D�

���n� + 
v,n�� �34�

since in view of Eq. �28� any n�n�v� refers to ���n�
����n�v��. From Eqs. �32� and �34� one infers that F��n�
=���n� for all n�D�, and that the infimum of Eq. �32� is
always a minimum with minimizing density n��v�; indeed,
���n��v��+ 
v ,n��v��=���v�
F��n��v��+ 
v ,n��v��, hence
���n�
F��n� for n�D�, and by interchanging the role of
Eqs. �32� and �34� in the argument the opposite inequality is
obtained.

Moreover, for −���v� and F̃��−n� like in general for any

pair of mutual Legendre transforms it holds that F̃��−n�
−���v�=−
n ,v� implies v��F̃��−n� and −n���−���v��,
where �F̃��−n� means the subdifferential of F̃� at point −n
and ��−���v�� means the subdifferential of −�� at point v.

Since d���v�=tr�e−�ĤdV̂� / tr e−�Ĥ as easily seen from the
definition of ���v�, the first �Fréchet� derivative �for finite
volume �T3�� always exists so that the subdifferential of
��−���v�� contains only this one “gradient.” Now, the rea-
soning after Eq. �34� yields F��n��v��−���v�=−
n��v� ,v�
and hence

���

�v
= n��v� . �35�

As n��v� is a one-one mapping X�↔D�, for n�D� one has
inversely v��n� and F��n�−���v��n��=−
n ,v��n�� implying

�F�

�n
= − v��n�, n � D�. �36�

Note that while Eq. �36� holds for n�D��X, the derivative
� /�n on the left-hand side is taken in X, that is, for any
�n�X with ��n� small enough.

From the strict concavity and continuous differentiability
of ���v� the differentiability of F��n� at every point n
�D� follows, that is, at every density n thermodynamically
corresponding to some v at temperature �k��−1. Like in the
T=0 theory,4,14 Eq. �31� yields that F��n� jumps to +� if n
�0 for an x domain of nonzero measure. Take v=c�0 for
some domain where n�0 and v=0�=�� everywhere else.

This v is admissible for arbitrary large c and Ĥ�v� is bounded
below for such a v. Hence, ���v� is also bounded below and,
as easily seen, the supremum Eq. �31� is obtained for c
→� to be +�. Assume now that n��x0�=0 for some x0. Since
any n��D� is continuous in x �any solution of the many-
particle Schrödinger equation is continuous�, there is always
�n�X, �n�x0��0, so that n��x�−��n�x� would be negative
in a neighborhood of x0 of nonzero measure for arbitrarily
small ��� and the functional derivative Eq. �36� would not
exist for that n�. Thus, the result, Eq. �36� also implies
n��x��0 everywhere for T�0. �See also next section.�

VI. INTERACTION-FREE PARTICLES
AND BEYOND

As is well known from Statistical Physics,16 in a nonin-
teracting particle system the particles in a single particle
quantum state �k� may be treated as an independent sub-
system even of a quantum ensemble with exchange symme-
try. The corresponding statistical fermionic state is

�k = � ��1 − pk�
 � + �k�pk
k� �37�

with occupation pk� �0,1� of the orbital k and � � as the
vacuum state. Accordingly we define7

T��pk,k� = tr �k�T̂ +
1

�
ln �k�

= pk�k
��t̂�k�

+
1

�
�pk ln pk + �1 − pk�ln�1 − pk�� �38�

and the density functional

T��n� = min
pk,k�

0
pk
1

�k�k��=�kk�

��	
k

T��pk,k��	
k

pk�k�2 = n� ,

�39�

where the minimum taken over all orthonormal orbitals and
orbital occupations which yield a given n exists like in the
GS case.

Now, the grand canonical potential is

��
0�v� = min

n
T��n� + 
v,n��

= min
pk,k�

0
pk
1

�k�k��=�kk�

�	
k

T��pk,k� + 
v,n�pk,k��� ,

�40�

where again the k must be orthonormal.
Variation in the k

� under the last constraint yields for the
minimizing orbitals k

0

�t̂ + v�k
0 = k

0�k
0 �41�

and variation in the pk yields

pk
0��� = f���k

0� =
1

e��k
0

+ 1
�42�

which is the correct result in this physically trivial case. For
any v�X� the minimum of Eq. �40� does indeed exist, and
the minimizing density is

n�
0�v� = n�ss�

0 �r� = 	
k

f���k
0�k

0�r,s�k
0��r,s�� �43�

so that N=	kf���k
0� relates the average particle number N to

the chemical potential �. Only the occupation numbers de-
pend on temperature �k��−1 and on the value of the chemical
potential � from which v and the �k

0 are measured.
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Here, n�
0 �0 everywhere is intuitively clear because

f���k
0��0 for all k. For densities minimizing Eq. �40� it ob-

viously holds that

T��n� = ��
0�n� = F�

0�n�, n � D�
0 . �44�

T��n� replaces the density matrix functional TDM�n� of the
GS theory, Eq. �9�.�

Accounting for the Coulomb interaction of the electrons
in mean-field approximation simply means to replace v in
the above Schrödinger equation by v+v�

H where

v�
H�r� =� n�s�s��r��

�r − r��
dx� �45�

contains self-interaction. Since4 �k�L2�T3� implies �k�2
�L3�T3�, taken as a KS ansatz n=	kpk�k�2�0 is suffi-
ciently general for the density of an interacting system too.
Densities of this type apparently form a convex domain D of
the functional space X=L3�T3� on which T��n� is also de-
fined by Eq. �39�. �JN�D for every real N, 0�N��.�

As D��D also for Ŵ�0, by

F��n� = T��n� +
1

2
� nss�r�ns�s��r��

�r − r��
dxdx� + F�

XC�n� �46�

for n�D an exchange and correlation density functional
F�

XC�n� is defined �since the other density functionals of this
relation were previously defined or are explicitly given on
D�. Inserting here n=	kpk�k�2 transforms Eq. �32� into a
minimum search by varying k

� and pk as above in the GS
theory. The derivatives with respect to k

� and pk of F� exist
on the basis of Eq. �36� for pk ,k� yielding n�D�, and
those of the second term on the right-hand side of Eq. �46�
are explicitly known. Hence, the situation with T� and F�

XC is
like in the GS theory. We cannot expect D��D�

0 .
Formally, like in Eq. �14� one may again assume

T��n� + F�
XC�n� = min

pk,k�
0
pk
1

�k�k��=�kk�

��	
k

T��pk,k�

+ F�
XC�pk,k���	

k

pk�k�2 = n� �47�

which yields the KS equation

�t̂ + v̂�
eff − �k�k = 0 �48�

with

v̂�
effk = �v + v�

H + v̂�
XC�k, v̂�

XCk =
1

pk

�F�
XC

�k
� �49�

and pk���= f� from Eq. �42� with �k
0 replaced by �k. Compare

also the previous discussion of the property, Eq. �15� of v̂�
XC.

Note that we did again not prove the existence of �F�
XC /�n

or of an everywhere differentiable F�
XC�pk ,k��; the effec-

tive KS potential v̂�
eff, if it exists at all, need not exist as an

orbital independent local potential, it might be nonlocal and
orbital dependent. In this respect the situation is the same as
for the GS theory.

Under the assumption, Eq. �47�, given the external poten-
tial v, the solutions of this KS equation determine, via the
analogs of Eqs. �42� and �43� without superscripts, the den-
sity n��v��D� minimizing the right-hand side of Eq. �32�
and hence providing the grand canonical potential

���v − �� = F��n��v − ��� +� �v − ��n��v − ��dx ,

�50�

where we explicitly reinserted the chemical potential �. The
latter is related to the particle number N by

−
��

��
= N = 	

k

f���k − �� �51�

which is also confirmed by inserting Eq. �36� and the KS
expression for n into Eq. �50�.

VII. SUMMARY

It is shown that the functional derivative of the density
functional F��n� of Eq. �31� as Fréchet derivative �total dif-
ferential� in the functional space L3�T3� exists for all densi-
ties n=n��v�. These are all densities which relate to grand
canonical states ���v� �v measured from the chemical poten-
tial �� for some v�L3/2�T3�. These states minimize Mer-
min’s generating functional �v��� for the grand canonical
potential ���v�. Hence, ���v� and n��v� can be obtained
from determining the in view of strict convexity unique sta-
tionary point of F��n�+ 
v ,n�.

The whole T�0 theory, of course, as in the GS variant
again depends on the knowledge of the density functional
F��n� or of F�

XC�n� and of F�
XC in the KS theory, all of which

are hardly ever accessible �if the latter exists at all� and
hence have to be modeled changing the exact theory into a
model theory within a �nearly� rigorous frame. An early ad
hoc application is Ref. 17. Since Eq. �51� rests on Eq. �36�, it
can be used as a check for the quality of a model F�

XC�n�, for
instance down to which temperature it can reasonably be
used for a specific answer.

When using explicitly designed model density functionals
one must keep in mind that most of those functionals while
being convex locally in a neighborhood of a minimizing den-
sity, are often not convex globally. This is, in particular, the
case for most orbital-dependent functionals in use. Hence, all
stationary values must be found �for instance for different
orbital configurations� and then their minimum selected. This
is often overlooked in L�S�DA+U applications.

This is all valid when applying DFT with T�0 to mo-
lecular dynamics, although such an application has its own
problems with the use of the grand canonical potential in a
nonequilibrium situation. They are not related to the present
text and are discussed in Ref. 7. If in such an application
orbital dependent functionals are used, the above warning in
view of lack of global convexity of such model potentials
might be even more important.

The advantage of the T�0 theory against the GS theory is
that the existence of the functional derivative of the exact
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F��n� is guaranteed for every grand canonical equilibrium
state even in the spin dependent variant of the theory and as
a derivative in L3�T3�, not only on hyperplanes 
1,n�=N.
There is no gap problem left with a single �exact� functional
F��n� and no problem with spin polarization while in the
GS theory two different KS potentials are needed to obtain

the gap. �Strictly speaking, there is of course no gap for
T�0.�
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