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Observing the origin of superconductivity in quantum critical metals
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Despite intense efforts during the last 25 years, the physics of unconventional superconductors, including the
cuprates with a very high transition temperature, is still a controversial subject. It is believed that superconductivity
in many of these strongly correlated metallic systems originates in the physics of quantum phase transitions, but
quite diverse perspectives have emerged on the fundamentals of the electron-pairing physics, ranging from Hertz-
style critical spin fluctuation glue to the holographic superconductivity of string theory. Here we demonstrate that
the gross energy scaling differences that are behind these various pairing mechanisms are directly encoded in the
frequency and temperature dependence of the dynamical pair susceptibility. This quantity can be measured directly
via the second-order Josephson effect and it should be possible employing modern experimental techniques to
build a “pairing telescope” that gives a direct view on the origin of quantum critical superconductivity.
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I. INTRODUCTION AND SUMMARY

The large variety of superconductors that are not explained
by the classic Bardeen-Cooper-Schrieffer (BCS) theory in-
clude not only the cuprates1,2 and iron pnictides3 with their
(very) high transition temperatures Tc’s, but also the large
family of low-Tc heavy fermion superconductors.1,4 These
materials have in common that the dominance of electronic
repulsions create an environment that is a priori very unfavor-
able for conventional superconductivity. Their unconventional
(non-s-wave) order parameters indeed signal that dissimilar
physics is at work. Based on a multitude of experiments, a
widely held hypothesis has arisen that the physics of many of
these systems is controlled by a quantum phase transition.5–8

This would generate a scale-invariant quantum physics in the
electron system, as it does for any other second-order phase
transition, and the imprint of this universal critical behavior
on the metallic state creates the conditions for unconventional
superconductivity.

We propose to test this hypothesis of quantum criticality as
the fundamental physics underlying the onset of superconduc-
tivity directly. A clean probe can be identified: a measurement
of the dynamical order-parameter susceptibility—the Cooper-
pair susceptibility—of the quantum critical superconductor in
its normal state in a large temperature and energy interval. Four
differing theoretical views of electron-quantum criticality that
are available—including two brand new paradigms descending
from string theory—all allow for explicit computations of the
susceptibility.9–12 At the same time, the pair susceptibility can
be measured directly via the so-called second-order Joseph-
son effect in superconductor-insulator-superconductor (SIS)
junctions involving superconductors with different transition
temperatures.13,14 Goldman and collaborators delivered proof
of principle in the 1970s by measuring the pair susceptibility
in the normal state of aluminum in an aluminum-aluminum
oxide-lead junction.15,16

In this experiment the order parameter of the “strong”
superconductor with a “high” T

high
c acts as an external

perturbing field on the metallic electron system realized above
the transition of the superconductor with a much lower T low

c . In
the temperature regime T low

c � T � T
high
c and for an applied

bias eV less than the gap �high of the strong superconductor,

the current through a tunneling junction between the two is
directly proportional to the imaginary part of the dynamical
pair susceptibility. This higher-order Cooper-pair tunneling
process is a second-order Josephson effect: if at low temper-
atures the regular dc Josephson effect can be observed (i.e., a
finite supercurrent at zero bias in SIS configuration), then the
higher-order tunneling Cooper-pair process is likely to occur in
the superconductor-insulator-normal-state (SIN) configuration
at finite bias.

Quite recently Bergeal et al.17 succeeded in obtaining a
signal on a 60 K underdoped cuprate superconductor using
a 90 K cuprate source. This was motivated by the predic-
tion that an asymmetric relaxational peak would be found
signaling the dominance of phase fluctuations in the order
parameter dynamics of the underdoped cuprate.18 Although
this prediction was not borne out by the experiment, it is
for the present purposes quite significant that Bergeal et al.
managed to isolate the second-order Josephson current at
such a high temperature (60 K) in d-wave superconductors
where the masking effects of the quasiparticle currents should
be particularly severe. As we will explain from our theo-
retical predictions, the unambiguous information regarding
the quantum critical pairing mechanism resides in the large
dynamical range in temperature and frequency of the pair
susceptibility, meaning that in principle one should measure
up to temperatures of order 50Tc and energies greater than ten
times the gap of the weak superconductor (we set T low

c = Tc

from here on). The system that is interrogated should therefore
be a quantum critical system with a low Tc, and the natural
candidates are heavy fermion superconductors characterized
by quantum critical points at ambient conditions. We shall
propose two explicit experimental approaches using modern
thin film techniques and techniques using scanning tunneling
microscopy (STM), scanning tunneling spectroscopy (STS),
and point contact spectroscopy (PCS) with a superconducting
tip to obtain the pair susceptibility in the range of temperatures
and frequencies that will distinguish between the differing
quantum critical metal models.

Theoretically the pair susceptibility is defined as

χp(q,ω) = −i

∫ ∞

0
dt eiωt−0+t 〈[b†(q,0),b(q,t)]〉, (1)
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FIG. 1. (Color online) Imaginary part of the pair susceptibility. Cases A–E: False-color plot of the imaginary part of the pair susceptibility
χ ′′(ω,T ) in arbitrary units as function of ω (in units of Tc) and reduced temperature τ = (T − Tc)/Tc, for five different cases: Case A represents
the traditional Fermi-liquid BCS theory (see Sec. III case A with parameters Tc = 0.01, g ≈ 0.39, ωb = 0.45 ), case B is the Hertz-Millis-type
model with a critical glue (see Sec. III case B with parameters γ = 1

3 , Tc = 0.01, �0 ≈ 0.0027), case C is the phenomenological “quantum critical
BCS” theory (see Sec. III case C with δ = 1

2 , Tc = 0.01, g ≈ 0.19, ωb ≈ 0.1, x0 = 2.665), case D corresponds to the “large-charge” holographic
superconductor with AdS4-type scaling (see Sec. III case D with δ = 1

2 , Tc ≈ 0.40, e = 5), and case E is the “small-charge” holographic
superconductor with an emergent AdS2-type scaling (see Sec. III case E with δ = 1

2 , Tc ≈ 1.4 × 10−10, e ≈ 0, g = − 17
96 , κ ≈ −0.36). χ ′′(ω,T )

should be directly proportional to the measured second-order Josephson current (experiment discussed in the text). In the bottom left of each plot
is the relaxational peak that diverges (white colored regions are off-scale) as T approaches Tc. This relaxational peak looks qualitatively quite
similar for all five cases, while only at larger temperatures and frequencies do qualitative differences between the five cases become manifest.

where the Cooper-pair order parameter b†(q,t) is built out
of the usual annihilation (creation) operators for electrons
c

(†)
k,σ with momentum k and spin σ . In the s channel, b†(q,t) =∑

k c
†
k+q/2,↑(t)c†−k+q/2,↓(t). The imaginary (absorptive) part

of this susceptibility at zero momentum is measured by
the second-order Josephson effect. In Fig. 1, we show the
theoretical results for standard BCS theory compared to four
different limiting scenarios for the quantum critical metallic
state. This is our main result: the contrast is discernible
by the naked eye, and this motivates our claim that this is
an excellent probe of the fundamental physics underlying
the onset of superconductivity. We will make clear that
the specific temperature evolution of the dynamical pair
susceptibility directly reflects the distinct renormalization
group (RG) flows underlying the superconducting instability
in each case.

In detail the five types (A–E) of pairing mechanisms whose
susceptibilities are given in Fig. 1 are as follows:

Case A is based upon traditional Fermi-liquid BCS theory
and is included for comparison. The dynamical pair suscep-
tibility is calculated through an Eliashberg-type computation
assuming a conventional Fermi liquid interacting with “glue
bosons” in the form of a single-frequency oscillator.19–21 Such
a pair susceptibility would be found when the superconduc-
tivity would be due to “superglue” formed by bosons with a
rather well-defined energy scale as envisaged in some spin
fluctuation scenarios.22,23

Case B reflects mainstream thinking in condensed-matter
physics. It rests on the early work of Hertz24 and asserts that
the essence of BCS theory is still at work, i.e., one can view
the normal state at least in a perturbative sense as a Fermi
liquid, which coexists with a bosonic order parameter field
undergoing the quantum phase transition. The order parameter
itself is Landau damped by the particle-hole excitations, while
the quantum critical fluctuations in turn couple strongly to
the quasiparticles, explaining the anomalous properties of
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the metallic state.6 Eventually the critical bosons cause the
attractive interactions driving the pairing instability.25 This
notion is coincident with the idea that the pairing is due to
spin fluctuations when the quantum phase transition involves
magnetic order (as in the heavy fermions and pnictides),
while in the cuprate community a debate rages at present
concerning the role of other “pseudogap” orders such as
spontaneous currents and quantum nematics. The computation
of the pair susceptibility amounts to solving the full Eliashberg
equations for a glue function that itself is algebraic in frequency
λ(ω) ∼ 1/ωγ in the strong coupling regime as formulated by
Chubukov and coworkers.9,26,27 At first sight, the resulting case
B in Fig. 1 looks similar to the remaining cases C–E, which
contain more radical assumptions regarding the influence of
the quantum scale invariance. However, as we will see, case
B should leave a strong fingerprint in the data in the form of a
strong violation of energy-temperature scaling (Fig. 2, case B).

Case C is a simple phenomenological “quantum critical
BCS” scaling theory.10 It is like BCS in the sense that a
simple pairing glue is invoked but now it is assumed that

the normal state is a non-Fermi liquid which is controlled
by conformal invariance. In other words, the “bare” pair
propagator χ0

pair(ω,T ), in the absence of glue, is described
by a scaling function. The full pair susceptibility is then given
by the random-phase approximation (RPA) expression

χpair(ω,T ) = χ0
pair(ω,T )

1 − V χ0
pair(ω,T )

, (2)

where V is the effective attractive interaction, which is
nonretarded for simplicity. The pairing instability occurs
when 1 − V [χ0

pair(ω = 0,Tc)]′ = 0. In quantum critical BCS,
one takes χ0

QBCS(ω) ∼ 1/(iω)δ , valid when ω � T , as op-
posed to standard BCS where the bare fermion loop of the
Fermi gas yields a “marginal” pair propagator χ0

BCS(ω) =
(1/EF )[ln(ω/EF ) + i]. One can now deform the marginal
Fermi-liquid BCS case δ = 0 to “relevant” pairing operators,
i.e., with scaling exponent δ > 0. One effect of this power-law
scaling is that Tc becomes much larger. Our full calculations
include finite temperature effects, which serve as an IR
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FIG. 2. (Color online) Energy-temperature scaling of the pair susceptibility. False-color plots as in Fig. 1, but now the horizontal axis
is rescaled by temperature, while the magnitude is rescaled by temperature to a certain power: we are plotting T δχ ′′(ω/T ,τ ) to show
energy-temperature scaling at high temperatures. For quantum critical BCS (case C), AdS4 (case D), and AdS2 (case E), with a suitable choice
of the exponent δ > 0, the contour lines run vertically at high temperatures, meaning that the imaginary part of the pair susceptibility acquires a
universal form χ ′′(ω,T ) = T δF(ω/T ), with F a generic scaling function, the exact form of which depends on the choice of different models.
Here we choose in cases C–E δ = 1/2, by construction. The weak coupling Fermi-liquid BCS case A also shows scaling collapse at high
temperatures, but with a marginal exponent � = 0. In the quantum critical glue model (case B) energy-temperature scaling fails: for any choice
of δ, at most a small fraction of the contour lines can be made vertical at high temperatures (here δ = 0 is displayed).
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cutoff, and incorporate a retarded nature of the interaction
by considering an Eliashberg-style generalization of Eq. (2).

Such power-law scaling behavior was recently identified
in numerical dynamical cluster approximation calculations
on the Hubbard model.28 This was explained in terms of a
marginal Fermi liquid (MFL), i.e., the electron scattering
rate proportional to the larger of temperature or frequency,
in combination with a band structure characterized by a van
Hove singularity (vHS) which is precisely located at the
Fermi energy.29 The vHS is essential; a MFL self-energy
added to standard BCS or critical glue alone will not produce
the power-law scaling. The presence of a vHS can be
measured independently by angle-resolved photoemission
spectroscopy30,31 and tunneling spectroscopy32 and therefore
all the information is available in principle to distinguish this
particular mechanism from the other cases. A careful study
of the MFL pair susceptibility with both a smooth density of
states and vHS is included in Appendix B.

Cases D and E are radical departures of established
approaches to superconductivity that emerged very recently
from string theory. They are based on the anti–de Sitter-
space/conformal-field-theory (AdS/CFT) correspondence or
“holographic duality,”33–35 asserting that the physics of ex-
tremely strongly interacting quantum critical matter can be
encoded in quasiclassical gravitational physics in a space-time
with one more dimension. Including a charged black hole
in the center, a finite temperature and density is imposed
in the field theory, and the fermionic response of the re-
sulting state is remarkably suggestive of the strange-metal
behavior seen experimentally in quantum critical metals.
Although the (large-N super-Yang-Mills) field theories that
AdS/CFT can explicitly address are remote to the physics
of electrons in solids, there is much evidence suggesting
that the correspondence describes generic “scaling histories.”
AdS/CFT can be viewed as a generalization of the Wilson-
Fisher renormalization group that handles deeply nonclassical
many-particle entanglements, for which the structure of the
renormalization flow is captured in the strongly constrained
gravitational physics of the holographic dual. Such holography
provides a new mechanism for superconductivity: it requires,
gravitationally encoded in black-hole superradiance, that the
finite density quantum critical metal turns into a superconduct-
ing state when temperature is lowered.11,36 This holographic
superconductivity (HS) is “without glue”: HS is an automatism
wired in the renormalization flow originating in the extreme
thermodynamical instability of the uncondensed quantum
critical metal at zero temperature. As we illustrate in Fig. 1,
AdS/CFT provides fundamentally new descriptions of the
origin of superconductivity. Cases D and E are the holographic
analogs of local pair and “BCS” superconductors, in the sense
that for the “large-charge” case D, the superconductivity sets
in at a temperature of order of the chemical potential μ, while
in the “small-charge” case E, the superconducting Tc is tuned
to a temperature that is small compared to μ.

The remainder of this paper is organized as follows. In
Sec. II, we propose two explicit experimental approaches to
measuring the imaginary part of the pairing susceptibility in
the required temperature and frequency range. One approach
invokes modern thin-film techniques and the other uses STM,
STS, and PCS techniques with a superconducting tip. Two

heavy fermion systems, CeIrIn5 and β-YbAlB4, are suggested
as candidate quantum critical superconductors. In Sec. III, we
present details of the calculation of the pairing susceptibility
in the five types of models (A–E). For cases A–C, the full
pair susceptibility is governed by the Bethe-Salpeter equation,
with the bare (electronic) pair susceptibility and the pairing
interaction (glue) as input. In the holographic approaches D
and E, the pair susceptibility is calculated from the dynamics
of the fluctuations of the dual scalar field in the AdS black-hole
background in the dual gravity theory. The outcomes of
these calculations are further analyzed in Sec. IV. Close to
the superconducting transition point, all five models display
universal relaxational behavior. When moving away from Tc,
one detects sharp qualitative differences between the truly
conformal models (cases C–E) and the Hertz-Millis type
models (case B). We include in Sec. V our conclusions.
There are two appendixes. In Appendix A, the relaxational
behavior of the holographic models is derived using the
near-far matching technique. In Appendix B, we present a
Hertz-Millis-type calculation of the pair susceptibility in a
marginal Fermi liquid.

II. PROPOSED EXPERIMENTAL SETUP

To experimentally observe χpair(ω) via a second-order
Josephson effect, one should measure the pair tunneling
current, Ipair(V ) ∝ χ ′′

pair(ω = 2 eV/h̄). This can be accom-
plished via a planar tunnel junction or weak link between
the higher temperature superconductor T

high
c and the probe

superconductor T low
c . To extract the pair tunneling current

from the total tunneling current the quasiparticle tunneling
current contribution must be subtracted, e.g., by means of the
Blonder-Tinkham-Klapwijk37 formula and its (d-wave) gener-
alizations. To minimize the masking effect of the quasiparticle
current and to maximize the ranges of accessible reduced
temperature and frequency, the ratio T

high
c /T low

c of the two
Tc’s should be as large as possible.

Perhaps the best candidate quantum critical superconductor
is the heavy fermion system CeIrIn5, since it appears to have
a quantum critical normal state at ambient pressure, while
its Tc is a meager 0.4 K.38 The mixed valence compound
β-YbAlB4, which displays quantum criticality up to about
3 K without any tuning and becomes superconducting below
80 mK,39 is another possible choice. The challenge is now to
find a good insulating barrier that in turn is well connected to
a “high” Tc source superconductor. One option for the latter
is the Tc = 40 K MgB2 system; an added difficulty is that one
should take care that this s-wave superconductor can form
a Josephson contact with the nonconventional (presumably
d-wave) quantum critical superconductor. This has on the
other hand the great advantage that the quasiparticle current
is largely suppressed because of the presence of the full gap,
compared to an unconventional source superconductor with its
nodal quasiparticles. As a start, one could employ the modern
material fabrication techniques of monolithic molecular beam
epitaxy (MBE)40 and pulsed laser deposition (PLD)17 to form
a junction between MgB2 and Al with an insulating aluminum
oxide junction layer. Reduced temperatures τ = (T − Tc)/Tc

up to 40 with low-noise ω values into the mV regime could be
obtained with these two s-wave superconductors.
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A more challenging technique is to utilize the recent
advances in scanning tunneling microscopy and spectroscopy
(STM and STS)41 and point contact spectroscopy (PCS)42

to form or glue a tiny crystal or whisker of YBa2Cu3O7-y
(T high

c = 90 K) to a normal Ir or Pt tip and tunnel or weakly
contact the tip to the heavy fermion superconductor through its
freshly cleaved surface. With the enormous spread in transition
temperatures, τ values of over 100 could be reached within a
mV low-noise region for two such d-wave superconductors.

There are certainly difficulties with the cuprate super-
conductors such as surface charging, gap reduction, and
low Josephson currents. These troublesome issues could be
resolved by using a pnictide superconductor tip43 or a combina-
tion of a hole-doped high-temperature superconductor (T high

c )
and concentration-tuned Nd2-xCexCuO4-δ (T low

c < 24 K), an
electron-doped superconductor, to increase the Josephson
current. Stimulated by our pair-susceptibility calculations,
we trust the challenged experimentalists will evaluate the
above possibilities in their efforts toward novel thin-film and
tunneling spectroscopy investigations.

III. CALCULATING PAIR SUSCEPTIBILITY
FOR DIFFERENT MODELS

A. Cases A–C: Pairing mechanisms with electron-glue dualism

Pair susceptibility is a true two-particle quantity, i.e., it
is derived from the full two-particle (four-point) Green’s
function which is traced over external fermion legs: let
χ (k,k′; q) be the full four-point correlation function with
incoming momenta and frequencies (−k,k + q) and outgoing
momenta and frequencies (−k′,k′ + q), then the pair suscep-
tibility χpair(i�,q) = ∑

k,k′ χ (k,k′; q). Here momentum and
frequency are grouped in a single symbol k = (k,iω) and we
formulate equations using Matsubara frequencies.

The full pair susceptibility includes contributions from all
forms of interactions. One commonly used approximation
strategy is to separate it into two parts: an electronic part
and a glue part. The glue is generally considered to be
retarded in the sense that it has a characteristic energy scale
ωb that is small compared to the ultraviolet cutoff scale
ωc. Under this retardation assumption, i.e., a small Migdal
parameter, the electron-glue vertex corrections can thus be
ignored and the effects of the glue can be described by a
Bethe-Salpeter-like equation in terms of the “vertex” operators

(k; q) = ∑

k′ χ (k,k′; q), i.e., a partial trace over χ (k,k′; q).
Further simplification can be made by assuming that the

pairing problem in quantum critical metals can still be treated
within the Eliashberg-type theory, with the electronic vertex
operator 
0 and the glue propagator D strongly frequency
dependent, but without substantial momentum dependence.
The glue part will only appear in the form of a frequency-
dependent pairing interaction λ(i�) = ∫

ddqD(q; i�). The
Bethe-Salpeter equation (or Dyson equation for the four-point
function) then reads


(iν; i�) = 
0(iν; i�)

+A
0(iν; i�)
∑
ν ′

λ(iν ′ − iν)
(iν ′; i�), (3)

at q = 0. Note that the pair susceptibility is a bosonic response,
hence i� is a bosonic Matsubara frequency whereas iν is
fermionic. For given electronic part 
0(iν; i�) and glue part
λ(i�), Eq. (3) can be solved either by iteration or by direct
matrix inversion. A further frequency summation over ν

of 
 finally yields the full pair susceptibility χpair(i�,q =
0) = ∑

ν 
(iν; i�) at imaginary frequency i�. The super-
conducting transition happens when the real part of the full
pair susceptibility at � = 0 diverges. To obtain the desired
real-frequency dynamical pair susceptibility, a crucial step is
the analytic continuation, i.e., the replacement i� → ω + i0+.
We choose the method of analytic continuation through
Padé approximants via matrix inversion,44–46 which performs
remarkably well in our case, likely because here the pair
susceptibility is a very smooth function with only a single
characteristic peak feature.

Different models are characterized by different 
0(iν; i�)
and λ(i�). We will present the three nonholographic ap-
proaches to pairing, i.e., cases A–C, in the remainder of this
section.

1. Case A: Fermi-liquid BCS

We consider a free Fermi gas, interacting via a normal glue,
say an Einstein phonon, for which the pairing interaction is of
the form

λ(i�) = g

A
ω2

b

ω2
b + �2

. (4)

For the Fermi gas, Wick’s theorem applies, and the electronic
part of the pair susceptibility is simply the convolution of
single-particle Green’s functions,

χpair,0(q,i�) = T

N

∑
k,n

G(−k,−iνn)G(k + q,iνn + i�).

(5)

If we ignore self-energy corrections we may substitute the
free fermion Green’s function G(k,iω) = 1/(iωn − εk). The
imaginary part of the bare pair susceptibility then has the
simple form χ ′′

0 (ω) = 1
ωc

tanh( ω
4T

) at q = 0. Here the Fermi

energy acts as the ultraviolet cutoff, with ωc = 2
πN(0) � EF .

The electronic vertex operator reads


0(iνn,i�) = 2T

ωc(2νn + �)
[θ (νn + �) − θ (−νn)]

= 2T

ωc

∣∣∣∣θ (νn + �) − θ (−νn)

2νn + �

∣∣∣∣ , (6)

with θ (x) the Heaviside step function.
A full Eliashberg treatment includes self-energy corrections

and modifies Eq. (6) to


0(iνn,i�) = 2T

ωc

∣∣∣∣ θ (νn + �) − θ (−νn)

(νn + �)Z(νn + �) + νnZ(−νn)

∣∣∣∣ , (7)

where ωnZ(ωn) ≡ ωn + �(iωn). For small and nonsingular
pairing interaction λ(i�), the effect of the self-energy correc-
tions will be minor.
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2. Case B: Critical glue BCS

In this section, we replicate one class of scenarios which
attribute the novelty of unconventional superconductivity in
such systems to the peculiar behavior of the glue when
approaching the quantum critical point (QCP). The glue
part is assumed to become critical near the QCP, while the
electronic part is kept a fermion bubble as in conventional
BCS theory, Eq. (5), with self-energy corrections included.
This class of scenarios is arguably best represented by the
models introduced by Chubukov and collaborators,9 where
they assume that pairing is mediated by a gapless boson, and
the pairing interaction is of the power-law form

λ(i�) =
(

�0

|�|
)γ

. (8)

Here the exponent 0 < γ < 1 parametrizes the different mod-
els. The pairing interaction has a singular frequency depen-
dence, which makes the pairing problem in such models qual-
itatively different from that of the Fermi-liquid BCS model.
The coupling strength is absorbed in the parameter �0, which
is the only dimensionful parameter in this model. Thus the
superconducting transition temperature should be proportional
to �0, with a model-dependent coefficient, Tc = A(γ )�0.

The massless boson contributes a self-energy �(iωn) to the
electron propagator,

�(iωn) = ωn

(
�0

|�|
)γ

S(γ,n), (9)

where S(γ,n) = |n + 1/2|γ−1[ζ (γ ) − ζ (γ,|n + 1
2 | + 1

2 )],
with ζ (γ ) the Riemann zeta function and ζ (γ,n) the
generalized Riemann zeta function.

The presence of the dimensionful parameter �0 will generi-
cally prevent simple energy-temperature scaling of χpair(ω,T ).
Only for the limits T � �0 or T � �0 one should recover
energy-temperature scaling.

3. Case C: Quantum critical BCS

In this section we will consider the scenario of quantum
critical BCS (QCBCS),10 where the novelty of unconventional
superconductivity is attributed solely to the peculiar behavior
of the electronic part in the quantum critical region, with
the glue part assumed featureless. For the glue part we
will use, as in the Fermi-liquid BCS case, the smooth and
nonsingular pairing “Einstein phonon” interaction, Eq. (4),
to calculate the dynamical pair susceptibility in the QCBCS
scenario. The quantum criticality is entirely attributed to the
electronic part, i.e., the “bare” pair susceptibility is assumed
to be a conformally invariant state and is considered to be
a relevant operator in the renormalization flow sense. In
other words, this amounts to the zero-temperature power-law
form χ ′′

pair,0(ω,T = 0) = Aω−δ , with 0 < δ < 1. At finite
temperature, the electronic part of the pair susceptibility can
be expressed as a scaling function,

χpair,0(ω,T ) = Z

T δ
F

(ω

T

)
, (10)

which, in the hydrodynamical regime (h̄ω � kBT ) reduces
to χpair,0(ω,T ) = Z′

T δ
1

1−iωτrel
, with τrel ≈ h̄/kBT . Note that the

Fermi liquid is the corresponding marginal case δ = 0 with

χ ′′
pair,0(ω,T = 0) � constant. With a relevant scaling exponent,

δ on the other hand, more spectral weight is accumulated at
lower energy scales, where pairing is more effective. The gap
equation becomes algebraic instead of exponential, and this
implies that even a weak glue can give rise to a high transition
temperature.

The QCBCS scenario is a phenomenological theory; in the
absence of a microscopic derivation of the scaling function
F(ω/T ), a typical functional form is chosen. One example
of such a typical scaling function F(ω/T ) that possesses
the above two limiting forms at low and high temperatures
can be found in (1 + 1)-dimensional conformal field theories,
F ′′(y) = sinh( y

2 )B2(s + i
y

4π
,s − i

y

4π
), where B is the Euler

β function, and s = 1/2 − δ/4. Another example, which will
be used to calculate the full pair susceptibility in this paper,
is a simple generalization of the free fermion vertex operator,
Eq. (6),


0(iνn,i�) = (1 − α)T

ω1−α
c

|θ (νn + �) − θ (−νn)|
|2νn + �|α+1

, (11)

χpair,0(i�) =
∑
νn


0(iνn,i�) = (1 − α)T

ω1−α
c

2

(4πT )1+α

× ζ

(
1 + α,

1

2
− i

i�

4πT

)
. (12)

Here ζ is again the generalized (Hurwitz) zeta function. Since
analytic continuation is trivial, it is easy to confirm that
this choice of vertex operator produces a relevant bare pair
susceptibility with δ = α, a power-law tail at high frequency,
and the linear hydrodynamic behavior at low frequency. There
is a single peak at frequencies of order the temperature, the
precise location of which we may fine-tune by introducing a
parameter x0 [defined as the argument of the scaling function
F(x) at which the low-frequency linear and high-frequency
power-law asymptotes would cross].

We would like to emphasize again that QCBCS is a
phenomenological theory: Eq. (11) is an educated guess for
what a true conformally invariant two-particle correlation
function (partially traced) may look like. However, combined
with a glue function, Eq. (4), it is perfectly valid input for the
Eliashberg framework, i.e., the Bethe-Salpeter equation (3),
and delivers quite a high Tc.

B. Cases D and E: Holographic superconductivity

In the holographic approach to superconductivity, the
(2 + 1)-dimensional conformal field theory (CFT) describing
the physics at the quantum critical point is encoded in a
(3 + 1)-dimensional string theory in a space-time with a
negative cosmological constant (anti–de Sitter space).33–35

In a “large N , strong coupling limit” this string theory
can be approximated by classical general relativity in an
asymptotically anti–de Sitter space (AdS) background coupled
to various other fields. Most importantly, a precise dictionary
exists how to translate properties of the AdS gravity theory
to properties of the CFT including the partition function. In
particular, a global symmetry in the CFT is a local symmetry
in the gravity theory with the boundary value of the gauge
field identified with the source for the current in the CFT. This
provides the setup for holographic superconductivity in the
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standard approximation where superconductivity is studied as
the spontaneous symmetry breaking of a global U (1), which is
subsequently weakly gauged to dynamical electromagnetism.

1. Case D: Large-charge AdS4 holographic superconductor

The simplest model for obtaining a holographic supercon-
ductor is therefore Einstein gravity minimally coupled to a
U (1) Maxwell field Aμ and a charged complex scalar � with
charge e and mass m.11,36,47 The charged scalar will be dual to
the order parameter in the CFT—the pairing operator. Since the
underlying field theory is strongly coupled there is no sense in
trying to identify the order parameter as some “weakly bound”
pair of fermions and we ought to study the order parameter
directly.

This system has the action

S0 =
∫

d4x
√−g

[
R + 6

L2
− 1

4
FμνF

μν − m2|�|2

−|∇μ� − ieAμ�|2
]
, (13)

where R is the Ricci scalar and the AdS radius L can be set to
1. The charged AdS Reissner-Nordström (RN) black hole is a
solution with � = 0. This solution has the space-time metric
and electrostatic potential

ds2 = −f (r)dt2 + dr2

f (r)
+ r2(dx2 + dy2),

f (r) = r2 − 1

r

(
r3
+ + ρ2

4r+

)
+ ρ2

4r2
, (14)

A = ρ

(
1

r+
− 1

r

)
dt,

where r+ is the position of the horizon and ρ corresponds to the
charge density of the dual field theory. The temperature of the
dual field theory is identified as the Hawking temperature of
the black hole T = 3r+

4π
(1 − ρ2

12r4+
), and the chemical potential

is μ = ρ/r+. The AdS-RN solution preserves the U (1) gauge
symmetry and corresponds holographically to the CFT in a
state at finite temperature and chemical potential.

The essence of holographic superconductivity is that below
some critical temperature Tc, the charged AdS-RN black hole
becomes unstable and develops a nontrivial (normalizable)
scalar condensate, i.e., � �= 0, which breaks the U (1) gauge
symmetry. The asymptotic r → ∞ value of � is the value
of the order parameter in the CFT. Thus in the dual field
theory a global U(1) symmetry is broken correspondingly.
Such a minimal model therefore naturally realizes (s-wave)
superconductivity.11,36

Using explicit details of the AdS/CFT dictionary, the
dynamical susceptibility of the spin-zero charge-two order
parameter O in the boundary field theory can be calculated
from the dynamics of the fluctuations of the corresponding
scalar field � in the AdS black-hole background in the
gravity side. At zero momentum, we can expand δ� as
δ�(r,x,y,t)|k=0 = ψ(r)e−iωt . The equation of motion for
ψ(r) is

ψ ′′ +
(

f ′

f
+ 2

r

)
ψ ′ +

(
(ω + eAt )2

f 2
− m2

f

)
ψ = 0. (15)

We are interested in the retarded Green’s function. This
translates into imposing an in-falling boundary condition at
the horizon,48 i.e., ψ(r) � (r − r+)−i ω

4πT , as r → r+. The CFT
Green’s function is then read off from the behavior of solutions
ψsol to Eq. (15) at spatial infinity r → ∞. Near this AdS
boundary, one has ψ(r) � ψ−

r�− + ψ+
r�+ , where �± = 3

2 ± ν with

ν = 1
2

√
9 + 4m2. We focus on the case 0 < ν < 1, where both

modes ψ± are normalizable. We furthermore choose “alternate
quantization” with ψ+ as the source and ψ− as the response,
such that in the large frequency limit the order parameter
susceptibility behaves as 1/ω2ν . In that case, Green’s function
is given by48,49

χpair = GR

O†
−O−

∼ −ψ−
ψ+

. (16)

From Eq. (15), the boundary conditions at the horizon
and the dictionary entry for Green’s function, the order
parameter susceptibility has the manifest symmetry χ (ω,e) =
χ∗(−ω,−e). This implies generic particle-hole asymmetry
as for e �= 0, χ (ω,e) is generally asymmetric under the
transformation ω → −ω, as has been predicted for phase
fluctuating superconductors.18 Only in the zero charge limit
is particle-hole symmetry restored (Fig. 3).

2. Case E: Small-charge AdS2 holographic superconductor

The AdS-RN black hole at T = 0 has a near-horizon
r → r+ = (12)−1/4√ρ limit that corresponds to the geometry
of AdS2 × R2. This radial distance in AdS characterizes
the energy scale at which the CFT is probed, and one can
show that fermionic spectral functions that have the same
phenomenology as the strange metallic behavior observed in
condensed-matter systems arise from gravitational physics in
this near-horizon AdS2 region.50 It is therefore of interest at
which temperature the superconducting instability sets in.

In the case D simplest large-charge holographic supercon-
ductor, all dimensionfull constants are of order unity. Thus
Tc ∼ μ and the onset of superconductivity happens before one
is essentially probing the near-horizon physics.51 To access
the AdS2 near-horizon geometry, we wish to tune Tc as low
as possible. This can be realized by combining a double-trace
deformation in the CFT with a nonminimal “dilaton-type”
coupling in the gravity theory.12 When the order parameter O
has scaling dimension �− < 3/2, O†O is a relevant operator,
and the IR of the field theory can be driven to a quantitatively
different Tc or qualitatively different state by adding this
relevant operator as a deformation

SFT → SFT −
∫

d3xκ̃O†O, (17)

where κ̃ = 2(3 − 2�−)κ . See Fig. 4. This operation does not
change the bulk action, but now we need to study the bulk
gravitational theory using new boundary conditions for the
scalar field. The retarded Green’s function becomes52

GR ∼ ψ−
κψ− − ψ+

, (18)

and the susceptibility can be shown to take the Dyson-series
RPA form:

χκ = χ0

1 + κχ0
. (19)
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FIG. 3. (Color online) Particle-hole (a) symmetry of the relaxational peak as seen from the line shape of χ ′′(ω) for the two different
kinds of holographic superconductors: local pair AdS4 (left) and BCS-type AdS2 (right). The solid lines correspond to reduced temperature
τ = (T − Tc)/Tc = 1 and the dashed lines to τ = 5. The AdS4 case has a particle-hole asymmetric pair susceptibility, while this symmetry is
restored in the AdS2 case.

This already modifies Tc but it can be further reduced by
adding an extra “dilaton-type” coupling |�|2F 2 term to the
minimal model action in Eq. (13),12

S1 = −η

4

∫
d4x

√−g|�|2FμνF
μν. (20)

In the normal phase, the AdS RN black hole, Eq. (14), is
still a solution to this action. The susceptibility again follows
from Green’s function (18) in this background, which is built
from solutions to the equation of motion for δ�(r,x,y,t)|k=0 =
ψ(r)e−iωt . With the two modifications (17) and (20)

κ

T μ

Holographic SC

AdS2

AdS4

κc
0

FIG. 4. (Color online) Phase diagram of holographic supercon-
ductor including a double-trace deformation with strength κ . For
κ = 0 one has the minimal holographic superconductor, case D,
where Tc ∼ μ. Increasing the value of κ can decrease the critical
temperature all the way to Tc = 0 if one includes a nonminimal
coupling to the AdS-gauge field (see text). The shaded regions
indicate which region of the geometry primarily determines the
susceptibility. It shows that one must turn on a double-trace coupling
to describe superconductors whose susceptibility is determined by
AdS2-type physics. This is of interest because AdS2-type physics
contains fermion spectral functions that are close to what is found
experimentally.

it equals

ψ ′′ +
(

f ′

f
+ 2

r

)
ψ ′ +

(
(ω + eAt )2

f 2
+ ηρ2

2r4f
− m2

f

)
ψ = 0.

(21)

IV. RESULTS AND DISCUSSIONS

Let us now explain why the experiment needs to cover
a large range of temperatures and frequencies in order to
extract the differences in physics. The thermal transition to
the superconducting state is in all cases a BCS-like mean-field
transition; for A–C this is by construction, involving large
coherence lengths, but for the holographic superconductors it
is an outcome that is expected but not completely understood.
As in all critical phenomena, the mean-field universal behavior
sufficiently close to the phase transition to the superconducting
state is given by standard Ginzburg-Landau order parameter
theory,

L = 1

τr

�∂t� + |∇�|2 + i
1

τμ

�∂t�

+α0(T − Tc)|�|2 + w|�|4 + · · · . (22)

Evaluating the order parameter susceptibility in the normal
state, one finds

χpair(ω,T ) = χ ′
pair(ω = 0,T )

1 − iωτr − ωτμ

(23)

Indeed in all cases, Fig. 5(a) shows the familiar Curie-Weiss
behavior χ ′

pair(ω = 0,T ) = 1/[α0(T − Tc)], at temperatures
Tc � T � 3Tc, with relaxation time τr ∝ (T − Tc)−1. The
time τμ measures the breaking of the charge conjugation
symmetry at the transition. In the relaxational regime,
the tunneling current signal obtains the quasi-Lorentzian
line shape χ ′′

pair(ω) = χ ′(0)τrω/[τ 2
r ω2 + (1 − τμω)2]. Since

cases A–C are strongly retarded, charge conjugation is
effectively restored (i.e, τμ = 0) for the usual reason that
the density of fermionic states is effectively constant (or
symmetric, case C) around EF . As for phase-fluctuating
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FIG. 5. (Color online) Universal mean-field behavior of the pair susceptibility close to the superconducting phase transition. (a) Real part of
the pair susceptibility at zero frequency rescaled by the distance to the superconducting transition point, i.e., (T − Tc)χ ′(ω = 0,T ), as function
of reduced temperature τ = (T − Tc)/Tc, for the five different models considered. The horizontal axis is plotted on the logarithmic scale, and
we use the normalization (T − Tc)χ ′(ω = 0,T ) → 1 as T → Tc. χ ′(ω = 0) is a measure of the overall magnitude of the pair susceptibility
in arbitrary units. χ ′(ω = 0,τ ) can be determined from the experimentally measured imaginary part of the pair susceptibility by using the
Kramers-Kronig relation χ ′(ω = 0,T ) = 1

π

∫
dωχ ′′(ω,T )/ω. (b) Inverse relaxation time τr rescaled by the distance to the superconducting

transition point, i.e., (T − Tc)−1τ−1
r , as function of reduced temperature τ . The horizontal axis is also plotted on the logarithmic scale. The

relaxation time is calculated from the relation τr = [∂χ ′′/∂ω]ω=0/χ
′(ω = 0) (see text for equations). In both plots, for all five models A–E, the

curves become flat close to the transition temperature Tc (here for τ � 0.1), i.e., both χ ′(ω = 0,T ) and τr (T ) behave as 1/(T − Tc), confirming
the universal mean-field behavior in this regime. We also see from (b) that the large-charge holographic superconductor (here with charge
e = 5) has a much shorter relaxation time than the small-charge holographic superconductor (here with charge e = 0).

local pairs, the “strongly coupled” holographic supercon-
ductor D shows a quite charge-conjugation asymmetric re-
sult, τμ/τr ≈ 0.4, while it is remarkable that the “weakly
coupled” holographic case E displays a nearly complete
dynamical restoration of charge conjugation (τμ/τr ≈ 0)
(see Fig. 3).

In the Landau-Ginzburg regime, the order parameter relax-
ation time τr does still give us a window on the underlying
fundamental physics. Strongly coupled quantum critical states
are characterized by a fundamental “Planckian” relaxation
time τh̄ = Ah̄/(kBT ) and the order parameter fluctuations in
the normal state ought to submit to this universal relaxation.
For rather elegant reasons this is the case in the holographic su-
perconductors (D and E) (see Appendix A). One finds that τr =
AD/Eh̄/[kB(T − Tc)], where AD ≈ 0.06 and AE ≈ 1.1 ( “zero
temperature” equals Tc for the order parameter susceptibility).
Not surprisingly this works in a very similar way for case C,
but viewed from this quantum critical angle the textbook BCS
result that τr = (π/8)h̄/[kB(T − Tc)] is rather astonishing.
Although the underlying Fermi liquid has a definite scale EF

[e.g., its relaxation time is τFL = (EF /kBT )τh̄], its pair channel
is governed by effective conformal invariance, actually in tune
with the quantum critical BCS moral.

Given this “quasiuniversality” near the phase transition,
one has to look elsewhere to discern the pairing mechanism
from the information in the pair susceptibility. It is obvious
where to look: Fig. 1 shows that the differences appear at
temperatures large compared to Tc involving a large dynamical
range in frequency. This is the challenge for the experimental
realization. In this large dynamical range one distinguishes
directly all quantum critical cases (B–E) for which the contour
lines in Fig. 1 acquire a convex shape, from simple BCS
with fanning-out contours. One sees the reasons for this
more clearly in Figs. 2 and 6, which plot T δχ ′′

p(ω/T ,τ ),
i.e., a rescaling by temperature. Figure 2 displays the same

temperature range as in Fig. 1; Fig. 6 shows several line
cuts at high temperatures. In the simple BCS case A, the
high-temperature pair susceptibility is just the free Fermi
gas result χ ′′(ω,T ) = (1/EF ) tanh(ω/4T ), linearly increasing
with frequency initially and becoming constant for ω > 8T .
In cases B–E, the pair susceptibility deep in the normal
state increases with decreasing frequency down to a scale
set by temperature to eventually go to zero linearly at small
frequency as required by hydrodynamics. The observation
of such a behavior would reveal a significant clue regard-
ing a nonconventional origin of the superconductivity. The
frequency independence of χ ′′

BCS(ω) reveals the “marginal”
scaling that is equivalent to the logarithmic singularity in
χ ′(ω = 0) that governs the BCS instability. In contrast, the
critical temperature peak in χ ′′(ω) in cases B–E reveals a
“relevant” scaling behavior in the pair channel: a stronger,
algebraic singularity is at work, giving away that the quantum
critical electron system is intrinsically supporting a more
robust superconductivity than the Fermi gas.

The observation of such a peak implies that one can abandon
the search for some “superglue” that enforces pairing in the
Fermi gas at a “high” temperature. Instead the central question
becomes: what is the origin of the relevant scaling flow in
the pair channel in the normal state, and is the normal state
truly quantum critical in the sense of being controlled by
conformal invariance? Figure 4 shows that, if it is, the pair
susceptibility must display energy-temperature scaling in this
high-temperature regime. Both the quantum critical BCS (case
C) and the two holographic cases (D and E) embark from the
assumption that the high-temperature metal is governed by
a strongly interacting quantum critical state that is subjected
to the hyperscaling underlying the energy-temperature scaling
collapse. Specifically the pair operator itself is asserted to have
well-defined scaling properties, as in a (1 + 1)-dimensional
Luttinger liquid. Such “truly” quantum critical metals have no
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FIG. 6. (Color online) Energy-temperature scaling line cuts of the imaginary part of the pair susceptibility rescaled by temperature to a
certain power: T δχ ′′, as function of ω/T for cases A–E. For each case, we have plotted four different temperatures, with reduced temperatures
τ = 21, 24, 27, 30. As the vertical contour lines in Fig. 3 already revealed, the cases A, C, D, and E exhibit a scaling collapse at high
temperatures, whereas scaling collapse fails in the Hertz-Millis-Chubukov case B. Furthermore, the line shape is quite different in cases C, D,
and E as compared to cases A and B. For C, D, and E, χ ′′(ω,T ) decays as power law at high temperatures, whereas for A and B, χ ′′(ω,T )
approaches the Fermi-liquid tanh form in the high-temperature limit. The pronounced peak in cases C, D, and E versus the flatness of A and B
is signified by a plot of the full width at half maximum (see Fig. 7).

relation whatsoever with the Fermi liquid, but this is not quite
the case for the Hertz-style critical glue case (B). Although the
fully resummed Eliashberg treatment of the strongly coupled
“singular glue” λ(ω) ∼ 1/ωγ completely changes the pair
susceptibility relative to the simple BCS case, it is still a
perturbative theory around the Fermi liquid. Remember that it
is based on a Fermi liquid with a characteristic scale EF and
this prohibits the energy-temperature scaling, as illustrated for
case B in Figs. 2 and 6.

We notice recent progress in the Hertz-Millis-type
theories,53–55 where it has been argued that the pairing
vertex has a strong momentum dependence, and the pairing
susceptibility is enhanced from the BCS logarithmic form to a
logarithm-squared form.55 More recent renormalization group
analysis of such theories has revealed that the pairing scale
is generically larger than, or at best of the same order as, the
energy scale where non-Fermi-liquid physics sets in, and the
strange metal phase is usually hidden in the superconducting
dome.56 Thus in such theories, we do not expect to see
energy-temperature scaling above Tc. It would be interest-
ing to investigate the detailed frequency and temperature
dependence of the full dynamical pair susceptibility in these
models.

The observation of energy-temperature scaling in the high-
temperature pair susceptibility would therefore reveal the
existence of a true non-Fermi-liquid quantum critical state
formed from fermions. Although it remains to be seen whether
it has any bearing on the condensed-matter systems, the
only controlled mathematical theory that is available right
now to deal with such states of matter is the AdS/CFT
correspondence of string theory. It has its limitations: the
“bottom-up” or “phenomenological” approach of relevance

in the condensed-matter context should be regarded as a
generalized scaling theory, which reveals generic renormal-
ization flows associated with strongly interacting quantum
critical states encountered in the presence of fermions at
a finite density. However, the scaling dimensions, rates of
relevant flows, and so forth associated with a particular
theory or universality class are undetermined in this bottom-up
approach. Cases D and E are two limiting cases of such
generic RG flows. The large-charge case D departs from a
“primordial” Lorentz invariant critical state at zero density
(encoded in an AdS4 geometry in the gravitational dual) that is
natural in supersymmetric quantum field theory while it is far
fetched as a UV theory for condensed-matter systems. A better
holographic contender for condensed-matter physics is case
E. Here the holographic superconductivity is governed by the
emergent quantum criticality associated with the near-horizon
AdS2 geometry of the extremal Reissner-Nordstrom black
hole. This is dual to an (unstable) infrared fixed point where
the normal state shows the traits of the marginal Fermi
liquid.57

For the pair susceptibilities, the distinction between cases
D and E is only quantitative at zero momentum, associated
with a choice of different scaling dimensions. The crucial
difference is with the other scenarios. In the holographic cases
no “external glue” is at work. The superconducting instability
is an intrinsic property associated with the strongly coupled
fermionic critical matter. As can be seen directly from the pair
susceptibilities in cases D and E in Fig. 2, the superconducting
correlations build up through a very smooth but rapid flow from
the conformal high-temperature regime to the relaxational
regime associated with the thermal transition. The smoothness
of the flow toward the instability is also emphasized when
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FIG. 7. (Color online) Peak width crossover. Evolution of the relative peak width, i.e., the ratio of the full width at half maximum (FWHM)
of the peak and peak location ωmax, as a function of reduced temperature τ = (T − Tc)/Tc for the five different models. For FLBCS (case A) and
CGBCS (case B), the ratio diverges at high temperature. For QCBCS (case C) there is a sudden change from the low-temperature relaxational
behavior to the high-temperature CFT behavior. For the two holographic superconductors (cases D and E), the crossover from high-temperature
region to low-temperature region is more smooth.

one considers more closely the way that the relaxational peak
changes into the conformal peak as a function of temperature:
in the QCBCS case this can be relatively sudden given that
scale is introduced through the characteristic glue energy,
while in both the AdS4 and AdS2 cases this is just a very
smooth crossover flow (see Fig. 7).

V. CONCLUSIONS

In this paper we demonstrated, through explicit calculations
of the pairing susceptibility in five different models, the
existence of sharp qualitative differences between the truly
quantum critical models—phenomenological QCBCS or the
holographic models—and the Hertz-Millis-type models with
respect to energy-temperature scaling. In the Hertz-Millis-
type models for pairing, the pairing channel is assumed to
be secondary. The single-particle Green’s functions, and/or
certain bosonic quantities in the particle-hole channel, e.g.,
magnetic susceptibilities, are considered to be primary and
carry the criticality, enjoying energy-temperature scaling. The
pairing susceptibility is assumed to be a derived quantity, and
it remains sensitive to the underlying Fermi energy. Thus
generally one does not expect to have energy-temperature
scaling in the pairing channel, or at best, scaling can only
occur with extreme fine tuning. The essence of QCBCS
and the holographic approach is to take the superconducting
order parameter itself to be a conformal field in the quantum
critical region. This is the underlying reason for energy-
temperature scaling in these models. The observation of
energy-temperature scaling with an obviously nonzero scaling
exponent in the pairing susceptibility would unambiguously

reveal the non-BCS nature of the pairing mechanism and
the non-Hertz-Millis nature of the quantum critical state.
The contrast between superconductivity emerging from a
strongly interacting fermionic quantum critical state and any
mechanism that sets out from a Fermi liquid is qualitatively
so different that the proposed experiment might finally settle
the basic rules associated with superconductivity in quantum
critical systems.
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APPENDIX A: RELAXATIONAL BEHAVIOR
IN HOLOGRAPHIC SUPERCONDUCTORS:

NEAR-FAR MATCHING

A remarkable aspect of the AdS/CFT computation is that
the relaxational behavior is directly encoded in the geometry.
Near ω → 0 an analytic expression for Green’s function
follows from a near-horizon/AdS-boundary matching method
first used in Ref. 50. The result is that for ω → 0, Green’s
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function is of the form

GR(ω,T ,e) ∼ b
(0)
+ + b

(1)
+ ω + O(ω2) + G(ω,T )(b(0)

− + b
(1)
− ω + O(ω2))

a
(0)
+ + a

(1)
+ ω + O(ω2) + G(ω,T )(a(0)

− + a
(1)
− ω + O(ω2))

, (A1)

where G(ω,T ) is the near-horizon IR-CFT Green’s function
defined in a similar way as the full AdS-CFT Green’s function,
i.e., it is the ratio of leading and subleading coefficients at
the boundary of the near-horizon region of a solution to the
equation of motion. The coefficients a

(n)
± (e,T ) and b

(n)
± (e,T )

are determined by matching this IR solution to the UV solution
near the AdS boundary at spatial infinity. They can only
be obtained numerically. Note that when e = 0 particle-hole
symmetry dictates that in that case a

(1)
± = b

(1)
± = 0.

As GR is Green’s function for the order parameter, it must
develop a pole at ω = 0 for T = Tc. Thus when T → Tc and
ω → 0, Green’s function, Eq. (A1), takes the form

GR(ω,T ,e) ∼ γ0

β0(T − Tc) + iωβ1 + ωβ2
, (A2)

where γ0 = b
(0)
+ (e,Tc), β0 = ∂T a

(0)
+ (e,Tc), β1 =

limω→0
1
iω
G(ω,Tc)a(0)

− (e,Tc), and β2 = a
(1)
+ (e,Tc). Comparing

to the universal relaxational behavior of the susceptibility
[Eq. (23)]

χ (ω,T ) = χ ′(ω = 0,T )

1 − iωτr − ωτμ

(A3)

we recognize the Curie-Weiss susceptibility χ ′(ω = 0,T ) =
γ0

β0(T −Tc) , and the particle-hole asymmetry parameter τμ =
− β2

β0(T −Tc) , which indeed vanishes when e = 0. But most
interestingly the relaxation time

τr = lim
ω→0

i

ωβ0(T − Tc)
G(ω,Tc)a(0)

− (e,Tc) (A4)

is directly given in terms of the IR Green’s function G(ω,T ).
The AdS gravity response function therefore directly knows
about the relaxational dynamics in the dual conformal field
theory.

There are essentially two different regimes of interest:
(1) For ω � T , the near-horizon IR Green’s function takes

the universal form G(ω,T ) = −iω/4πT . Thus τr = α0/(T −
Tc). This is the gravity version of the universal relaxation that
for ω � T , χ ′′ = ImGR should always be linear in ω. (This
frequency regime applies to both cases D and E.)

(2) For T � ω � √
ρ, the IR Green’s function is com-

pletely determined by the SO(1,2) conformal symmetry of the
near-horizon T � 0 AdS2 region. As a consequence the IR
Green’s function must be a power law in frequency:

G ∼ ωδ+−δ− , (A5)

where δ± are the two possible IR-conformal dimensions of the
scalar field controlled by its dynamics the AdS2 geometry, and
we focus on real δ±.50 In terms of the parameters explained in
the case E section [see Eq. (21)], these conformal dimensions
are

δ± = 1

2
±

√
1

4
+ 2r4+m2 − 4r4+e2 − η. (A6)

For this range of frequencies the susceptibility will therefore
also exhibit scaling but with non-Curie-Weiss exponents: χ ′′ ∼
ω−δ++δ− . (This frequency regime only applies to case E. For
case D the temperature Tc � μ ∼ √

ρ and T cannot be much
smaller than

√
ρ in the normal state.)

For ω � √
ρ, one is outside of the regime of validity

of Eq. (A2). Indeed there is no “relaxation” for such high
frequencies. Instead Green’s function is now determined by
the UV theory and all temperature and chemical potential
effects are subleading. In this case the UV theory is a (2 + 1)-
dimensional CFT dual to AdS4, and the two-point correlation
function is completely fixed by the SO(3,2) symmetry χ ′′ ∼
1/ω2ν where ν = 1

2

√
9 + 4m2. [Recall from Eq. (15) that we

are using alternate quantization. For standard quantization, one
would have χ ′′ ∼ ω2ν .]

APPENDIX B: PAIRING WITH MARGINAL FERMI LIQUID

To illustrate how powerful and universally distinctive the
qualitative differences in energy-temperature scaling are, we
study here the pair susceptibility of the marginal Fermi liquid
(MFL) which has been a prime candidate for some strange
metallic states. A further motivation is that recent numerical
calculations28,29 found quantum critical scaling for a MFL
when combined with a van Hove singularity (vHS).

We first calculate the pairing susceptibility built out of a
fermion bubble with MFL self-energy and a smooth density
of states (DOS). Both a smooth BCS type pairing glue
and a quantum critical glue are considered. We find that
for both types of pairing interactions, energy-temperature
scaling is severely broken, exhibiting clear distinction with
QCBCS and the holographic approach. When now combined
with an extended van Hove singularity, MFL can produce
a “quasiconformal” pair susceptibility,28,29 but extreme fine
tuning is required. The vHS has to be precisely at the Fermi
energy, and in the whole frequency range the density of states
has to exactly have a power-law dependence on frequency
in order to give rise to a pair susceptibility that is subject to a
perfect energy-temperature scaling. By detuning the vHS away
from the Fermi energy or incorporating another scale even at
the boundary of the measured frequency range, this scaling is
lost.

1. bMFL and MFL + vHS pair susceptibilities

In real frequency, the imaginary part of the MFL self-energy
is of the form

�(ω) = −aπ

{
max{|ω|,T }, for ω < ωE

ωE, for ω > ωE.
(B1)

From the spectral representation,

�(iωn) = 1

π

∫ ∞

−∞
dν

�′′(ν)

ν − iωn

, (B2)
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FIG. 8. (Color online) Marginal Fermi-
liquid pair susceptibility with smooth density of
states. Top: False-color plot of the imaginary
part of the pair susceptibility χ ′′ as function
of frequency ω (in units of Tc) and reduced
temperature τ = (T − Tc)/Tc, for two different
models: MFL with BCS pairing and MFL with
critical glue. In both cases, the density of states
is taken to be constant. Bottom: the same plot,
but now the horizontal axis is rescaled by
temperature while the magnitude is rescaled
by temperature to a certain power: we are
plotting T δχ ′′(ω/T ,τ ) in order to show energy-
temperature scaling at high temperatures. Here
for both models Tc = 0.01 and δ = 0. The color
scheme is the same as used in the main text.
For MFLBCS, the parameters are a = 0.3, ωE =
1, g = 0.9627, ωb = 0.5. For MFLCG, we take
a = 0.4, ωE = 0.2, γ = 1/3, �0 = 0.0134.

we obtain the self-energy in imaginary frequency

�(iωn) = −aωn

(
2T

ωn

arctan
T

ωn

− 2ωE

ωn

arctan
T

ωn

+π
ωE

|ωn| + log
ω2

n + ω2
E

ω2
n + T 2

)
. (B3)

Consider first the case where the DOS is a constant of
energy. We calculate χ ′′(ω,T ) with both a smooth BCS
type pairing glue (MFLBCS) and a quantum critical glue
(MFLCG). The results are plotted in Fig. 8, from which
we see no energy-temperature scaling for either of the two
models. In addition, one can check that at large temperatures
for MFLBCS, χ ′′ goes over to the BCS tanh form. The pair
susceptibility is thus still marginal in this sense. The inclusion
of a nontrivial self-energy destroys the “marginal” scaling
behavior of FLBCS. For MFLCG, the effects of the glue
interactions are so strong that one ends up with a result that is
barely distinguishable from CGBCS.

To our knowledge, the only way that the pair susceptibility
of a MFL can resemble that of QCBCS and HSAdS2 in some
sense is to invoke a van Hove singularity in the spectrum.
The idea that the presence of vHS in the DOS is responsible
for high-temperature superconductivity has been around for
some time (see Refs. 58–61 and references therein). An
extended van Hove singularity right at the Fermi level can
produce a relevant pair susceptibility, i.e., the real part of the
pair susceptibility χ ′(ω = 0,T ) has an algebraic temperature
dependence.29 But as will be shown below, extreme fine tun-
ing is needed to get energy-temperature scaling for the
imaginary part of the pair susceptibility. Moreover, although
there are indications of the presence of extended vHS in

cuprates,30,31 to the best of our knowledge they have not been
found in typical heavy fermion materials.

With the inclusion of a nontrivial DOS N (ε), the electronic
vertex operator becomes


0(iνn,i�) = T

N0

∫ ∞

−∞
dεN (ε)

1

−iνn − ε − �(−iνn)

× 1

iνn + i� − ε − �(iνn + i�)
. (B4)

For MFL, χ ′′(ω,T ) can only be calculated numerically. But the
basic picture can be illustrated by considering the noninteract-
ing limit, where one has simply χ ′′

0 (ω) = N (ω/2) tanh(ω/4T ).
In this case, one can easily see that to get energy-temperature
scaling for χ ′′, i.e., χ ′′(ω,T ) → T δF(ω/T ), the DOS has to
be a power of energy in the whole frequency range that is
experimentally relevant, N (ε) = |ε|−α . Any deviation from
this special form will break energy-temperature scaling. This
can be illustrated by considering several explicit deformations
from the strict power form of the DOS.

One example is that the van Hove singularity moves away
from the Fermi level (vH1MFLBCS). Considering DOS of
the form N (ε) = |ε + μ|−1/2, we obtain the electronic vertex
operator


0(iνn,i�) = −πT

N0(i�+ − i�−)

(
1√

i�+ + μ

− 1√−i�+

1√
1 − iμ/�+

− 1√
i�− + μ

+ 1√−i�−

1√
1 − iμ/�−

)
, (B5)
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FIG. 9. (Color online) Marginal Fermi-liquid pair susceptibility with van Hove singularities. The same plot as Fig. 8 for marginal Fermi-
liquid with extended van Hove singularities. The pairing interactions are all of the BCS type. The density of states is N (ε) = |ε|−1/2, |ε + μ|−1/2,
and |ε|−1/2 exp(−|ε|/ωd ) for the three different cases, respectively, from left to right. Here Tc = 0.01, and the scaling exponent δ = 1/2 for all
three models. For vH0MFLBCS, the parameters are a = 0.1445, ωE = 0.05, g = 0.2, ωb = 0.05. For vH1MFLBCS, we take μ = −0.25, a =
0.2, ωE = 0.05, g = 0.5634, ωb = 0.05. For vH2MFLBCS, the parameters are ωd = 2, a = 0.3, ωE = 0.4, g = 0.3178, ωb = 0.1.

with i�+ ≡ iνn + � − �(iνn + i�) and i�− ≡ −iνn −
�(−iνn). Another example is where there is an extra expo-
nential suppression of DOS at large energies (vH2MFLBCS),
i.e., N (ε) = |ε|−1/2 exp(−|ε|/ωd ), for which one has


0(iνn,i�) = −πT

N0(i�+ − i�−)
[F (�+)

−F (−�+) − F (�−) + F (−�−)], (B6)

with F (�) = (i�)−1/2 exp(i�/ωd )Erfc[(i�/ωd )1/2]. The re-
sults are plotted in Fig. 9 together with the case where the DOS
is of the strict power-law form (vH0MFLBCS). One can see
that energy-temperature scaling is broken for the two deformed
cases.

2. Further comments on the relation between MFL and
QCBCS/HS

The QCBCS and HS approaches are not really in conflict
with MFL, which is well-known to be able to capture a large
amount of experimental results in cuprates and heavy fermions.

The pursuit of QCBCS or HS is actually orthogonal to that of
MFL. MFL attacks the single-particle Green’s functions, while
QCBCS and HS focus on the particle-particle channel. Due to
vertex corrections, the two channels are not necessarily simply
related. A clear illustration of this is the Luttinger liquid,
where these two channels have separate energy-temperature
scaling with distinctive exponents. AdS/CFT seems to provide
a natural framework to incorporate such Luttinger-liquid-type
scaling behavior in high dimensional systems, going well
beyond a Hertz-Millis-type interpretation of MFL. Probing the
AdS2 background with fermions, one obtains the MFL-type
behavior in the fermion Green’s functions; by probing the
AdS2 background with bosonic order parameters, one can de-
tect energy-temperature scaling in the corresponding suscepti-
bility. If we take MFL as synonymous to the fact that the elec-
tron scattering rate is proportional to the larger of temperature
or frequency, the contest, which the pair tunneling experiment
proposed in this paper is trying to settle, is really between the
Hertz-Millis-type interpretation of MFL and the holographic
(or call it the Luttinger-liquid-type) interpretation of MFL.
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