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Particle-vortex duality is a powerful theoretical tool that has been used to study bosonic systems. Here, we
propose an analogous duality for Dirac fermions in 2+1 dimensions. The physics of a single Dirac cone is
proposed to be described by a dual theory, QED3, with again a single Dirac fermion but coupled to a gauge
field. This duality is established by considering two alternate descriptions of the three-dimensional topological
insulator (TI) surface. The first description is the usual Dirac fermion surface state. The dual description is
accessed via an electric-magnetic duality of the bulk TI coupled to a gauge field, which maps it to a gauged chiral
topological insulator. This alternate description ultimately leads to a new surface theory, QED3, which provides a
simple description of otherwise intractable interacting electronic states. For example, an explicit derivation of the
T-Pfaffian state, a proposed surface topological order of the TI, is obtained by simply pair condensing the dual
fermions. The roles of time-reversal and particle-hole symmetries are exchanged by the duality, which connects
some of our results to a recent conjecture by Son on particle-hole symmetric quantum Hall states.
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I. INTRODUCTION

Following the prediction and classification of topological
insulators (TIs) and topological superconductors (TSc) based
on free-fermion models [1], the conceptual frontier has now
shifted to studying strongly interacting topological phases. For
low-dimensional phases, one can utilize powerful nonpertur-
bative techniques to describe the (1+1)-dimensional [(1+1)D]
edge or bulk to obtain qualitatively new physics introduced by
interactions [2–8]. However, for (3+1)-dimensional [(3+1)D]
systems, we have few nonperturbative tools; nevertheless,
remarkable theoretical progress has been made in recent
years. For example, entirely new phases that only appear in
interacting systems have been predicted [9–16]. Furthermore,
phases that were predicted to be distinct by the free-fermion
classification, and whose edge states are stable to weak
interactions, can sometimes be smoothly connected in the
presence of strong interactions. A striking example of this
phenomenon is provided by the 3D topological superconduc-
tors with time-reversal invariance (class DIII), whose integer
free-fermion classification is broken down to Z16 [12,17–21]
by strong interactions. The discovery of strongly correlated
TIs such as 3D topological Kondo insulators [22] may provide
an experimental window into the effects of strong interactions.

A useful theoretical tool that was introduced to study sur-
faces of strongly interacting 3D topological phases is surface
topological order (STO) [9,17–19,23–28]. In the early days of
the field it was assumed that the surface of a topological phase,
such as a topological insulator, is metallic if all symmetries
are preserved. The resulting surface state of a TI, a single
Dirac cone, is forbidden in a purely two-dimensional (2D)
system with time-reversal invariance and charge conservation
since it suffers from the parity anomaly [29,30]. If gapped,
it was generally assumed that the surface must break one of
the protecting symmetries such as time-reversal symmetry.
However, with strong interactions, new possibilities arise. A

gapped, insulating surface state of the TI can preserve all
symmetries if it is topologically ordered, i.e., if the surface
supports anyonic excitations with fractional quantum numbers.
This topological order must encode the parity anomaly that
ensures it is a bona fide surface state of the topological insulator
bulk. In this sense it encodes the same “Hilbert space,” with the
same anomalies as the single Dirac cone surface state. Here,
we will discuss a dual surface theory that also captures the
same Hilbert space, which, in contrast to the STO, is gapless
in the UV and is described by QED3.

More precisely, the surface Dirac theory of a TI is given by
the Lagrangian

Le = �̄eiγ
μ[∂μ − iAμ]�e, (1)

where �̄e = �
†
eγ

0, γ μ are 2 × 2 Dirac matrices, and we have
introduced an external electromagnetic potential Aμ to keep
track of the conserved U (1) charge, and possibly insert a
chemical potential. Then, the proposed dual surface theory
is

Lcf = ψ̄cf iγ μ[∂μ − iaμ]ψcf − 1

4π
εμνλAμ∂νaλ, (2)

where the fermions are now coupled to an emergent fluctuating
gauge field aμ, whose flux is proportional to the electron
density or, more precisely, 4π flux of a corresponds to unit
electron charge.

Let us note three key points. First, we can ask the following:
How do we represent the electron insertion operator �e in the
dual theory? We find that �e corresponds to a double monopole
operator that introduces 4π flux as expected from the previous
discussion. It will be shown that this operator has all the desired
properties. Second, how do we interpret ψcf , the dual fermions,
in terms of electrons? ψcf will be shown to be a double (2hc/e)
vortex in the electron fluid bound to an electron, closely
analogous to the composite fermion construction [31,32],
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which accounts for the subscript. Finally, we note the action of
time-reversal symmetry exchanges particles and holes of ψcf ,
T ψcf → ψ

†
cf , consistent with their interpretation as vortex

like degrees of freedom. A finite chemical potential on the
electronic Dirac cone translates into a finite magnetic field on
the composite fermions and vice versa.

Many aspects of the duality above closely resemble particle-
vortex duality for bosons [33,34]. Denoting the boson by a
complex scalar field 
, we have the XY action

LXY = |(∂μ − iAμ)
|2 − V (|
|), (3)

which is dual to the Abelian-Higgs action

LAH = |(∂μ − iαμ)ϕ|2 − Ṽ (|ϕ|) − 1

2π
εμνλAμ∂ναλ. (4)

The dual field ϕ is minimally coupled to a fluctuating
electromagnetic field α whose flux is the boson density.
The dual field ϕ inserts vortices into the Bose fluid and the
monopole operator of the theory (4) corresponds to 
. The
duality is believed to hold at the critical point of theories (3)
and (4), i.e., at the insulator-superfluid transition of bosons.
An important question then arises: Is the dual surface state in
Eq. (2) dynamically equivalent to the usual free-electron Dirac
cone (with chemical potential at the node)? This would be the
simplest form of the correspondence, but is not something that
we can prove at present. This interesting question is discussed
further in Sec. III C.

The existence of the dual surface theory (2) clarifies a
number of earlier mysteries. Two different surface topological
orders were put forward for the TI. The first, the Pfaffian-
antisemion state consisting of 12 nontrivial anyons, was
obtained using a vortex condensation method [26,27]. Another,
simpler topological order, the T-Pfaffian, with half as many
anyons was also proposed [25,28], but despite its apparent
simplicity could not be “derived” in an analogous fashion,
or directly connected back to the superconducting surface
state of the topological insulator. We will see that T-Pfaffian
is readily derived from the dual surface theory. Another
observation that was previously mysterious was the close
relation between chiral topological insulators (class AIII) with
ν = 1 (single surface Dirac cone) and conventional topological
insulators (class AII) [35]. In both cases, there is a U (1)
symmetry that can be spontaneously broken at the surface;
the statistics of vortices in the resulting surface superfluid can
be determined. A striking observation is that vortex statistics
on the conventional TI surface is closely related to the STO
on the chiral TI (cTI) surface, and vice versa. For example,
vortices on the chiral TI surface have the same statistics and
transformation properties under time reversal as the T-Pfaffian
topological order. The dual surface theory sheds light on this
apparent coincidence.

We note recent works which have a significant conceptual
overlap with this paper. In Ref. [36], Mross, Essin, and Alicea
explicitly construct a gapless surface state for the TI called
the composite Dirac liquid (CDL). Like the present dual
Dirac theory, pairing the CDL leads to the T-Pfaffian state.
However, in contrast to our dual theory, charge fluctuations are
gapped in the CDL, and the gapless Dirac fermions have short-
ranged interactions. Another insightful development is Son’s
proposal in Ref. [37] for a dual description of the particle-hole

symmetric half-filled Landau level (see also Ref. [38]). At
first sight, this purely 2D problem seems unrelated to the
anomalous surface theories we are discussing in this paper,
which always occur on a higher-dimensional topological bulk.
However, particle-hole symmetry of a Landau level is a
nonlocal symmetry. Hence, it can evade restrictions imposed
on usual symmetries, and thereby realize the equivalent of
an anomalous surface theory in the same dimension. Indeed,
our work can be viewed as a “derivation” of the conjecture
in Ref. [37], in a setting where symmetries are conventionally
implemented (such as on the surface of a topological phase
where Landau levels with locally implemented particle-hole
symmetry can be realized).

This paper is organized as follows. We derive the surface
QED3 theory in Eq. (2) in two stages. First, in Sec. II, we
present an unconventional construction of a 3D topological
insulator. This construction starts with a gapless u(1) spin-
liquid phase, with emergent fermionic quasiparticle realizing
a chiral topological insulator band structure. The 3D TI is
then obtained after a confinement transition (see Fig. 1). Next,
in Sec. III A we derive the surface theory that follows from
this bulk construction and show it is given by QED3. In
Sec. III B, we present a more heuristic derivation of QED3
based solely on the surface physics, which provides a trans-
parent physical interpretation of the dual fields. Section III C

(b)(a)

FIG. 1. (a) Dual derivation of topological insulator using
fermionic partons in a chiral topological insulator band structure
(ν = 1 of class AIII), where time reversal flips the sign of the gauge
electric charge. The bulk topological insulator phase is obtained by
condensing a pair of monopoles (0,2) bound to an electron. The
surface state consists of the parton Dirac cone coupled to photons
that only propagate on the surface, i.e., QED3. (b) The 3D TI derived
more directly from the partons in the topological insulator band
structure, which is Higgsed by condensing the unit electric charge
(1,0) (bound to an electron). The surface is the regular single Dirac
cone. The gauged versions of the chiral topological insulator (a) and
ordinary topological insulator (b) are related by electric-magnetic
(EM) duality, as seen from the lattice of electric and magnetic
charges by identifying the basis vectors shown. The two basis vectors
are exchanged by time-reversal symmetry in both (a) and (b). The
EM duality relates the double monopole condensate and the Higgs
condensate, consistent with obtaining a TI from both descriptions.
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discusses possible scenarios for the low-energy dynamics
of QED3: in particular, in this section we contrast weak
(Hilbert space and symmetry) and strong (dynamical) forms
of duality between free Dirac theory and QED3. In Sec. IV,
we show how previously known surface phases of the 3D
TI, including the time-reversal symmetry-broken insulator and
Fu-Kane superconductor surface states, as well as the surface
topological order, can be obtained in the dual description. In
Secs. V and VI, we show how the particle-vortex duality of
the 2D surface theory can be understood as a descendant of
electric-magnetic duality of 3D u(1) gauge theory.

II. A PARTON CONSTRUCTION OF
A TOPOLOGICAL INSULATOR

In this section, we will use parton techniques to construct
a 3D gapped state of electrons with no intrinsic topological
order and U (1) � T symmetry (the T symmetry acts on the
electrons in a conventional Kramers manner). The 2D surface
of this state is described exactly by the gauge theory in Eq. (2).
We will argue that the constructed bulk state is continuously
connected to a noninteracting topological insulator, therefore,
the theory (2) provides a description of the TI surface.

The ingredients we will utilize are as follows:
(1) a trivial (θEM = 0) band insulator of electrons.
(2) a spin-liquid state of neutral bosons SL×.
While we are ultimately interested in constructing a T -

invariant state of electrons (fermions) charged under the
electromagnetic U (1) symmetry, as a first step we will build
a T -invariant state of neutral bosons (spins). We will label
this state as SL×. This state will be described by an emergent
u(1) gauge theory and will possess a gapless photon excitation.
One can think of SL× as a spin liquid with global time-reversal
symmetry (thus the notation SL; we will explain the meaning of
the subscript × shortly). We will then reintroduce the charged
electrons and drive a confinement transition in the u(1) gauge
theory, obtaining the desired gapped electronic state that is in
the same phase as the noninteracting TI.

A. The u(1) spin liquid of bosons SL×

To construct the spin-liquid state SL× we start with a
Hilbert space built out of neutral bosons (spins) B. We use
the standard parton approach where B is decomposed into
fermionic constituents ψ as

B = ψ†�ψ (5)

with � a matrix acting on components of ψ . (The precise
component structure of ψ and the form of � will not be
important in the discussion below.) The representation (5) is
invariant under local u(1) gauge rotations

u(1): ψ(x) → eiα(x)ψ(x). (6)

The gauge symmetry (6) will be manifested in the low-energy
theory of partons and will give rise to an emergent u(1)
gauge field aμ. [We use lower case letters to distinguish the
emergent u(1) gauge symmetry from the physical U (1) charge
symmetry.] We take the partons ψ to transform under time
reversal as

T : ψ → UT ψ†, ψ† → U ∗
T ψ (7)

with U 2
T = −1, i.e.,

T 2ψ(T †)2 = −ψ. (8)

Note that the action of T inverts the charge of the partons
under the u(1) gauge symmetry. Since T is an antiunitary
symmetry, T and u(1) commute, so the total symmetry group
of the parton theory, which includes both the gauge symmetry
and the global T symmetry, is u(1) × T . (Our notation SL×
emphasizes this direct product structure.) Further note that
we can combine a rotation by α in the u(1) group with T to
get an antiunitary symmetry Tα = uαT , which squares to e2iα

when acting on ψ . Thus, while we have nominally chosen the
partons to transform as Kramers doublets under T , this has
no physical consequence and is a pure convenience. The fact
that the time-reversal partners ψ and ψ† have different gauge
charge implies that they lie in different topological sectors of
the u(1) gauge theory and hence cannot be assigned a physical
Kramers parity.

To complete the construction of the SL× state, we imagine
that the partons ψ form a band insulator. The transformations
of ψ under u(1) × T are identical to those of an electronic
system in class AIII, which we will refer to as chiral
topological insulator class. One typically thinks of class
AIII as T -invariant superconductors with a u(1) symmetry,
corresponding to the conservation of the Sz components of
spin. In our setup, the u(1) symmetry is an emergent gauge
symmetry and has no relation to spin conservation. Recall
that noninteracting chiral topological insulators in class AIII
have an integer classification ν ∈ Z [39,40]. The 2D boundary
between the phase with ν �= 0 and the vacuum (ν = 0)
supports |ν| Dirac cones. In the presence of interactions,
the noninteracting phases are known to collapse to a Z8

group [17–19]. Interactions also introduce a single novel phase
absent in the noninteracting classification, bringing the total
classification in class AIII to Z8 × Z2 [18,41].

To build our spin-liquid state, we will place the partons ψ

into a noninteracting band structure with ν = 1. (We give an
example of such a band structure in Appendix A.) Since the
partons are gapped, the resulting u(1) gauge theory is in the
Coulomb phase with a gapless photon aμ. The effective action
of the gauge field aμ is given by

S[aμ] =
∫

d3x dt

(
− 1

4e2
fμνf

μν + θ

32π2
εμνλσ fμνfλσ

)

(9)

with θ = π and fμν = ∂μaν − ∂νaμ. The first term in Eq. (9)
is the Maxwell action with a coupling constant e. The second
term is the topological term generated by integrating out the
partons. Similarly to electrons in an ordinary TI, for partons
in a ν = 1 band structure the coefficient θ = π .

Let us discuss the spectrum of topological excitations in
the SL× state. One type of topological excitations is given
by partons ψ , i.e., electric charges of aμ. The second type
of excitations is given by magnetic monopoles of aμ. The
presence of the topological term in Eq. (9) endows a monopole
with magnetic flux 2πm with an electric charge [42]

q = n + θm

2π
= n + m

2
. (10)
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Here, n is an arbitrary integer which reflects the freedom
of adding n electric charges ψ to a monopole. Thus, the
topologically distinct excitations form a two-dimensional
lattice (q,m) labeled by electric charge q and magnetic charge
m satisfying Eq. (10) [see Fig. 1(a)].

The excitations have the following statistics [10]. A single
charge ψ = (1,0) is a fermion. A single monopole (q,m = 1)
of arbitrary electric charge q is a boson. A general dyon
(q,m) has statistics (−1)(q−m/2)(m+1) with +1 corresponding
to bosonic statistics and −1 to fermionic. In particular, a
neutral double monopole (q = 0, m = 2) is a fermion. Two
dyons (q,m) and (q ′,m′) experience a nontrivial statistical
interaction. Namely, if we place (q ′,m′) at the origin and let
(q,m) move along a closed contour C, (q,m) will accumulate a
statistical phase (qm′ − q ′m)�/2, where � is the solid angle
subtended by C. In addition to the statistical interaction, dyons
also experience a 1/r Coulomb interaction.

As already mentioned, time-reversal symmetry (7) maps
electric charge q → −q. Furthermore, due to the u(1) × T

group structure the magnetic flux is preserved under T : m →
m. Let us next discuss the physical Kramers parity T 2 of the
excitations. Kramers parity can only be assigned to topological
sectors which are left invariant under T . In the present case, this
corresponds to (q = 0,m) with m even. As has been discussed
in Refs. [18,19], the neutral double monopole (q = 0, m =
2) is actually a Kramers doublet fermion. This is required
by the consistency of the theory since (0,2) can be obtained
by fusing the time-reversal partners ( 1

2 ,1) and (− 1
2 ,1). The

presence of a nontrivial statistical interaction between ( 1
2 ,1)

and (− 1
2 ,1) forces their fusion product (0,2) to be a Kramers

doublet fermion [15,26].
Next, let us discuss the surface of SL× phase. Let us imagine

that space is divided into two regions by an interface at z = 0.
We will place our partons ψ into the ν = 1 band structure for
z < 0 and into the trivial ν = 0 band structure for z > 0. The
interface then supports a single gapless Dirac cone of ψ :

S2d =
∫

d2x dt ψ̄cf iγ μ(∂μ − iaμ)ψcf (11)

with ψcf now denoting the surface Dirac fermion. Under T ,
ψcf transforms as

T : ψcf → εψ
†
cf , i → −i (12)

where ε = iσ y and we are using the basis of γ matrices
(γ 0, γ 1, γ 2) = (σy,−iσz, iσx). Again, we stress that this is
different from the T transformation of the electron on the free
Dirac surface of a TI (1):

T : �e → ε�e, i → −i. (13)

The z < 0 region realizes our SL× phase. The z > 0 also
realizes a spin-liquid described by a u(1) gauge theory with
a gapless photon. Let us briefly discuss the properties of the
spin liquid in the z > 0 region. Since here the partons are in a
trivial band structure, the topological angle θ = 0 and the dyon
spectrum is given by (q,m) with q integer and m integer. The
(q,m) dyon has statistics (−1)q(m+1), in particular, all neutral
monopoles are bosons. Time-reversal symmetry again acts as
T : (q,m) → (−q,m), however, the single monopole (0,1) is
now a Kramers singlet.

So far, we have constructed an interface between two u(1)
spin-liquid phases: one with θ = 0 and one with θ = π . The
2D gapless Dirac fermion appearing on the interface (11)
interacts with a 3D gapless photon living on both sides
of the interface. In order to construct an interface between
the spin liquid with θ = π and the vacuum, we need to
drive a confinement transition in the region z > 0. This can
be done by condensing the single neutral monopole (0,1) in the
region z > 0. Since this monopole is a boson, it can condense.
Furthermore, since the monopole is a Kramers singlet the
condensation process preserves the T symmetry. The only
deconfined excitations are (0,m), and since these are multiples
of the condensed monopole (0,1) the resulting phase has no
topologically nontrivial excitations. Hence, after monopole
condensation the z > 0 region realizes the trivial T -invariant
vacuum phase. The Dirac cone on the interface survives the
monopole condensation, however, it now interacts with a gauge
field aμ, which lives only in the z < 0 region.

B. Confinement to a topological insulator

We next describe how to confine the SL× spin-liquid phase
with θ = π described in the previous section to a T -symmetric,
fully gapped insulator of electrons with no intrinsic topological
order. As a first step, we will now need to work in a Hilbert
space which includes the physical charged electron �e which
is a Kramers doublet under time-reversal symmetry.

Let us begin by taking a noninteracting “mixture” of
a trivial band insulator of electrons and the SL× state of
neutral bosons with θ = π constructed in the previous section.
Consider a bound state D of the electron �e and the neutral
double monopole of the spin liquid (q = 0, m = 2). As
we discussed above, (q = 0, m = 2) is a Kramers doublet
fermion. Therefore, D is a Kramers singlet boson, which
can condense preserving T . What are the properties of the
resulting phase? Recall that generally condensation of a dyon
with charges (q,m) gives rise to an analog of a Meissner effect
for the gauge field combination q �b − 2πm�e, with �b = ∇ × �a
the magnetic field of aμ, and �e = ∂t �a − ∇at the electric
field of aμ. All excitations which are sources of this gauge
field combination will be confined, i.e., a dyon (q ′,m′) is
confined if qm′ − mq ′ �= 0 (i.e., only dyons which possess
trivial mutual statistics with (q,m) are deconfined) [43–45].
Now, since the electron has no charge under aμ, our condensing
dyon D still has electric gauge charge q = 0 and magnetic
charge m = 2. Its condensation will gap out the photon giving
rise to the “Meissner” effect �e = 0. Therefore, all excitation
with gauge charge q �= 0 will be confined. Remembering that
q = n + m/2, only excitations with q = 0 and m even are
deconfined. These excitations are multiples of the condensing
dyon D (possibly with electrons �e added on top). Therefore,
the condensed phase has no nontrivial deconfined excitations
and so possesses no intrinsic topological order.

What is the fate of the physical U (1) charge symmetry in
the D-condensed phase? First, all excitations in the Coulomb
phase can be labeled by (q,m; Q), with (q,m) being the
emergent u(1) electric and magnetic quantum numbers coming
from the SL× sector, and Q being the physical U (1) charge
coming from the electron band-insulator sector. Nominally,
D has quantum numbers (q = 0, m = 2; Q = 1). Therefore,
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one might naively think that the D-condensed phase breaks
the U (1) symmetry and is a superfluid. However, this is not
the case. Indeed, one cannot build any local observable (i.e.,
one with q = 0 and m = 0) with nonzero Q out of D. More
physically, recall that the dyons D experience a long-range
1/r interaction. In the D-condensed phase, the dyons D

form a Debye plasma with short-range correlations, so the
resulting state is gapped. This fact is completely insensitive
to D’s carrying a global U (1) charge. So, the D-condensed
phase cannot possibly be a superfluid since a superfluid would
necessarily possess a gapless Goldstone mode; rather, it is
an insulator. Now, let us imagine inserting a gapped double
monopole (0,2) with Q = 0 into the Debye plasma of D’s.
This double monopole will be Debye screened by the D’s; it
will be surrounded by a cloud of D’s and D†’s with a total D

number equal to −1. Now, as each D carries a U (1) charge
Q = 1, the screening cloud has a total electric charge Q = −1.
Therefore, we conclude that a deconfined double monopole
sucks up a physical electric charge −1 in the D-condensed
phase. More generally, the true physical U (1) charge of an
excitation with “nominal” quantum numbers (q,m; Q) in the
D-condensed phase is

QEM = Q − m/2. (14)

Note that since only dyons with even m are deconfined, the
electric charge QEM is always an integer.

Let us now argue that this phase has a response to the
physical electromagnetic field Aμ characterized by θEM = π .
This is most conveniently done via the Witten effect, by
calculating QEM of an inserted monopole of Aμ. Before the
D condensation, we can label all excitations by (q,m; Q,M)
where M now represents the magnetic charge under Aμ.
Since the response of our initial Coulomb phase to Aμ

comes entirely from the trivial electron band insulator, the
U (1) sector is characterized by a θ angle θEM = 0, so Q

and M are both integers. Now, D has quantum numbers
(q = 0, m = 2; Q = 1, M = 0), so its condensation leads to
a Meissner effect for 4π �e − �B, where �B = ∇ × �A is the
magnetic field strength of Aμ. Thus, deconfined excitations
must have 2q = M . In particular, an M = 1 external monopole
of Aμ must carry aμ electric charge q = 1

2 . Since q − m/2 is an
integer, we conclude that the M = 1 external monopole must
bind an odd number m of monopoles of aμ. From Eq. (14),
we conclude that an external M = 1 monopole will bind a
half-odd-integer physical electric charge QEM. This implies
that the D-condensed phase has a response to the external
U (1) gauge field with θEM = π , the same as the EM response
of a noninteracting topological insulator.

By an argument of Ref. [15], a phase of electrons with
no intrinsic topological order and θEM = π is identical to a
noninteracting topological insulator up to an SPT phase of
neutral bosons with T invariance. In Sec. VI, we will give
another viewpoint on why the D-condensed phase must be
identical to a noninteracting TI up to a bosonic SPT phase.
Moreover, by strengthening the argument in Sec. VI, we will
be able to show that the D-condensed phase is continuously
connected to a noninteracting TI with no additional bosonic
SPT [41].

III. SURFACE THEORY QED3

A. Derivation of surface theory from parton construction

Let us now turn to the surface of the D-condensed phase. As
before, we imagine putting partons into a ν = 1 band structure
of class AIII in the region z < 0 and into the trivial ν = 0 band
structure in the region z > 0. The electrons �e are placed into
a trivial band-insulator band structure everywhere in space.
The interface at z = 0 supports a single Dirac cone of partons
ψcf coupled to a bulk u(1) gauge field aμ living on both sides
of the interface [see Eq. (11)]. We drive the z > 0 side of the
interface into a trivial insulating state (vacuum) by condensing
the single monopole (q = 0, m = 1; Q = 0). We condense the
D dyon on the z < 0 side of the interface, driving it into the
topological insulator phase. Both sides of the interface are now
confined and exhibit the Meissner effect �e = 0. The Dirac cone
of partons ψcf on the surface survives the condensation since
the bulk gap to partons ψ persists during the condensation
process. Due to the bulk Meissner effect, the field lines of
the electric field �e cannot penetrate into the bulk and can
only stretch along the surface. On the other hand, a surface
magnetic field bz perpendicular to the interface is allowed;
such a magnetic field gets Debye screened by the condensed
monopoles/dyons on both sides of the interface. Thus, the
gauge field aμ is now confined to live on the surface becoming
a (2+1)-dimensional u(1) gauge field, so the surface theory is
simply given by QED3 with a single flavor of Dirac fermions.

Let us discuss the response of the surface to the U (1) gauge
field Aμ. Imagine that there is a magnetic field bz = ∂xay −
∂yax perpendicular to the surface. As already noted, this
magnetic field will be Debye screened by monopoles/dyons on
the two sides of the interface. On the z > 0 side, the condensed
monopoles (q = 0, m = 1; Q = 0) will form a screening layer
with 2D density ρm = − 1

2π
bz. Since these monopoles carry

no U (1) charge, they do not contribute to the physical
electric charge density. On the z < 0 side, the condensed D

dyons [quantum numbers (q = 0, m = 2; Q = 1)] will form
a screening layer with 2D density ρD = 1

4π
bz. Since each D

has electric charge Q = 1, this screening layer creates a U (1)
charge density ρEM = 1

4π
bz.

Similarly, imagine that an electric field ei (i = x,y) along
the interface is present. This electric field must be Meissner
screened by monopole currents on both sides of the interface
(analogous to how a magnetic field along the surface of a
superconductor is Meissner screened by electric currents). On
the z > 0 side of the interface, this results in a monopole
current jm

i = 1
2π

εij ej . Since these monopoles are neutral, the
monopole current does not contribute to the U (1) current. On
the z < 0 side of the interface, the electric field is screened
by a current of D dyons jD

i = − 1
4π

εij ej , which translates into
a U (1) electric current jEM

i = − 1
4π

εij ej . Thus, we conclude
that the surface gauge field aμ induces a U (1) current j

μ

EM =
1

4π
εμνλ∂νaλ, and the effective action of the surface theory in

the presence of an external U (1) gauge field Aμ is

Lcf = ψ̄cf iγ μ(∂μ − iaμ)ψcf − 1

2(2π )
εμνλAμ∂νaλ. (15)

We immediately see that dynamical instantons of aμ are
prohibited in the surface theory as they do not preserve the
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U (1) charge. However, instantons of flux φ = 2πm, with m

even, do correspond to physical operators with electric charge
QEM = m/2 in the surface theory. In fact, a flux 4π instanton
is identified with the electron insertion operator �e. To see
this, imagine we create an electron �e on the surface. Our
parton construction had �e gapped everywhere (including on
the boundary). However, �e can decay into gapless boundary
degrees of freedom as follows: it can grab a double monopole
from the z > 0 side of the interface (where monopoles are
condensed) and tunnel across the interface to the z < 0 region
vanishing into the condensate of D = �e × (0,2). An aμ flux
of 4π and U (1) charge QEM = 1 is created on the surface in the
process. Thus, an electron creation operator �e corresponds to
a flux 4π instanton in the surface theory.

Note that single (flux 2π ) instanton events do not corre-
spond to physical operators in the surface theory. Indeed, a flux
2π instanton would correspond to a single monopole tunneling
across the z = 0 interface. But, single monopoles are confined
in the D-condensed region, so single instanton events are not
local operators in the surface theory.

A complementary picture to the above discussion can
be obtained by studying instanton events directly in surface
QED3 theory. Let us imagine that the TI phase obtained by D

condensation occupies a solid ball of radius R and the trivial
vacuum occupies the region outside this ball. The surface
theory then lives on a sphere S2. A strength m instanton event
in the surface theory will create a flux 2πm on the surface.
For simplicity, imagine this flux spreads uniformly across the
surface. The single-particle spectrum of a Dirac fermion on S2

in the background of a uniform flux 2πm possesses N0 = m

zero modes. Recall that time-reversal symmetry inverts the
u(1) charge density Tρ(x)T † = −ρ(x). This implies that the
total u(1) charge of a state with all the negative energy modes
filled and all the zero and positive energy modes empty is
q = −N0/2 = −m/2 [46]. On a compact space such as S2 the
total u(1) gauge charge q must be zero. Therefore, we must
fill m/2 out of m zero energy modes. If m = 1, there is only
a single zero-energy level, so we cannot half-fill it: the state
with the zero mode empty has q = − 1

2 and the state with the
zero mode filled has q = 1

2 . Therefore, the flux 2π instanton is
not a local operator in QED3. However, if m = 2, we have two
zero modes: we can fill either one or the other, obtaining two
degenerate q = 0 states. In fact, these states transform in the
j = 1

2 representation of the rotation group on the sphere. Since
the surface theory QED3 is Lorentz invariant, the fact that
we have changed the spin of the system by 1

2 implies that we
have added a fermion to the system. This is consistent with
our identification of the flux 4π instanton operator with the
electron �e.

It is often stated that a single Dirac fermion in 2 + 1
dimensions suffers from the parity anomaly, namely, it cannot
be consistently coupled to a u(1) gauge field preserving the
time-reversal symmetry [29]. Our surface theory (15) has a dy-
namical u(1) gauge field aμ, which is confined to live just on the
surface (we switch off the background electromagnetic field
Aμ for now). Thus, the standard argument for the evasion of the
anomaly via the (3 + 1)-dimensional bulk does not directly ap-
ply in this case. Rather, the anomaly is resolved by modifying
the compactification of the gauge field aμ in the surface theory.
This important point is discussed in detail in Appendix B.

TABLE I. Vortex defects on the surface of a topological insulator.
The vortex statistics are described by Ising × U (1)−8 theory and the
table lists the topological spins of vortices. The column index is
the flux k hc

2e
, which coincides with the U (1)−8 charge and the row

index is the Ising charge. Only ψ0 has a well-defined Kramers parity
T 2 = −1. The fermionic vortex ψ4 has trivial mutual statistics with
all other vortices.

k → 0 1 2 3 4 5 6 7

I 1 −i 1 −i
σ 1 −1 −1 1
ψ −1 i −1 i

B. Heuristic derivation of dual surface theory

We now give a more heuristic derivation of the dual surface
QED3 theory, which starts directly with the Dirac cone of
electrons (1) and does not rely on the bulk construction in
Sec. II.

Consider the TI surface state (single Dirac cone) with U (1)
charge and time-reversal symmetry U (1)�T . For simplicity,
we assume that the chemical potential is at the Dirac point.
Now, consider surface superconductivity and the statistics of
vortices induced in the superconductor. This was studied in
Refs. [26,27] where the vortex theory in Table I was derived.
The vortex statistics can be described by a topological quantum
field theory (TQFT) Ising × U (1)−8. The anyons in this TQFT
are labeled by the Ising charge {I,σ,ψ} and a U (1)−8 charge
k, which will be noted as a subscript on the Ising charge. The
U (1)−8 charge coincides with the vorticity (the hc/2e vortex
is the unit vortex). Not all sectors of Ising × U (1)−8 TQFT are
realized by vortices: vortices with odd vorticity always have an
Ising charge σ , and vortices with even vorticity have an Ising
charge I or ψ . Time-reversal symmetry reverses the vorticity.

Note that the Ising × U (1)−8 TQFT is the same as one
describing the T-Pfaffian surface topological order of a TI
(Table II), however, the action of time-reversal symmetry on
the U (1)−8 charge k is different. In a T-Pfaffian state k is
preserved by T , while in the vortex theory it is reversed. A
further difference is that anyons in the T-Pfaffian state also
carry charge k/4 under the physical U (1)EM global symmetry.
Let us define the CT-Pfaffian to be a topological order of

TABLE II. T-Pfaffianη topological orders with η = ±1. The top
table lists the topological spins of anyons; the column and row indices
denote the U (1)−8 charge and the Ising charge, respectively. The
physical electric charge of anyons QEM = k/4 with k the U (1)−8

charge. Time reversal maps k to itself. The bottom row lists the
T 2 assignment of anyons (where defined). The T 2 assignment is
independent of the Ising charge. ψ4 is the physical electron. The
CT-Pfaffian topological order has identical anyon content and charge
assignments, but T maps k → −k and ψ0 has T 2 = −1.

k → 0 1 2 3 4 5 6 7

I 1 −i 1 −i
σ 1 −1 −1 1
ψ −1 i −1 i
T2 1 η −η −1 −η η
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electrons with U (1) × T global symmetry with the same anyon
content and U (1) charge assignments as the T-Pfaffian, but
reversed action of time-reversal symmetry on the U (1)−8

charge. One may suspect that the CT-Pfaffian is the surface
topological order of the ν = 1 class AIII chiral topological
insulator. Indeed, precisely this proposal has been made in
Ref. [17] (modulo a bosonic SPT phase, which we will return
to). Note that the fermion ψ4 in the T-Pfaffian and CT-Pfaffian
states has trivial mutual statistics with all other anyons and is
identified with the physical electron.

Let us come back to the vortices on the surface of a TI.
To encode logarithmic interactions between vortices we can
take them to carry gauge charge of an emergent u(1) gauge
field aμ [in addition to charges in the Ising × U (1)−8 TQFT].
For notational convenience, let us normalize the charge of a
unit vortex under aμ to be 1

4 . Let us for a moment ignore the
fluctuations of aμ, and treat the vorticity as a charge under a
global u(1) symmetry. Then, we can regard the vortex theory
as a topological order CT-Pfaffian with u(1) × T symmetry,
which is the surface state of the ν = 1 chiral TI in class AIII.
In this identification, the quadruple vortex ψ4 is identified with
the electron of the class AIII TI.

With this connection in hand, we can discuss other possible
surface states of the class AIII TI. The simplest one of course
is the single Dirac cone, which will now be composed of
the ψ4 fermions. Reinstating the fact that the u(1) charge is
actually gauge charge implies that the fermions are coupled
to a gauge field as described by the Lagrangian (2). This line
of reasoning provides a physical picture of the dual fermionic
field ψcf = ψ4, i.e., it is the strength 4 fermionic vortex on the
surface of a topological insulator. Also, if one prefers to view
the vortex as a boson, then this is a bound state of a 4 hc

2e
vortex

and a neutral Bogoliubov quasiparticle. Due to its vorticity, it
is minimally coupled to a gauge field a. Since each electron
appears as a flux of 4π to a strength 4 superconductor vortex
(2hc/e vortex), we have (∂xay − ∂yax) = 4πρe, the electron
density. The terminology “composite fermion” to describe the
fermionic vortex ψ4 should be clear now. Recall, in the original
definition of composite fermions each electron is attached
to a pair of hc/e vortices, as in ψ4. While this is usually
discussed in the context of quantum Hall states [31,32], the
present discussion shows that this duality is also relevant to
describe the surface of a topological insulator.

One may think that the Dirac theory of composite fermions
represents a different gapless surface state from the original
Dirac model (1), however, the simplest conclusion that the two
models are dynamically equivalent also remains an intriguing
possibility as discussed below.

C. Weak versus strong form of the duality

So far, we have ignored the issue of the dynamics of the
surface QED3 theory. Instead, our discussion was focused
on issues of symmetries and quantum numbers of operators.
In principle, the surface theory (15) can be perturbed by
an arbitrary local symmetry-preserving operator. This gives
rise to a large landscape of possible surface phases, some of
which will be discussed in Sec. IV. Since the D-condensed
phase in our bulk construction is continuously connected to
a noninteracting TI, one of these surface phases must be the

gapless (ungauged) free Dirac cone of electrons. Thus, the
Dirac cone is dual to QED3 in the sense of duality of Hilbert
spaces, operators, and symmetries.

One can ask whether a stronger version of duality holds,
namely, is weakly coupled QED3 dual in the infra-red to the
free Dirac cone. By weakly coupled QED3 we mean the theory

LQED3
= ψ̄cf iγ μ(∂μ − iaμ)ψcf − 1

4g2
fμνf

μν (16)

with the coupling constant g2 much smaller than the UV
cutoff �UV. The theory (16) is well defined and analytically
controlled in the UV (i.e., for energy scales g2 � ω � �UV)
where it reduces to a Dirac fermion ψcf interacting weakly
with a massless photon aμ. The fate of the theory in the IR is
not known. One can envision three different scenarios, which
we list here in the order of increasing exoticity:

(i) The theory (16) spontaneously breaks time-reversal
symmetry in the infrared, dynamically generating a fermion
mass term mψ̄cf ψcf . The IR theory is then a trivial gapped
state with no intrinsic topological order (see Sec. IV B 2 and
Appendix B). It is identical to the phase obtained from the
free Dirac cone by spontaneously breaking T symmetry and
generating a mass m�̄e�e. This is the most conventional
scenario. In fact, the standard (although unproven) expectation
is that noncompact QED3 with a small number of fermion
flavors Nf and a symmetry group SU (Nf ) does generate a
fermion mass in the IR. However, as we review in Appendix B,
conventional (2+1)-dimensional QED3 with the standard large
gauge transformations is only consistent with T symmetry for
even Nf . For odd Nf , one must add a Chern-Simons term
with a half-odd-integer level k to the massless Dirac theory
in order to preserve the standard large gauge transformations
(see Appendix B). In this case, the T symmetry is absent
so a fermion mass term is allowed by symmetry and is,
in fact, generated already in perturbation theory. Now, our
Nf = 1 surface theory has no Chern-Simons term due to
the modification of allowed large gauge transformations.
Therefore, it does not fit into the conventional folklore and
perhaps can remain gapless in the IR. This brings us to the
other two scenarios.

(ii) Weakly coupled QED3 with Nf = 1 flows in the
infrared to a free Dirac theory of ψe with Nf = 1. This would
be a “strong” version of particle-vortex duality for fermions.
Such a strong version of duality is believed to hold for bosons
(we review the status of the bosonic duality in Appendix C).

(iii) Weakly coupled QED3 with Nf = 1 flows in the
infrared to a CFT distinct from a free Dirac theory.

At present, we can make no statement regarding which of
these scenarios is realized.

IV. DUAL DESCRIPTIONS OF THE TI SURFACE PHASES

Let us describe how the different phases of the topological
insulator surface are realized in the dual fermion description.
Let us begin by considering symmetry-preserving surface
states, and then discuss those that break symmetry. This
discussion has significant overlap with a previous paper by
Son [37], with some relabeling of time-reversal and particle-
hole symmetries, and the physical context. Also, Ref. [37]
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adopts a minimal coupling of dual fermions to gauge field
with twice the charge used in this paper.

A. Surface phases preserving all symmetries

1. Fermi liquid and Halperin-Lee-Read state of dual fermions

Consider the situation when we preserve physical sym-
metries, charge conservation, and time reversal, with the
metallic surface state of the topological insulator. Typically,
the metallic surface state will be at finite filling, implying
the chemical potential is away from the Dirac node. How
is this Fermi liquid state described in the dual language?
The finite chemical potential on the electrons implies a finite
magnetic field on the composite fermions via the equation
(∂xay − ∂yax) = 4πρe. The dual fermions are at neutrality as
a consequence of physical time-reversal symmetry, so they
will be at half-filling of the zeroth Landau level. Fermions in a
magnetic field which fill half a Landau level can be in a variety
of states. One possibility is the “composite Fermi liquid” or
Halperin-Lee-Read (HLR) [31] state. Here, however, since the
fermions are themselves composite fermions, performing the
duality twice leads us back to the original electrons. This is
nothing but the original Fermi liquid of electrons.

2. Surface topological order and superconductivity
of dual fermions

Another possible way to preserve charge U (1) and T on the
TI surface is through surface topological order. Two different
symmetric topologically ordered surface states of a TI have
been identified. The first is the Pfaffian-antisemion state, with
12 particles, and the other is the T-Pfaffian state, with 6
particles (see Table II). While the Pfaffian-antisemion state
can be derived by a vortex condensation argument starting
from the single Dirac cone surface state of a topological
insulator, the T-Pfaffian cannot be analogously derived (see,
however, Ref. [36]). Rather, it is argued to be a consistent
surface termination that captures all relevant anomalies of the
TI surface. Here, we are able to derive this surface topological
order directly from the duality (2). To do so, we simply
consider the composite fermions to be in the Higgs phase,
where they have paired and condensed 〈ψcf ↑ψcf ↓〉 �= 0. This
gaps out the photon aμ, and the vortices in this phase trap
quantized gauge flux

∫
d2x(∂xay − ∂yax) = π . This simply

means that the unit vortex carries electric charge QEM = 1
4

[since from (2) a flux 2π of a corresponds to charge 1
2 ].

The statistics of vortices in this superfluid have previously
been worked out [18,19], and they precisely correspond to
the T-Pfaffian state, with the same transformation properties
under time reversal as proposed in Refs. [25,28]! In fact,
the T-Pfaffian appears in two varieties, T-Pfaffian± which
differ in the transformation properties under time reversal (see
Table II). While one of them corresponds to the topological
insulator surface, the other differs from it by addition of the
eT mT SPT state of neutral bosons. The eT mT phase admits
a toric code surface state where both the e and m anyons
are Kramers doublets. Previously, the exact correspondence
was unknown. Now, pair condensation of composite fermions
in the dual theory (2), in fact, gives rise to the T-Pfaffian+
topological order [19]. Thus, the duality allows to resolve the

long-standing T-Pfaffian+/T-Pfaffian− puzzle. We, however,
remind the reader that to establish the duality (2) we had to
argue that the bulk phase constructed in Sec. II is continuously
connected to the noninteracting TI and does not differ from it
by an eT mT state. The details of this argument will be given
in Sec. VI and in Ref. [41].

B. Breaking symmetries

Now, we consider surface phases that break symmetry.

1. Surface superfluid and dual surface topological order

When electrons pair and condense to form a surface
superfluid, we have noted that surface vortices have the
same statistics and transformation properties under T as the
CT-Pfaffian topological order. As discussed in Sec. III B, this
can simply be interpreted as the topological order of composite
fermions ψcf of the dual surface theory. An additional feature
here is the coupling to the gauge field. When all gauge charges
are gapped, the photon is free to propagate, which is just
the dual description of the Goldstone mode of the electronic
superfluid.

A different way to motivate this connection is the following.
Consider the metallic surface state of electrons at finite
chemical potential. A natural instability of this Fermi liquid
is the BCS instability towards pairing. In the dual description,
this corresponds to a finite effective magnetic field applied to
a half-filled Landau level of ψcf . Natural consequences are
various non-Abelian topological orders such as Pfaffian, anti-
Pfaffian, etc. These, however, break particle-hole symmetry,
which is just the time-reversal symmetry of the electrons. A
topological order that preserves particle-hole symmetry is the
CT-Pfaffian, which corresponds to the surface superfluid of
electrons.

2. Breaking time-reversal symmetry

Consider breaking time-reversal symmetry on the TI sur-
face while maintaining the chemical potential at the electronic
Dirac node. This induces a mass term �̄e�e leading to an
insulating surface with surface Hall conductance σxy = 1

2
e2

h
.

The effective response theory on the surface is given by

L = − 1

2(4π )
εμνλAμ∂νAλ. (17)

The dual composite fermions also acquire a mass gap due to
breaking of T symmetry via the mass term ψ̄cf ψcf . Integrating
out the single Dirac cone of ψcf leads to the following effective
action:

L = 1

2(4π )
εμνλaμ∂νaλ − 1

2(2π )
εμνλAμ∂νaλ. (18)

Integrating out the dynamical gauge field aμ then produces
the same Lagrangian as Eq. (17). Other important aspects of
the theory (18), such as statistics of excitations and ground-
state degeneracy on a torus, are discussed in Appendix B,
and are shown to precisely coincide with those in the trivial
insulating T -broken surface phase.
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V. PARTON THEORIES WITH INDEX ν �= 1

We have seen in Sec. II how to obtain a T -invariant
electronic insulator with θEM = π by confining the spin-liquid
phase SL×. This spin-liquid phase was obtained through a par-
ton construction, with partons ψ placed into a noninteracting
ν = 1 band structure of class AIII. As we already mentioned,
noninteracting electron phases in class AIII have an integer
classification ν ∈ Z, which collapses to a Z8 group upon
adding interactions. We now ask what happens if we place
our partons into a noninteracting band structure with ν �= 1
and ν odd?

One can quickly see that the properties of the electronic
ν = 1 phase that we used in our bulk construction in Sec. II
are shared by all phases with ν odd. In particular, they all have
a response to a u(1) gauge field characterized by θ = π . The
quantum numbers of dyons in the bosonic spin liquids SLν

×
based on a parton band structure with ν odd will, therefore,
be identical. Consequently, the associated confined phases
obtained by condensing the D dyon �e × (0,2) will all have
a θEM = π response to the U (1) gauge field Aμ. The resulting
surface theories are, however, different, consisting of Nf = |ν|
flavors of gapless Dirac fermions interacting with a u(1) gauge
field aμ.

We now discuss whether the bulk SLν
× phases with different

ν and the associated confined phases are, in fact, different. First
of all, due to the collapse of the noninteracting classification,
the bulk phase only depends on ν mod 8. Furthermore, we
claim that once the u(1) symmetry of class AIII is gauged,
ν = 1 and ν = −1 ∼ 7 phases are identical. Recall that when
the u(1) symmetry is a global symmetry of an electronic
theory, ν = 1 and ν = −1 phases differ in the action of the
T symmetry on a single monopole (q = 1

2 , m = 1). Under
T , ( 1

2 ,1) ↔ (− 1
2 ,1). In a theory of electrons, these two

time-reversal partners differ by a local object, the electron
(1,0), and one can, therefore, assign a T 2 value to them. In
the ν = 1 state, ( 1

2 ,1) has T 2 = +i and (− 1
2 ,1) has T 2 = −i

(with the choice T 2 = −1 when acting on the electron). In
the ν = −1 state the T 2 assignments of these monopoles are
reversed [19]. However, once we treat the u(1) symmetry
as a gauge symmetry, the parton ψ = (1,0) is no longer a
local object. Therefore, the dyons ( 1

2 ,1) and (− 1
2 ,1) belong to

different topological sectors and one cannot assign a value of
T 2 to them. Similarly, ν = 3 and ν = −3 ∼ 5 phases collapse
after gauging. [For a more formal proof that phases ν and −ν

coincide after gauging the u(1) symmetry, see Ref. [41].]
It remains to see whether SLν=1

× and SLν=5
× bulk phases are

distinct. In fact, they are. Recall that before the u(1) symmetry
is gauged, ν = 1 and 5 phases differ by the eT mT SPT
phase of neutral bosons [18,19]. But, neutral bosons are not
affected by the gauging of u(1) symmetry. Therefore, SLν=1

×
and SLν=5

× spin-liquid phases also differ by an eT mT phase
of neutral bosons. Likewise, the associated confined phases
also only differ by an eT mT phase. At the level of confined
phases, this can also be seen by considering the symmetric
topological surface states in the ν = 1 and 5 constructions.
As we discussed in Sec. IV, these states can be obtained by
pair condensing the composite fermions ψcf in the surface
QED3 theory. In the case of both ν = 1 and 5, the resulting
intrinsic topological order is given by the T-Pfaffian, however,

ν = 1 and 5 differ in the action of time-reversal symmetry
on the anyons of T-Pfaffian. In the ν = 1 case, the charge
e/4 anyon σ1 is a Kramers singlet and the associated state
is known as T-Pfaffian+. In the ν = 5 case, the charge e/4
anyon is a Kramers doublet and the associated state is known
as T-Pfaffian− (see Table II). These two T-Pfaffian states are
known to differ precisely by the eT mT surface topological
order (i.e., T-Pfaffian+ + eT mT can be driven via a surface
phase transition to T-Pfaffian).

As we already mentioned, since the confined phases have
θEM = π they differ from a noninteracting TI at most by
an SPT phase of neutral bosons with T invariance [15].
Such T -invariant boson SPT phases have a Z2

2 classifica-
tion [9,14,24,47]. The two Z2 root phases are best understood
via their symmetric topologically ordered surface states. One
of the root phases admits the aforementioned eT mT surface
topological order. The other root phase admits a surface
topological order with anyons {1,f1,f2,f3}, where f1, f2,
f3 are fermions and the fusion rules are the same as in a
toric code. This phase (and the above topological order) is
abbreviated as fff . Thus, our confined phases are identical to
a noninteracting electron TI up to these bosonic SPT phases.
In fact, one can rule out the scenario where the confined phases
differ from the ordinary TI by the fff state (or fff + eT mT ).
Indeed, if one strongly breaks the T symmetry on the surface of
an fff state, one drives the surface into a topologically trivial
phase with thermal Hall response κxy/T = 4 and electric Hall
response σxy/T = 0. However, the trivial T -broken surface
phase of an ordinary TI has σxy = κxy/T = 1

2 . Similarly, if we
break T strongly starting from the T-Pfaffian± surface states
of ν = 1, ν = 5 confined phases, we obtain σxy = κxy/T = 1

2 .
Strictly 2D phases of fermions with no intrinsic topological
order always have σxy − κxy/T ≡ 0 (mod 8). Therefore, our
ν = 1 and 5 confined phases differ from the noninteracting TI
at most by the eT mT phase. Since ν = 1 and 5 themselves
differ by the eT mT phase, we conclude that one of them
is continuously connected to the TI. By strengthening the
arguments presented in Sec. VI, one can show that it is actually
the ν = 1 phase (surface topological order T-Pfaffian+), which
corresponds to the ordinary TI [41].

From the above discussion, we obtain a family of novel
surface theories for the ordinary TI. Since all ν’s of the form
ν = 8k ± 1 give rise to the same bulk phase, QED3 with
Nf = 8k ± 1 flavors provides a description of the TI surface.
Let us start with the weakly coupled QED3 in the UV and
ask about its fate in the IR. If one considers the SU (Nf )
invariant situation, in the limit Nf → ∞ the IR theory is a
CFT. This CFT is under complete theoretical control and one
can systematically compute scaling dimensions of operators
in powers of 1/Nf . For instance, the T -odd “mass” operator
ψ̄cf ψcf has scaling dimension �ψ̄ψ ≈ 2 + 128

3π2Nf
[48]. The

flux 4π instanton operator corresponding to the physical
electron �e has scaling dimension ��e

≈ 0.673Nf [46].
Clearly, the CFTs with large Nf are distinct from a free Dirac
cone. Furthermore, these CFTs are stable to SU (Nf )-breaking
velocity anisotropy terms [48,49] and, therefore, give rise to
a family of stable novel surface phases of a TI. The strong
version of particle-vortex duality discussed in Sec. III C would
require that when Nf = 1 the IR CFT becomes a free Dirac
cone.
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VI. BULK DUALITY

In Sec. II, we have constructed a (3+1)D SPT phase of elec-
trons with symmetry U (1) � T and electromagnetic response
with θEM = π . As we already mentioned, by general arguments
of Ref. [15] this phase can differ from the noninteracting TI at
most by a bosonic SPT phase with T symmetry. We now give a
different argument for this. In the process, we will demonstrate
that the particle-vortex duality of (2+1)-dimensional Dirac
fermions can be understood as a descendant of electromagnetic
duality of the (3+1)-dimensional u(1) gauge theory.

Our construction in Sec. II started with a T -symmetric
spin-liquid phase of neutral bosons SLν=1

× . This phase was
obtained by using the parton decomposition (5), assigning
partons T transformations (7) resulting in an overall symmetry
group u(1) × T , and then placing the partons into a ν = 1 band
structure of class AIII. Now, consider a (seemingly) different
T -symmetric spin-liquid phase of neutral bosons obtained
through the decomposition

B = ψ̃†�̃ψ̃ (19)

with ψ̃ a fermionic parton. The decomposition again has a
ũ(1) gauge symmetry

ũ(1): ψ̃(x) → eiα(x)ψ̃(x), (20)

which will give rise to an emergent gauge field ãμ. (We use
the tilde superscript to distinguish the present construction
from the one in Sec. II.) We assign the parton ψ̃ the following
transformation properties under T :

T : ψ̃ → ŨT ψ̃ (21)

with ŨT Ũ ∗
T = −1, so that T 2ψ̃(T †)2 = −ψ̃ . Since now T

does not change the ũ(1) charge of ψ̃ , ψ̃ is a true Kramers
doublet. The time-reversal symmetry and the gauge symmetry
now do not commute: if ũα is a gauge rotation by a phase
α, T ũαT † = ũ−α , so the overall symmetry group is ũ(1) � T .
This symmetry group is the same as for familiar topological
insulators in class AII. To complete the construction of the
spin-liquid phase, we place the partons ψ̃ into a noninteracting
TI band structure. We label the resulting spin liquid SL�.

We will now argue that the two states SL� and SLν=1
× ,

in fact, belong to the same phase. Let us first discuss the
excitations of the SL� state. Integrating the partons out, we
obtain an effective action for ãμ,

S[ãμ] =
∫

d3x dt

(
− 1

4ẽ2
f̃μνf̃

μν + θ

32π2
εμνλσ f̃μνf̃λσ

)

(22)

with θ = π and f̃μν = ∂μãν − ∂νãμ. There is again a topo-
logical term in the effective action with θ = π . Thus, the
spectrum of dyon excitations can again be labeled by electric
and magnetic charges (q̃,m̃) with m̃ integers and q̃ − m̃/2
integers. As in the SL× phase, the self-statistics of dyons
is (−1)(q̃−m̃/2)(m̃+1). Two dyons (q̃,m̃) and (q̃ ′,m̃′) experi-
ence the usual statistical interaction, with a statistical phase
exp [i(q̃m̃′ − q̃ ′m̃)�/2], as well as a 1/r Coulomb interaction.

Under time reversal, T : (q̃,m̃) → (q̃,−m̃). Only excita-
tions whose topological sector is not modified by T can be
assigned a Kramers parity. In the present case, these are the

pure-charge excitations (q,0). The single parton ψ̃ = (1,0) is
(by construction) a Kramers doublet.

In order to compare the two spin-liquid phases SLν=1
× and

SL� it is convenient to choose the following basis for the
lattice of dyon excitations. Starting with the SL× case, let us
choose as a basis the two dyons: d+ = ( 1

2 ,1) and d− = (− 1
2 ,1).

These dyons are both bosons, and have a nontrivial mutual
statistical interaction: d+ sees d− as a charge (1,0) would
see a monopole (0,1) at θ = 0. Under T : d+ ↔ d−. These
time-reversal partners fuse to a double monopole (0,2), which
is a Kramers doublet fermion as is required by the presence of
a nontrivial statistical interaction between them. Decomposing
a general dyon as D = d

n+
+ d

n−
− , two dyons with quantum

numbers (n+,n−) and (n′
+,n′

−) have a static interaction

E = 1

4πr

(
e2qq ′ + (2π )2

e2
mm′

)

= 1

4πr

(
e2

4
(n+ − n−)(n′

+ − n′
−)

+ (2π )2

e2
(n+ + n−)(n′

+ + n′
−)

)
. (23)

In the SL� case, let us choose a different dyon basis:
d̃+ = ( 1

2 ,−1) and d̃− = ( 1
2 ,1). Again, these dyons are both

bosons and have a nontrivial mutual statistical interaction: d̃+
sees d̃− as a charge sees a monopole at θ = 0. Furthermore,
under T : d̃+ ↔ d̃− and these two time-reversal partners fuse
to a single charge (1,0), which is a Kramers doublet fermion.
Decomposing a general dyon D̃ = d̃

ñ+
+ d̃

ñ−
− , two dyons with

quantum numbers (ñ+,ñ−) and (ñ′
+,ñ′

−) have a static interac-
tion

E = 1

4πr

(
ẽ2q̃q̃ ′ + (2π )2

ẽ2
m̃m̃′

)

= 1

4πr

(
ẽ2

4
(ñ+ + ñ−)(ñ′

+ + ñ′
−)

+ (2π )2

ẽ2
(ñ+ − ñ−)(ñ′

+ − ñ′
−)

)
. (24)

We see that the properties of excitations in the u(1) × T

case and in the ũ(1) � T case are the same if we identify
d+ ∼ d̃+, d− ∼ d̃−, and e = 4π

ẽ
. In fact, this duality is just

an element of the general SL(2,Z) duality of the u(1) gauge
theory [43,44,50,51]. The only nontrivial fact is that this
element of the duality preserves the time-reversal symmetry.

Based on the above discussion, one is tempted to conclude
that the two spin liquids SLν=1

× and SL�, in fact, belong to the
same phase. One caveat is that, in principle, these two phases
could differ by a bosonic SPT phase with T symmetry (i.e.,
eT mT phase or fff phase). Indeed, an “addition” of such
an SPT phase will not alter the properties of the excitations
charged under the gauge symmetry. In fact, as discussed in
Sec. V, the SLν=5

× phase based on a ν = 5 band structure of
partons ψ differs from the SLν=1

× phase precisely by an eT mT

phase. A priori, it is not clear if SL� is dual to SLν=1
× or SLν=5

× .
In Ref. [41], we argue that the duality is, in fact, between SL�

and SLν=1
× . We will briefly summarize the strategy for showing

this in Sec. VI A.
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Having established the duality between two spin-liquid
phases, we proceed to confine these phases and obtain a
duality between SPT phases of electrons. To do so, imagine
adding a trivial band insulator of electrons to each of
the spin-liquid phases. In the SL� construction, condense the
bound state of the physical electron �e and the single charge
(1,0) = d̃+d̃−, i.e., the single fermionic parton ψ̃ . This bound
state is a Kramers singlet boson, so its condensation does
not break the T symmetry. The effect of the condensation is to
Higgs the dynamical gauge field, effectively ungauging the TI.
Indeed, once �eψ̃ is condensed, the parton ψ̃ and the electron
�

†
e become identified, so the resulting phase is continuously

connected to a noninteracting TI. Now, in the dual SLν=1
×

description, the single charge (1,0) = ψ̃ = d̃+d̃− corresponds
to the double monopole (0,2) = d+d−. Hence, condensing
�eψ̃ in the SL� construction is equivalent to condensing
the dyon D = �e × (0,2) in the SLν=1

× construction, which
is precisely the confinement transition discussed in Sec. II.
We, therefore, conclude that the state obtained by confining
the SLν=1

× spin liquid is continuously connected to a noninter-
acting TI.

A. Fixing the eT mT factor in the duality

We would like to show that SL� and SLν=1
× spin liquids are

identical as T -symmetric bosonic phases; in particular, that
they do not differ by either the eT mT or the fff phase.

Typically, to detect an SPT phase with a unitary symmetry
G using bulk probes only we must “weakly gauge” G,
effectively studying the response of the bulk SPT to fluxes
of G. In the case when the symmetry G is the time-
reversal symmetry it has been suggested that the equivalent
of “weakly gauging” the symmetry is placing the system on a
nonorientable manifold [14,47,52]. For instance, the partition
function of the eT mT phase on the nonorientable manifold
RP4 is equal to −1 [14,47]. Thus, we can detect whether two
phases differ by the eT mT phase by comparing their partition
functions on RP4. Similarly, the partition function of the fff

phase on an arbitrary oriented manifold is given by (−1)σ (M),
where σ (M) is the signature of the manifold M [24,47,53].
Thus, we can detect whether two phases differ by the fff

phase by comparing their partition functions on CP2, which has
signature σ (CP2) = 1. In Ref. [41], we show that the partition
functions of SL� and SLν=1

× spin liquids are equal on both RP4

and CP2, provided that the coupling constants of the two gauge
theories are related by e = 4π

ẽ
. This supports the proclaimed

duality.

VII. DUALITY, DIRAC COMPOSITE FERMIONS,
AND THE HALF-FILLED LANDAU LEVEL

Thus far we have focused on the dual description of
the topological insulator surface, which is a gauged chiral
topological insulator surface. Indeed, this was appropriate to
study the strongly interacting surface phases of the topological
insulator. However, given the bulk duality in Sec. VI, one can
equally well run the connection in reverse, and establish a dual
description for the chiral topological insulator surface, which
is now given by a gauged TI surface. What is the physical
relevance of this connection? Although chiral TIs may not

be naturally realized in electronic systems, it turns out that
the half-filled Landau level of a two-dimensional electron
gas (2DEG) can effectively be considered equivalent to the
surface of a chiral topological insulator (with ν = 1). This
can be readily seen by studying the particle-hole symmetry of
the half-filled Landau level and relating it to the particle-hole
symmetry of chiral TI surface.

Particle-hole symmetry of the half-filled Landau level.
Consider a purely 2D nonrelativistic electron in a uniform
magnetic field: HL = ( �p − �A)2/2m, where a Landau level
spectrum results. Consider electrons partially filling the lowest
Landau level (LLL) at a fractional filling 0 � f � 1, and
define a Hilbert space where all higher Landau levels are
projected out (formally m → 0). The resulting problem has
a particle-hole symmetry, where one can either consider
electrons or holes partially filling the Landau level. Formally,
this is a combination of charge conjugation C and time
reversal T , where the first transformation exchanges electron
creation and annihilation operators cr ↔ c

†
r , while the second

antiunitary operator involves complex conjugation. If we
choose a basis φi(r) for the orbitals in the LLL, then the
operators that create, c

†
i , and destroy, ci , LLL states are

exchanged:

ci =
∫

r

φ∗
i (r)cr

C−→
∫

r

φ∗
i (r)c†r

T−→
∫

r

φi(r)c†r = c
†
i . (25)

Since the kinetic energy is quenched, the Hamiltonian only
contains interaction terms. If we restrict to two-body inter-
actions, after projection to the LLL the system is invariant
under particle-hole symmetry. Indeed, if δρ(r) represents
the density deviation in the LL from half-filling [δρ(r) =
ρ(r) − 1

2
1

2πl2
B

], then under particle hole δρ(r) → −δρ(r).

Two-body interactions Hint = ∫
r1,r2

V (r1,r2)δρ(r1)δρ(r2) are
therefore invariant. Furthermore, the filling f → 1 − f , so
particle-hole symmetry applies to the half-filled Landau level
f = 1

2 . Therefore, Hint , when projected into the LLL at
half-filling, admits a particle-hole symmetry. Furthermore, we
will see that this coincides with the particle-hole symmetry of
the surface state of the ν = 1 chiral TI.

Connection to ν = 1 chiral TI. The surface state of ν = 1
cTI is usually taken to be a single Dirac cone �e [Eq. (1)] with
particle-hole symmetry acting as

CT : �e → ε�†
e , i → −i. (26)

In our previous discussion of the cTI, we referred to this
antiunitary symmetry simply as time reversal, however, the
term particle hole is more appropriate in the present context.
We observe that an orbital magnetic field can be applied in
Eq. (1), preserving all the symmetries of the cTI. This leads to
Dirac Landau levels En = sgn(n)

√
2|Bn|, n = 0,±1,±2, . . .,

with the positive energy levels empty and the negative
energy levels filled. Additionally, the zeroth Landau level
is automatically half-filled due to particle-hole symmetry.
Here, even without projection into the zeroth Landau level,
particle-hole symmetry is present. Moreover, the problem is
essentially identical to the nonrelativistic 2DEG at f = 1

2 if
in addition we impose projection into the zeroth Landau level,
with the particle-hole symmetry of the Dirac fermion (26)
mapping to the particle-hole symmetry of the LLL (25).
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There are, however, two differences between the surface
and purely 2D cases that are important to note. First, usually
particle-hole symmetry (CT ) forbids a Hall conductance, and,
indeed, cTI surface states with opposite values of σxy are

related by this symmetry, i.e., σxy
CT−→ −σxy . However, in the

2D LLL context we have σxy
CT−→ 1 − σxy , that is, a particle-

hole symmetric state has σxy = 1
2 (in units of e2/h). Therefore,

for the 2D LLL problem, we must add to the Lagrangian that
is manifestly particle-hole symmetric an additional piece that
keeps track of this fact:

L[A] = Lph[A] + 1

8π
εμνλAμ∂νAλ. (27)

One way to view this is to imagine the opposite surfaces of a
slab of ν = 1 cTI, the top surface provides the first term, and is
manifestly particle-hole symmetric, while the bottom surface
has a broken CT symmetry, leading to a gap for the Dirac
node which yields the Hall conductance of 1

2 [second term in
Eq. (27)]. Importantly, CT -symmetry breaking on the bottom
surface does not “contaminate” the perfect CT symmetry of
the top surface.

It may seem surprising that we can simulate the surface
of a 3D topological phase, purely in two dimensions, while
maintaining the relevant symmetries. The key observation
here is that the particle-hole symmetry when realized in 2D
is a nonlocal symmetry, and is not implemented as a site
local symmetry as in the 3D chiral TI. Indeed, it is only
present in the artificial limit of LLL projection; in any physical
2D system it is necessarily broken by inter-Landau-level
mixing. The nonlocal nature of the symmetry can be divined
from the following facts: particle-hole symmetry proceeds by
exchanging filled and empty LLL states. However, these are
necessarily not well-localized states [54], hence, the symmetry
cannot be implemented in a local way. Furthermore, unlike any
other local symmetry, particle hole of the LLL interchanges
σxy = 0 and 1 states that differ in their topological properties.
Obviously, these states have different edge degrees of freedom,
but due to the nonlocal nature of LLL particle-hole symmetry it
is necessarily broken in samples with boundaries. In contrast,
local symmetries can be defined in samples of any geometry.
Finally, we note that local symmetries allow for a symmetric
“vacuum” state which is a product state; one simply makes
singlets from a finite set of the existing degrees of freedom.
However, there is no such symmetric vacuum for LLL particle
hole since it will necessarily involve a Hall conductance
σxy = 1

2 , for which no short-range entangled state exists.
Duality. Let us now discuss the consequences of the previ-

ously discussed duality for the LLL problem with particle-hole
symmetry. First, we have noted the relation to the surface of
the ν = 1 cTI. Next, utilizing the duality in Sec. VI, which
relates the gauged ν = 1 cTI with the gauged ordinary TI,
we can consider obtaining the ungauged version by a Higgs
condensation process, entirely analogous to our duality in
Sec. II. However, in this case we assume we have a trivial band
of “electrons” �e that transform under CT × U (1) (rather than
our previous discussion where they were Kramers doublets
under time reversal). Binding electrons to the electric charges
of the gauged cTI and condensing removes the dynamical
gauge field and yields a chiral TI. However, on the other side of

the duality we have confined the gauged topological insulator
by condensing a bound state of a double monopole and electron
�e. The resulting bulk phase is again the chiral TI, except
it inherits a different surface state: the topological insulator
surface but coupled to a (2+1)-dimensional dynamical gauge
field.

Thus, we have

Le = �̄eiγ
μ[∂μ − iAμ]�e (28)

is dual to

Lcf = ψ̄cf iγ μ[∂μ − iaμ]ψcf − 1

4π
εμνλAμ∂νaλ, (29)

except that now �e are electrons that respect particle-hole
symmetry (26), which translates into time reversal when acting
on the composite fermions ψcf :

CT : ψcf → εψcf , i → −i. (30)

As already discussed, a finite background magnetic field B

in Eq. (28) preserves the CT symmetry and leads to a half-
filled Landau level. On the dual side, this implies that the dual
fermion ψcf is at a finite filling set by the relation ψ

†
cf ψcf =

B/4π . In other words, electrons in the half-filled Landau level
can be mapped to a finite density of composite fermions in zero
magnetic field. Indeed, this was the content of the Halperin-
Lee-Read (HLR) theory of the half-filled Landau level [31].
However, the additional insight that has been gained here is the
role of particle-hole symmetry, that has remained mysterious
within the HLR theory. Here, we see that particle hole is simply
implemented as time-reversal symmetry (30) on the composite
fermions. Moreover, to account for the anomaly of the half-
filled Landau level, the composite fermions must be Dirac
like, that is, they are like the surface of a topological insulator
at finite density. Their defining physical characteristic is a
Berry phase of π on circulating once around the composite
fermion Fermi surface. Thus, putting together all the pieces,
we obtain for the effective dual theory of the half-filled Landau
level in an external field B and coupled to a vector potential
Aext = AB + δA, where the first term yields the background
field, we have

Lcf = ψ̄cf iγ μ[∂μ − iaμ]ψcf − B

4π
a0

− 1

4π
εμνλδAμ∂νaλ + 1

8π
εμνλAμ∂νAλ, (31)

where we have included the offset in the Hall conductance as
described in Eq. (27).

Precisely such a Dirac composite fermion picture was
conjectured by Son in a prescient recent paper [37], where
he showed the theory (31) consistently accounted for several
physical facts while maintaining particle-hole symmetry.
Indeed, our discussion here can be viewed as providing a
derivation of the same result, and is another consequence of
the duality in Sec. VI.

CT-Pfaffian: A particle-hole symmetric quantized Hall state
at half-filling. Duality is most useful in accessing a strongly
interacting state of the original variables, which has a simple
description in dual vortex fields. Indeed, just such a situation
occurs here: we can describe an incompressible plateau
state with ν = 1

2 by Cooper pairing of composite fermions.
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In particular, since composite fermions form the surface
of a topological insulator, we can consider Cooper pairing
of composite fermions with opposite momentum and spin,
〈ψcf,↑( �p)ψcf,↓(− �p)〉 ∼ �, as envisaged by Fu and Kane [55].
Since the Higgs phenomenon gaps out the gauge field, and
pairing gaps out fermions, this is a gapped quantum Hall phase.
Moreover, this pairing respects time-reversal symmetry (30),
which in the original electron variables implies that it is
particle-hole symmetric. Combining these observations, we
readily see σxy = 1

2 . The excitations in this phase correspond
to vortices and quasiparticles of the Fu-Kane superconductor.
The unit vortex (hc/2e) corresponds, by the conversion be-
tween a flux and global charge, to a e/4 excitation. Moreover,
by the Fu-Kane analysis it traps a Majorana mode. Indeed,
a more detailed analysis [26,27] reveals that this is just the
CT-Pfaffian state discussed previously, which has the same
topological order as the T-Pfaffian in Table II, but differs in
the symmetry action under CT , which reverses the electric
charge. Indeed, exactly this topological order was proposed to
describe the surface of ν = 1 chiral TI in Ref. [17] based on
satisfying various physical requirements. However, here we
have obtained a derivation of this surface topological order,
which was missing until the present time. Indeed, the CT -
Pfaffian may be viewed as a candidate for an incompressible
state with denominator 2 (such as 5

2 state). However, numerical
simulations seem to show that with Coulomb interactions in
the n = 1 LL, the 5

2 state spontaneously breaks particle-hole
symmetry, leading to the Read-Moore Pfaffian state (and its
degenerate particle-hole conjugate, the anti-Pfaffian) [56–60].
These correspond to pairing of composite fermions in l = ±2
angular momentum channel, 〈ψcf,↑( �p)ψcf,↓(− �p)〉 ∼ �(px ±
ipy)|l|, that breaks time-reversal symmetry in the dual de-
scription [37]. Nevertheless, it is interesting whether the
CT-Pfaffian may be realized in the more broad phase diagram
of two-dimensional electron systems in a magnetic field.

VIII. CONCLUSIONS AND FUTURE DIRECTIONS

In summary, we have derived a description of the surface
of an electronic topological insulator, given by QED3, with
a single gapless two-component Dirac fermion. We argued
that these fermions are related to 2hc/e vortices of the
electron fluid. QED3 represents a dual description of the
surface Dirac electrons at the level of Hilbert spaces, operators,
and symmetries. The dual description allows us to derive
well-known surface phases of the TI, and also to derive a
previously proposed surface topological order, the T-Pfaffian.

An interesting question for future research is whether
a “strong” version of this particle-vortex duality holds,
i.e., whether a dynamical equivalence exists between Nf =
1 QED3 and Nf = 1 free Dirac fermion, with Nf denoting
the number of fermion flavors of the two component fermion
fields. Although the conventional folklore holds that QED3
is unstable at small values of Nf , we note that our Nf = 1
surface theory has no Chern-Simons term. Therefore, it does
not fit into the conventional folklore and perhaps can remain
gapless in the IR. If so, information about this conformal field
theory may be available from the conformal bootstrap [61].
Much work on particle-vortex dualities (or mirror symmetry)
has been on supersymmetric (SUSY) theories, which may

appear to be irrelevant to the present discussion. However,
in Refs. [62,63] it was argued that the critical point between
the Dirac surface state of a TI and a surface superconductor
is described by a Wess-Zumino model with emergent N = 2
SUSY. Thus far, a dual theory of this precise model has not
appeared, although closely related models have successfully
been dualized [64,65].

Note added. Recently, Wang and Senthil [66] pointed out
the duality between u(1) gauge theories discussed in Sec. VI.
The same authors have also communicated to us a forthcoming
preprint with independently derived results on the dual surface
theory which agree with our work [67]. Another related work
which appeared recently is Ref. [68]; it discusses a dual gauge
theory for a half-filled Landau level with two fermions flavors.
Finally, Ref. [69] presents an explicit derivation of dynamical
duality between a single free Dirac cone and Nf = 1 QED3.
This derivation gives a direct map between the operators in
the two theories. An important point is that the dual QED3
theory of Ref. [69] is in the strong coupling limit [g2 ∼ �UV in
Eq. (16)]. Thus, Ref. [69] does not, strictly speaking, establish
the strong form of the duality, as defined in Sec. III C, between
the free Dirac theory and weakly coupled QED3. Nevertheless,
it makes such a strong form of duality not implausible.
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APPENDIX A: BAND STRUCTURE OF CLASS AIII
CHIRAL TOPOLOGICAL INSULATOR

Here, we write an explicit band structure for fermions in
class AIII chiral topological insulator phase. Consider a cubic
lattice model with four orbitals per site labeled by τz = ±1
and νz = ±1. Consider the one-particle Bloch Hamiltonian

H0 = t[sin kxαx + sin kyαy + sin kzαz]

+m[λ − (cos kx + cos ky + cos kz)]β5.

We have xixj + xjxi = 2δij where xi ∈ (αx, αy, αz, β0, β5).
An explicit representation is (αx, αy, αz, β0, β5) =
(τx, τzνx, τzνz, τy, τzνy). This Hamiltonian has a chiral
symmetry β0H0β0 = −H0. Time-reversal symmetry in the
second quantized representation takes the form ψ → β0ψ

†

(and, being an antiunitary symmetry i → −i). In contrast to
regular time-reversal symmetry, particles are taken to holes,
so the conserved U (1) is like spin rather than charge.

For λ > 3, the model is in a trivial phase. However, for 1 <

λ < 3 the sign of the mass term changes sign at the origin in
momentum space indicating this is a ν = 1 topological phase
in the AIII class. In order to access SL×, the gauged chiral
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topological insulator, we require the fermionic partons to take
up a band structure with the same topology.

APPENDIX B: COMPACTNESS OF THE GAUGE
FIELD IN THE SURFACE THEORY

It is often stated that a single Dirac fermion in 2 + 1
dimensions suffers from the parity anomaly, namely, it cannot
be consistently coupled to a U (1) gauge field preserving the
time-reversal symmetry [29]. When the Dirac fermion appears
as the surface state of a (3 + 1)-dimensional insulator [either
the ordinary TI in class AII with symmetry U (1) � T or
class AIII with symmetry U (1) × T ], this anomaly has a
well-known resolution: when one gauges the U (1) symmetry,
the U (1) gauge field lives in the (3 + 1)-dimensional bulk,
and the θ = π bulk EM response “cancels” the anomaly of
the surface. Now, our surface theory (15) has a dynamical u(1)
gauge field aμ, which is confined to live just on the surface (we
switch off the background electromagnetic field Aμ for now).
Thus, the standard argument for the evasion of the anomaly
via the (3 + 1)-dimensional bulk does not directly apply in
this case. Rather, the anomaly is resolved by modifying the
compactification of the gauge field aμ in the surface theory. For
instance, we already saw that only configurations of aμ with
magnetic flux 2πm with m even are allowed on the surface.
There is a related restriction on the electric fluxes that one can
place through the space-time 2-cycles of the surface.

As an example, imagine that our D-condensed phase
occupies a solid torus, so that its boundary is a torus T 2, with
periodic x and y directions of length L. We will choose the x

cycle to wrap the hole of the solid torus, while the y cycle can
be contracted within the solid torus. To simplify the discussion,
let us break the T symmetry on the surface by adding a mass
term mψ̄cf ψcf to the surface theory. The low-energy surface
action then becomes

L = ik

4π
εμνλaμ∂νaλ (B1)

with k = 1
2 sgn(m) (for definiteness, let us choose m > 0 so

that k = 1
2 ). It is a standard statement that the level k of the

(2 + 1)-dimensional Chern-Simons theory must be an integer,
which seems inconsistent with our finding of k = 1

2 . Let us
recall what this statement is based on. Let us integrate out the
temporal component of the gauge field aτ . This enforces the
constraint ∂xay − ∂yax = 0. Then, ai(�x,τ ) = ∂iα(�x,τ ) + θi (τ )

L
,

so that the only remaining physical degrees of freedom are θ1

and θ2 corresponding to the flux of a through the x and y

1-cycles. The effective action then takes the form

L = − ik

2π
θ1∂τ θ2. (B2)

Now, in a standard (2 + 1)-dimensional theory, large gauge
transformations a1 → a1 + 2π

L
, a2 → a2 + 2π

L
are allowed,

corresponding to θ1 → θ1 + 2π , θ2 → θ2 + 2π . In the path-
integral treatment, these transformations are implemented by
allowing θ1,2 to wind by 2π around the temporal circle:
θi(β) = θi(0) + 2πni , with ni integers. This corresponds to
placing electric fluxes 2πni through the space-time 2-cycles
of the system. Now, imagine there is an electric flux 2π

through the τ -y cycle. We see that in this case the action (B1)

changes by S → S − 2πik as we shift θ1 → θ1 + 2π . Thus,
the partition function remains invariant only if k is an integer.
In particular, for k = 1

2 the partition function acquires a phase
−1. While we have demonstrated this effect in the T -broken
surface theory (B1), it is also present for the T -invariant
gapless Dirac fermion [29].

One encounters the same difficulty if one attempts to
quantize the theory (B2) in real time. The commutation relation
between θ1 and θ2 reads as

[θ1,θ2] = −2πi

k
. (B3)

The operators U1,2 which implement the large gauge trans-
formations θ1,2 → θ1,2 + 2π read as U1 = e−ikθ2 , U2 = eikθ1 .
Now,

U1U2 = e2πikU2U1. (B4)

Thus, the large gauge transformations along the two directions
commute only if k is an integer. In our theory with k = 1

2 , U1

and U2 anticommute.
The above anomaly is resolved in our surface theory in the

following way. While large gauge transformation U1 shifting
θ1 → θ1 + 2π is allowed, only the transformation U 2

2 , shifting
θ2 → θ2 + 4π , is permitted. Thus, we are only allowed to place
electric flux 2πn with n even along the y-τ 2-cycle, while a
flux 2πn with arbitrary integer n can be placed along the x-τ
2-cycle. Note that from the bulk point of view, the two cycles
are not equivalent: the x cycle is uncontractible in the 3D
solid torus, while the y cycle is contractible. Now, U1 and U 2

2
commute and we can compute the ground-state degeneracy.
Working in the θ1 basis and imposing U 2

2 = 1 we must have
θ1 = 2πl with l integer. Since θ1 is identified modulo 2π , we
have a unique physical ground state given by θ1 = 0. This is
consistent with our expectations. Indeed, the T -broken surface
state has no intrinsic topological order so it should possess no
ground-state degeneracy on a torus. The only excitation is the
gapped ψcf . The Chern-Simons field (B1) attaches flux 4π to
ψcf , which preserves its fermionic statistics. Now, a flux 4π

instanton will create ψcf with an attached flux 4π . Recalling
that a flux 4π instanton corresponds to the electron creation
operator, in the T -broken phase ψcf is identified with the
electron.

We can directly understand the restriction on the allowed
large gauge transformations of the surface theory using our
bulk construction. Let us imagine a process where θ2(τ ) =
2πτ/β, i.e., θ2 winds by 2π along the temporal cycle. This
gives rise to an electric field �e = (0, 2π

βL
) along the surface. As

discussed in the previous section, this electric field will be
Meissner screened by a current of D dyons along the surface
with surface density jD

i = − 1
4π

εij ej = (− 1
2

1
βL

,0). Note that
the dyon current is along the uncontractible x cycle of the solid
torus. The total number of D dyons that have passed through
the x = 0 cross section of the solid torus in the time 0 < τ < β

is ND = − 1
2 . Now, if the system at time τ = β comes back

to its initial τ = 0 configuration, then an integer number of
D dyons must have passed through the x = 0 cross section.
Therefore, we conclude that the system has not returned to its
initial configuration at τ = β. Therefore, θ2 = 0 and θ2 = 2π

are not identical, rather θ2 ∼ θ2 + 4π . On the other hand, θ1

is, indeed, periodic modulo 2π . Indeed, when an electric field
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is applied along the x direction, the dyons move along the y

cycle. Since this cycle is contractible, the number of dyons
that pass through any cross section of the solid torus is now
zero. Thus, θ1 ∼ θ1 + 2π .

We conclude that the surface QED3 theory differs from
the conventional (2 + 1)-dimensional u(1) gauge theory in the
allowed large gauge transformations. Once the set of large
gauge transformations is restricted, QED3 with a single Dirac
cone becomes fully consistent with T symmetry.

APPENDIX C: PARTICLE-VORTEX DUALITY OF BOSONS

In this Appendix, we review the status of particle-vortex
duality of bosons in Eqs. (3) and (4). As a field theory, the
vortex theory (4) is given by the Abelian-Higgs model

L = |(∂μ − iαμ)ϕ|2 + m2|ϕ|2 + u|ϕ|4 + 1

2e2
(εμνλ∂ναλ)2

(C1)
with couplings u, e2 � �UV. The properties of this theory
depend on the dimensionless parameter κ2 = u/e2. For κ

smaller than a critical value κc, analytical arguments [70]
and Monte Carlo (MC) simulations [71–73] indicate that
the transition between the Higgs and Coulomb phases is
of first order. Thus, the interesting region is κ > κc. Here,
MC indicates that the transition is second order and in the
inverted XY universality class [72,73]. [The term “inverted
XY ” stems from the dual boson 
 of Eq. (3) having 〈
〉 �= 0
in the Coulomb phase, on the other hand, “condensation” of
the vortex field ϕ occurs in the Higgs phase.] We, however,
note that it is difficult to access the weakly coupled regime
u,e2 � �UV in MC simulations since to reach the true infrared
physics one then needs to go to large system size L �
1/u, 1/e2 � �−1

UV. Nevertheless, an attempt to extrapolate to
the u/�UV ,e2/�UV → 0 limit was made in MC simulations
of Ref. [73], which estimate κc = (0.76 ± 0.04)/

√
2.

We remind the reader that an exact duality [33] exists
between a certain lattice version of theory (C1), where |ϕ| is
frozen and only the phase of ϕ fluctuates, and a lattice version
of the XY model. More precisely,

SAH = 1

2g

∑
jμ

(dθ − α − 2πn)2
jμ + 1

4e2

∑
jμν

(dα)2
jμν (C2)

is exactly dual to

SXY = e2

8π2

∑
j̄μ

(dχ − 2πm)2
j̄μ

+ g

4

∑
j̄μν

(dm)2
j̄μν

. (C3)

The variable j (j̄ ) labels direct (dual) sites of a cubic lattice.
The vortex field ϕ ∼ eiθ , and 
 ∼ eiχ is the XY field.
Integers njμ and mj̄μ encode the periodic nature of θ and χ .

Coulomb

Higgs

0.5 1.0 1.5 2.0 2.5 3.0
g

2
4
6
8
10
12

e2

FIG. 2. Phase diagram of lattice Abelian-Higgs model (C2).
Points where MC simulations have been performed are
marked [33,74], solid line is a guide to the eye. An inverted XY

transition has been found at points marked by blue circles, and an
ordinary XY transition at the e2 = 0 point marked by a red triangle.
The near critical region with e2 � 1 has the same IR fixed point as
“weakly coupled” Abelian-Higgs model (C1) with κ = u/e2 � 1.

Equation (C3) is the Villain version of the usual lattice XY

model; based on MC, at g = 0 it is known to have a continuous
transition in the XY universality class at e2

c ≈ 13, which must
survive for small g. Therefore, (C2) has an inverted XY

transition in this regime of e2,g. However, in this regime the
lattice theory (C2) is far from the continuum field theory (C1).
To make a connection with the continuum field theory (C1),
one should instead study the regime of small e2 in (C2).
Indeed, when e2 = 0, gauge fluctuations are completely frozen
and (C2) has a transition in the (ordinary) XY universality
class at gc ≈ 3.00. If we perturb this ordinary XY fixed point
by a small e2 � 1, we will recover the infrared fixed point
of field theory (C1) in the regime e2 � u � �UV. However,
again, finding out the true fate of the IR fixed point of (C2)
for small e2 with MC is difficult, as one has to go to length
scales L � 1/e2 (otherwise, one is dominated by the ordinary
XY transition fixed point). Instead, MC simulations have been
performed at intermediate e2 = 5; the continuous inverted XY

transition survives here [33] (see also a more recent, larger
system size study in Ref. [74] at e2 ≈ 5.8.) These results
are summarized in Fig. 2. A possibility generally assumed
in the literature is that the inverted XY transition survives
all the way to infinitesimal e2, although again we stress that
this region has not been investigated carefully. A study of a
related model [75] where the Villain term 1

2g
(dθ − α − 2πn)2

in Eq. (C2) is replaced by −J cos(dθ − α) found an inverted
XY transition down to e2 ≈ 1.7.

We conclude by stressing that the present evidence for
particle-vortex duality of bosons at the level of IR fixed point
of continuum field theory relies on MC simulations (and in the
authors’ opinion has not been established beyond the shadow
of doubt). We, thus, expect that an equivalent “strong form”
of duality between weakly coupled QED3 and a free Dirac
fermion can ultimately only be settled by numerics.
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