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We propose a two-orbital Hubbard model on an emergent honeycomb lattice to describe the low-energy physics
of twisted bilayer graphene. Our model provides a theoretical basis for studying metal-insulator transition, Landau
level degeneracy lifting, and unconventional superconductivity that are recently observed.
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INTRODUCTION

The recent discovery of correlated insulator state [1] and
unconventional superconductivity [2] in bilayer graphene
with a small twist angle has generated tremendous excitement
[3–5]. At small twist angles, the moiré pattern creates a
superlattice with a large unit cell comprising more than 10 000
atoms, and dramatically modifies the low-energy electronic
structure. In particular, near certain “magic” twist angles,
four lowest-energy minibands with a total bandwidth on
the order of 10 meV are separated from excited bands and
accommodate a range of carrier densities from charge −4e

to 4e per supercell. Due to the strong suppression of kinetic
energy in these narrow bands, Coulomb interaction may drive
correlated electron phenomena [6]. Remarkably, the recent
experiments [1,2] on such twisted bilayer graphene (TBG)
discovered metal-insulator transition and superconductivity
at low temperature by tuning the carrier density, applying
the magnetic field, or slightly varying the twist angle. These
fascinating phenomena show a number of similarities with
that of cuprates. Notably, a correlated insulating state occurs
below 4 K at the filling of charge ±2e per supercell. Under
electrostatic doping, two superconducting domes appear on
both sides of the insulating state, with a maximum transition
temperature Tc = 1.7 K and a record-low carrier density of a
few 1011cm−2. The mechanism of metal-insulator transition
and superconductivity, the nature of the correlated insulating
state and the superconducting state are all open questions.

The Hubbard model is the standard model to study metal-
insulator transition driven by the competition of kinetic energy
and Coulomb interaction [7]. It is also believed to capture
key features of the cuprate superconductors [8–10]. To study
metal-insulator transition in TBG, it is highly desirable to iden-
tify the real-space Wannier orbitals for the low-energy mini-
band and find the corresponding tight-binding and Hubbard
model.

This is, however, a nontrivial task that has not been ac-
complished so far. Thanks to extensive studies using various
methods [6,11–23], the band structure of TBG at small twist
angle is known to be rather complex and depends sensitively
on microscopic details such as lattice relaxation. Near the so-
called magic twist angle, various methods find four nearly flat
minibands at low energy, but differ significantly on important
features such as their bandwidth and the gap to excited bands.
Therefore, as a first step, it is important to extract robust

and universal features of these narrow minibands from both
theoretical calculation and experimental findings on bilayer
graphene at small twist angles.

In this paper, we demonstrate that the electronic structure
of narrow minibands and the effect of Coulomb interaction in
TBG are essentially captured by a two-orbital Hubbard model,
constructed from Wannier orbitals that extend over the size
of supercells. We deduce the centers and symmetry of Wan-
nier orbitals by a straightforward symmetry analysis, without
explicitly computing their wave functions. Importantly, the
centers of these Wannier orbitals form an emergent honeycomb
lattice. The two types of sublattice sites of this honeycomb
lattice correspond to AB and BA regions of twisted bilayer
graphene, respectively, while the hexagon centers correspond
to AA regions, as depicted in Fig. 1. At every site of the
honeycomb lattice, there are two degenerate Wannier orbitals
with px- and py-like symmetries, forming a doublet under
on-site threefold rotation. We then construct an effective tight-
binding model on this honeycomb lattice, which reproduces
key features of the miniband structure of TBG [11,12]. By
including Coulomb repulsion, our model provides a useful
theoretical basis for studying the metal-insulator transition
in TBG as a function of twist angle and carrier density,
Dirac fermion reconstruction at charge neutrality, as well as
other strongly correlated phenomena such as unconventional
superconductivity.

The procedure of our analysis is outlined in Fig. 2. First,
from general considerations on the lowest minibands of TBG
and tight-binding calculation by Nam and Koshino [11], we
infer the band symmetry eigenvalues at all high symmetry
points �,K,M of mini Brillouin zone (MBZ) of TBG. Then we
examine all possible positions of Wannier centers (which form
a lattice in real space) and symmetries of Wannier orbitals
(s-, p-wave, etc.) to search for solutions consistent with the
band symmetries in k space. Luckily, we find that the band
symmetries at all high symmetry points can only be reproduced
when Wannier orbitals with (px,py) on-site symmetry are
located on a honeycomb lattice. Based on this important result,
we construct the simplest tight-binding model that reproduces
the key features of band structure, in particular, the warped
Fermi surfaces near the miniband edges at � point.

This paper is organized as follows. In Sec. I, we study
the band structure and energy eigenstates of TBG through
the group-theoretical approach. From the obtained energy
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FIG. 1. Atomic structure and tight-binding model in twisted
bilayer graphene. In this figure, rotation angle θ = 6.01◦. Blue and
red little dots represent the carbon atoms of bottom and top layers,
respectively. Green and blue giant dots represent AB and BA spots,
which form a honeycomb lattice, and AA spots lie in hexagon centers
of the honeycomb lattice. At each giant dot (AB/BA spots), there
reside two degenerate orbitals with px,y symmetries under on-site
threefold rotation.

eigenstates, in Sec. II we deduce the positions of Wannier
orbital centers and the symmetries of Wannier orbitals. Based
on the Wannier orbitals, we then construct tight-binding model
in Sec. III. Then, we address the Hubbard model and metal-
insulator transition in Sec. IV, Dirac fermion reconstruction,
and Landau-level degeneracy breaking in Sec. V, and make
connections between theoretical and experimental results. At
last, in Sec. VI, we discuss some open questions such as the
nature of correlated insulating and unconventional supercon-
ducting phases of TBG.

FIG. 2. The strategy and organization of this work.

I. BAND STRUCTURE

The first question we ask is: Are the lowest bands on the
electron and hole sides separated from excited bands? Only
when low- and high-energy bands are separated by a band gap
is a theoretical description using a small number of low-energy
degrees of freedom possible.

To answer this question, we look into theoretical calculation
and experimental evidence on the band structure of TBG.
Different numerical methods all show that band edges of
the lowest-energy electron and hole minibands near charge
neutrality are located at � point of the MBZ. However,
conflicting results are found on the gap at � point between
these lowest bands and higher-energy bands when the twist
angle is small. Some numerical calculations report relatively
large gaps of 10 − 20 meV on both electron and hole sides
[11], while others show that the gap only exists on the electron
side [17] or even no gap exists [13,15,18].

In the experiment performed on TBG near the twist angle
θ = 1.08◦, the conductance is found to be zero over a wide
range of electron or hole densities near n = ±ns = ±2.7 ×
1012 cm−2—the density at which the four lowest bands are
completely filled or empty. The measured thermal activation
gaps are about 40 meV, comparable to the single-particle band
gaps found by Nam and Koshino in tight-binding calculations
with relaxed lattice structure [11]. Hence we conclude that, at
small twist angles, the lowest bands of TBG are well separated
from excited bands above and below.

Our next goal is to understand the band structure and Bloch
wave function of the lowest minibands analytically. Previous
analytical calculations have mostly focused on the minibands
near the corners of MBZ [6,21], where the original Dirac points
of graphene remain present, but exhibit a much reduced Fermi
velocity. However, a full analysis of energy bands at all high
symmetry points remains lacking.

To do this, we need to work out energy eigenstates of TBG,
which are superpositions of states on two layers hybridized
through interlayer tunneling. In real space, the interlayer
tunneling takes the general form

HT =
∑

m,n=A,B

∑
xm, yn

ξ †(xm)T (xm, yn)η( yn) + H.c., (1)

where xm, yn denote the coordinates of carbon atom sites
on layers 1 and 2, respectively, and m,n denotes the A/B

sublattice. ξ and η are the electron annihilation operators on the
two layers, respectively. T describes the tunneling amplitudes
between two sites x and y on different layers.

We define electron operator at a given momentum k as
follows: ξk = (ξA

k ,ξB
k )T,ηk = (ηA

k ,ηB
k )T, where

ξn
k =

∑
xn

eik·xn

ξ (xn), ηn
k =

∑
yn

eik· yn

η( yn), (2)

with n = A,B. By employing the two-center approximation
T (x, y) = T (x − y) [6,21,22], we can write Eq. (1) in mo-
mentum space as

HT =
∑

q,G1,G2

ξ
†
q+G1

Tq(G1,G2)ηq+G2 + H.c., (3)
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FIG. 3. Twisted bilayer graphene with rotation angle θ = 21.8◦.
(a) Atomic structure. Blue and green lines represent the lattices of
bottom and top layers, respectively. (b) Mini Brillouin zone (MBZ).
Blue and green large hexagons correspond to the first Brillouin zone
of bottom and top layers, respectively, and thick small-hexagon to the
MBZ. In MBZ, open and filled circles are two inequivalent K points,
red dots are equivalent points of � point, and blue dots are equivalent
points of M point.

where G1,2 is the reciprocal vector of layer 1 or 2, respectively,
and Tq(G1,G2) is the 2 by 2 interlayer scattering matrix with
momentum transfer G1 − G2.

To calculate the energy eigenstates explicitly requires the
knowledge of the tunneling operator T . However, when the
twist angle is commensurate (as we assume throughout this
paper), T satisfies certain symmetry conditions, hence at high
symmetry points of MBZ, the low-energy eigenstates can be
classified by the irreducible representations of the correspond-
ing symmetry group. Importantly, essential information on
these eigenstates and hence Wannier orbitals can be deduced
directly from the symmetry representations. In the following
three subsections, we will work out the symmetries of the four
lowest minibands at all three high symmetry points: �,K,M

of MBZ, respectively.
Before proceeding, we first introduce the coordinate system.

As shown in Fig. 3(a), the graphene superlattice has a point
group D3 with in-plane threefold rotation and out-of-plane
twofold rotation. We then choose the axis of twofold rotation as
y axis, and the axis of threefold rotation as z axis. Thus twofold
and threefold rotations can be denoted as C2y and C3z. The
center of C3z, denoted as O in Fig. 3(a), is located at a vertically

aligned A site, which we define as the origin of coordinate
x = y = 0. In this coordinate system, the primitive vectors of
the graphene superlattice are A1,2 = A(

√
3

2 , ± 1
2 ), where A =

a/[2 sin(θ/2)] is the superlattice constant, a is the common
lattice constant of both layers, and θ is the twist angle. Before
band folding, the +K point of the top (bottom) graphene layer
in its original Brillouin zone is K 1,2 = 4π

3a
[cos ( θ

2 ), ± sin ( θ
2 )].

After band folding, +K 1 and −K 2 fold onto one corner of
MBZ of TBG, while −K 1 and +K 2 fold onto the other
inequivalent corner, as shown in Fig. 3(b).

In our coordinate system, the scattering matrix in Eq. (3)
can now be explicitly written as

T mn
q (G1,G2) = tmn(q) exp

[−i
(
G1 · τm

1 − G2 · τ n
2

)]
, (4)

where tmn(q) is the Fourier transform of T (xm − yn), and the
vectors τ

A,B
j specify the position of A/B sublattice sites within

the unit cell of layer j , given by

τA
1,2 = 0,

τB
1,2 = a√

3

[
∓ sin

(
θ

2

)
, cos

(
θ

2

)]
. (5)

We emphasize that the phase factor in the interlayer tunneling
matrix Eq. (4) comes from the intra-unit-cell part of the Bloch
wave function of each graphene layer, and must be included to
obtain the correct band structure of TBG.

Since the interlayer tunneling termHT is much smaller than
the full bandwidth of graphene layers, the main effect of HT

is to modify the low-energy part of the band structure near the
original Dirac points ±K 1,2. Therefore, to calculate the low-
energy band structure of TBG, it suffices to restrict q + G1,2

in the interlayer tunneling term Eq. (3) to be close to ±K 1,2

points. Then, the full Hilbert space comprising a large number
of momentum points is truncated to a reduced Hilbert space
comprising only a few momentum points. This approximation
is known as the continuum theory of TBG [6,21–23].

A. � Point

We first study the lowest minibands of TBG at � point
of the MBZ. There are in total three pairs of opposite mo-
menta, denoted as ±�a=1,2,3, which are located closest to the
original Dirac points K 1,2 of individual graphene layers and
fold onto � of MBZ. These three � points are all integer
multiples of the two superlattice reciprocal vectors G1,2 =
Gθ (± 1

2 ,−
√

3
2 ),Gθ = 8π√

3a
sin θ

2 , and related by threefold rota-
tion symmetry, as shown in Fig. 3(b).

Interlayer tunneling leads to scatterings among ±� points
on layer 1 and those on layer 2. Among all possible scattering
processes, intervalley scattering between +� points to −�

points requires large momentum transfer, hence is negligibly
small when the twist angle is small [6]. Thus we only consider
intravalley scattering within the three +� points that are all
close to the original Dirac points +K 1,2, and drop the valley
index. Since we focus on +K 1,2 valleys, we only need to
consider two out of the four lowest energy eigenstates at �

point, which are denoted by ��
e on electron side and ��

e on
hole side. The other two lowest energy eigenstates coming from
−K 1,2 valleys will be time-reversal partners of ��

e,h.
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According to our discussion above, to the lowest or-
der approximation, energy eigenstates at � are in general
superpositons of ξm

k ,ηn
k where k = �a (a = 1,2,3). While

the energy spectrum depends on the form of tunneling
operator T (xm, yn), we now deduce purely from general
symmetry considerations the essential form of these wave
functions.

Any energy eigenstate at � must belong to one of the
three irreducible representations of the point group D3: the
one dimensional A1 representation, the one-dimensional A2

representation, and the two-dimensional E representation. The
twofold rotation C2y around y axis maps +K 1,2 to −K 2,1,
respectively, i.e., simultaneously interchanges the two valleys
and the two layers. Therefore, its action cannot be represented
within the subspace of states around one valley. Thus it
suffices to consider the subgroup C3 that acts within +� states
belonging to the +K valley.

In the subgroup C3, every representation is labeled by the
eigenvalue of angular momentum Lz taking three possible
values: 0, ± 1. According to group theory, an eigenstate �

with angular momentum Lz formed by Bloch states from three
� points can be generally written as

�� =
∑
m

∑
xm

αm

3∑
a=1

ei�a ·xm+ 2i
3 aLzπξ (xm)

+
∑

n

∑
yn

βn

3∑
a=1

ei�a · yn+ 2i
3 aLzπη( yn), (6)

where αm,βn are complex coefficients. Without loss of gener-
ality in the following we shall consider the energy eigenstate
of the conduction miniband, denoted by ��

e . The analysis of
the valence miniband ��

h is similar.
We first focus on the case of Lz = +1. According to the

general expression above, �� can be rewritten in the following
suggestive way:

�� = e−i2π/3[αAUA(Rc) + αBUB(−Rc)]

+ ei2π/3[βALA(−Rc) + βBLB(Rc)]. (7)

Here Rc = Ax̂/
√

3 is the coordinate of an BA spot closest
to the AA spot at the origin, as shown in Fig. 1. U and L

are electron wave functions on the upper and lower layers
respectively, defined by

Um(R) =
∑
xm

ei K 1·xm

f (xm − R)ξ (xm), (8)

Ln(R) =
∑

yn

ei K 2· yn

f ∗( yn − R)η( yn). (9)

Both U,L are the product of intra-unit-cell wave function ei K ·r
which is fast oscillating and the envelope function f (r − R)
given by

f (r) = ei(K 1−K 2)·r × {1 + eiG1·r + eiG2·r}, (10)

which is slowly varying. f (r) is invariant under threefold
rotation around the origin.

It is straightforward to show that the maxima of the envelop
function |f (r)| are located at AA spots n1 A1 + n2 A2 (n1,2 ∈

Z), which form a triangular lattice with primitive vectors A1,2.
Then, the maxima of |f (r ± Rc)| are located at the AB/BA
spots ∓Rc + n1 A1 + n2 A2, which also form a triangular
lattice but shifted off the origin by ∓Rc. Therefore, it follows
from Eq. (7) that the component of Bloch wave function �� on
the A sublattice has its maxima at AB spots on layer 1 and at
BA spots on layer 2, while the component on the B sublattice
has its maxima on BA spots on layer 1 and AB spots on
layer 2.

This feature is robust and can be understood by symmetry
considerations. For a state carrying finite angular momentum
such as Lz = +1 considered here, its wave function necessarily
vanishes at rotation centers n1 A1 + n2 A2, where A sublattice
sites on two layers are registered. Therefore, the maxima of
A-sublattice component of �� must be away from these AA
spots. Furthermore, if there is only a single maximum within
a supercell (as is the case here), this maximum can only be
located at either AB or BA spots, because these positions are
invariant under threefold rotation with respect to AA spots
up to superlattice translations. Finally, we note that under the
combination of twofold rotation C2y and time-reversal sym-
metry T, the two layers are interchanged, while the sublattice
and angular momentum Lz quantum numbers are unchanged.
This implies that the maxima of A sublattice wave function is
symmetric under C2y , hence must be located at AB spots on
layer 1 and BA spots on layer 2, forming the C2y image of each
other. On the other hand, B sublattice sites do not coincide with
rotation centers, and the intra-unit-cell phase factors ei K 1·xB

and ei K 2· yB

already carry the angular momentum −1. To make
the total angular momentum Lz = +1, the envelope function of
B sublattice wave function must carry −1 angular momentum
and is, therefore, peaked at BA spots on layer 1 and AB spots
on layer 2. Here we have used the fact that under C3z, angular
momentum is defined modulo 3.

We thus conclude that, to respect the point group D3 of
TBG, the energy eigenstate at � point with angular momentum
Lz = +1 has the peculiar property that A or B sublattice
wave function has its maxima on a honeycomb lattice whose
two sublattices correspond to AB and BA spots of the two
layers. A similar conclusion is found for eigenstates with
Lz = −1, which we leave to the Supplemental Material
[24].

In the band structure calculations by Nam and Koshino
[11], at � point, the eigenstates form two doublets—one on the
electron side and one on the hole side, and each doublet splits
along �M line in MBZ. It is our understanding that such band
structure is consistent with the scenario that the two members
of the doublet come from ±K valleys of graphene and have
Lz = ±1, respectively. In this case, the twofold degeneracy
is protected by D3 point group and time-reversal symmetry
and remains intact even when intervalley scattering is taken
into account. In contrast, in the scenario of Lz = 0, there
will be four nondegenerate states at �, which is not found
in band-structure calculations. For completeness, we leave
the discussion of Lz = 0 case to the Supplemental Material
[24].

So far, our analysis has been completely based on symmetry
considerations. To work out the eigenstates ��

e,h at � point
explicitly requires a microscopic calculation, which we sketch
below. Before turning on interlayer tunneling, the Hamiltonian
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for graphene states at � points is given by

H0 = vF

3∑
a=1

[ξ †
a ( pa · σ 1)ξa + η†

a(qa · σ 2)ηa]. (11)

Here ξa and ηa are, respectively, the electron operator of layers
1 and 2 at momentum �a . In H0, pa and qa are the small
momentum differences between �a and the Dirac points on
layers 1 and 2, respectively, and vF is the Fermi velocity. Due
to their difference in orientation, the Pauli operators in the
Dirac Hamiltonian of individual graphene layers are “rotated”
oppositely:

σ 1,2 =
(

σx cos
θ

2
∓ σy sin

θ

2
,±σx sin

θ

2
+ σy cos

θ

2

)
, (12)

where σx,y are Pauli matrices.
According to Eqs. (1) and (3), the interlayer tunneling

between � points can be written as

HT =
3∑

a,b=1

ξ †
aTabηb + H.c., (13)

where Tab is the scattering matrix obtained by integrating out
intermediate high-energy states in Eq. (3) other than the low-
energy ±�a states kept in Eq. (13).

The threefold rotation of � points is realized by the
cyclic permutation �a → �a+1 (with �4 ≡ �1). Due to the
invariance of HT under threefold rotation and with a proper
choice of relative phases of ξa and ηa , we have Ta+1,b+1 = Tab.
Hence, essentially there are only three independent scattering
matrices among all of them, and we denote them as T0 =
Taa,T± = Ta±1,a . Physically, interlayer tunneling associated
with T0 preserves momentum while T± transfers momentum
±(G1 − G2) from layer 2 to layer 1.

With Eqs. (11) and (13), we can work out the lowest
eigenstates ��

e and ��
h at � point. An illustrative example

of ��
e and ��

h with Lz = +1 is shown in Fig. 4, where A

sublattice component dominates and its maxima are indeed
located at the emergent honeycomb lattice formed by AB and
BA spots. Details of interlayer coupling Hamiltonian Eq. (13)
in this example can be found in the Supplemental Material [24].

B. K points

Similar analysis as shown above applies to energy eigen-
states at other high symmetry points in the MBZ. Consider
the corners of MBZ, denoted by ±K where K ≡ K 1 − K 2.
Since time-reversal symmetry relates bands at ±K by complex
conjugation, it suffices to study +K only. Since +K 1 and
−K 2 in the large Brillouin zone fold onto +K in the MBZ,
low-energy states of TBG at +K come predominantly from the
states of layer 1 at Dirac point +K 1 (denoted by ξ

A,B
+ ) and the

states of layer 2 at Dirac point −K 2 (denoted by η
A,B
− ). When

the intervalley scattering is negligibly small, to leading order
approximation we obtain four degenerate zero-energy states at
+K , as found in previous studies.

At K point, the point group D3 is preserved and hence the
eigenstates can also be labeled by representations A1,A2,E

of D3. Under threefold rotation, we find that states at A sites
of each layer have zero angular momentum, and ξA

+ + ηA
− will

FIG. 4. Real space probability distributions |��
e (x)|2 = |��

h (x)|2
of lowest eigenstates at � point with angular momentum Lz = +1.
Eigenenergies are shown in (a) in unit of 2vF /(

√
3a), where the lowest

energies are in red. |��
e,h(x)|2 in layers 1 and 2 are shown in (b) and

(c), respectively. The hexagon is the unit cell of graphene superlattice
and O is origin. Details can be found in the Supplemental Material
[24].

furnish the trivial representation A1 while ξA
+ − ηA

− will furnish
the 1D representation A2. The remaining two states (ξB

+ ,ηB
−)

at B sites have finite, opposite angular momenta. Furthermore,
under twofold rotation C2y , the type of sublattice is unchanged
but +K 1 and −K 2 are interchanged. As a result, (ξB

+ ,ηB
−)

furnish the 2D representation E of D3.
Previous studies found that the correction to the above

energy eigenstates from excited states of individual graphene
layers will not lift the degeneracy at Dirac point but only re-
duces the Fermi velocity. We shall come back to this point later.

C. M points

At M points, only in-plane twofold rotation C2y is present.
Thus one can classify eigenstates at M points according to
the eigenvalues ±1 of C2y . Energy eigenstates at M points are
from the state with momentum ± 1

2 (K 1 + K 2) on both layers.
Since C2y interchanges the two layers and the two momenta,
we obtain two energy eigenstates with C2y = +1 and two with
C2y = −1.

The representations of the eigenstates at high symmetry
points �,K,M are summarized in Table I.

II. WANNIER ORBITALS AND CENTERS

In this section, we deduce the center and symmetry of
Wannier orbitals from symmetries of band eigenstates at
high symmetry points through consistency check. While the
detailed form of Wannier orbitals are to be obtained by Fourier
transform of band eigenstates over the MBZ, the center and
symmetry of Wannier orbitals are robust features that only
depend on symmetries of energy bands at all high symmetry
points.
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TABLE I. Symmetries of lowest four eigenstates at �,K,M

points. At each high symmetry point, the first line denotes the
symmetry group (Group). The lowest four bands furnish irreducible
representations (Reps) shown in the second line, which can be labeled
by representations of group elements C3z,C2y shown in the last two

lines. The representation of C3z = e−i 2π
3 Lz is denoted by the angular

momentum Lz, and Pauli matrix σz denotes a pair of doublet with
Lz = ±. Since C3z is not in group C2, eigenvalues of C3z are not
applicable (NA) in C2. Since C3z and C2y do not commute, when
Lz 	= 0, the representation of C2y will be Pauli matrix σx .

� K M

Group D3 D3 C2

Reps {E,E} {A1,A2,E} {A,A,B,B}
C3z {σz,σz} {0,0,σz} NA
C2y {σx,σx} {+,−,σx} {+,+,−,−}

Among all possible configurations of Wannier orbitals, we
first consider the case of degenerate (px,py)-like Wannier
orbitals at the honeycomb lattice formed by AB and BA spots
as shown in Fig. 1. This choice is motivated by the property
of energy eigenstates �� shown earlier. We show below that
the case of (px,py) Wannier orbitals on the honeycomb lattice
yields the correct band symmetries at all high symmetry points
of MBZ shown in Table I.

To see this explicitly, it is useful to construct the electron
Bloch state with momentum k ∈ MBZ in px ± ipy orbital
basis as follows:

ck,τ =
∑

j

eik·Rj cjτ , (14)

where τ = ± denotes the Wannier orbital with Lz = ±1 under
threefold rotation around its own center, Rj is the coordinate
of honeycomb lattice site j , cjτ annihilates an electron at site
j with orbital τ , and the sum is over all sites of the honeycomb
lattice.

At � point k = 0, the plane-wave phase factor eik·Rj =
1 does not contribute angular momentum, and the angular
momentum of Bloch wave functions c0,τ comes solely from
the px ± ipy on-site symmetry of Wannier orbital cjτ , leading
to the desired angular momentum Lz = τ = ±1. The twofold
rotation C2y interchanges layer indices 1 and 2, and maps
px + ipy to −px + ipy and vice versa. As a result, the px + ipy

Wannier orbital at AB spot and the px − ipy orbital at BA spot
will furnish 2D representation E of the D3 point group. The
same holds for the px + ipy orbital at BA spot and px − ipy

orbital at AB spot. This leads to two doublets as energy
eigenstates at � point, consistent with our results in Table I.

At K point k = K 1 − K 2, the plane-wave phase factor
eik·Rj on the honeycomb lattice generates nonzero angular
momentum, which adds to the orbital angular momentum of
px ± ipy Wannier orbitals. To see this explicitly, we decom-
pose the Bloch state Eq. (14) as the superposition of Bloch
waves in different sublattices

ck,τ = ck,τ,1 + ck,τ,2, ck,τ,n ≡
∑
j∈Ln

eik·Rj cjτ , (15)

where L1,2 = {∓Rc + n1 A1 + n2 A2|n1,2 ∈ Z} denote the set
of AB/BA spots, respectively.

We then find under the action of C3z around the origin,

cK ,τ,1 →
∑
j∈L1

ei K ·C3z Rj e−2iτπ/3cjτ

=
∑
j∈L1

ei K ·Rj +2iπ/3e−2iτπ/3cjτ

= e−2i(τ−1)π/3cK ,τ,1, (16)

and hence the Bloch state cK ,τ,1 has angular momentum τ − 1
with an additional −1 angular momentum from Bloch wave
phase factor eik·Rj . Likewise, the Bloch state cK ,τ,2 has angular
momentum τ + 1 under threefold rotation C3z. With τ = ±1
we find the four Bloch states cK ,τ,n fall into two categories: one
pair of doublet (cK ,−,1,cK ,+,2) and two singlets cK ,+,1,cK ,−,2.
Notice that the twofold rotation C2y maps cK ,τ,1 to −cK ,−τ,2

and vice versa, we conclude that the doublet (cK ,−,1,cK ,+,2)
furnishes the 2D representation E, while the singlets cK ,+,1 ∓
cK ,−,2 furnish the 1D representation A1,2, respectively. The
case with −K point can be obtained through time-reversal
operation.

At M points k = 1
2 (K 1 + K 2), the little group is C2. As

discussed in Sec. I, the Abelian group C2 can only host 1D
representations denoted as A and B. Since M = 1

2 (K 1 + K 2)
is invariant under C2y up to a reciprocal vector in MBZ, we
find cM,+,1 − cM,−,2 and cM,−,1 − cM,+,2 belong to A repre-
sentation while cM,+,1 + cM,−,2 and cM,−,1 + cM,+,2 belong to
B representation.

We further show in the Supplemental Material [24] that from
an exhaustive case-by-case study, any other type of lattice or
orbital symmetry is incompatible with the band symmetry at
all high symmetry points. Thus, we conclude that the Wannier
orbitals of TBG have px,y symmetries and form a honeycomb
lattice whose sites correspond to AB and BA spots.

The exact form of Wannier orbitals of TBG are to be
constructed from energy eigenstates at all momenta in the
MBZ, which we leave for a future work. We expect that these
Wannier orbitals will extend over multiple supercells of TBG.

III. TIGHT-BINDING MODEL

In this section, we construct a tight-binding model on the
honeycomb lattice with (px,py)-like orbitals as an effective
model for the four lowest bands of TBG. Our construction is
guided by the D3 point group symmetry of TBG and the valley
U(1)symmetry that emerges in the absence of inter-valley
scattering.

As is well-known, p-orbitals are allowed to have two
types of hopping, σ (head-to-tail) and π hopping (shoulder-to-
shoulder). When the σ and π hopping amplitudes are the same,
we arrive at the simplest tight-binding model of p-orbitals on
the honeycomb lattice

H0 = −
∑

i

μc†i · ci +
∑
〈ij〉

t1[c†i · cj + H.c.]

+
∑
〈ij〉′

t2[c†i · cj + H.c.], (17)

where ci = (ci,x,ci,y)T with ci,x(y) annihilating an electron with
px(y)-orbital at site i. t1 is the real hopping amplitude between
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FIG. 5. (a) Hoppings between the nearest neighbors t1,t
′
1 and

fifth-nearest neighbors t2,t
′
2, as shown in Eqs. (17)–(19). (b) Real

space representation of Eq. (18) in the green sublattice. Along arrow
directions the hopping terms are ∓it ′

2 for orbital c±. Here we consider
hopping terms associated with the central site as an example, and
hopping terms associated with other sites can be obtained by lattice
translation. The blue sublattice has the same hopping pattern. (c)
Band structure of the tight-binding model Htb with t1 = 1,t ′

1 = 0,t2 =
0.1,t ′

2 = 0.4,μ = 0. (d) Band structure with the same parameters in
(c) except t ′

1 = 0.1.

nearest-neighbor sites of different sublattices. t2 denotes real
hopping amplitudes between fifth-nearest neighbors with bond
length

√
3A, or equivalently, second-nearest neighbors within

the same sublattice. With only the t1 term, the band structure
is particle-hole symmetric, while the t2 term breaks this
symmetry. μ is the on-site chemical potential. Further neighbor
hoppings can be included as well.

The Hamiltonian Eq. (17) has emergent SU(4) symmetry
and hence every band is fourfold, degenerate including orbital
and spin. This result, however, does not match with numerical
band structure by Nam and Koshino [11] where the orbital
degeneracy is found broken along �M lines. To describe such
effect, we include the following Hamiltonian:

H1 =
∑
〈ij〉′

t ′2[(c†i × cj )z + H.c.]

= −i
∑
〈ij〉′

t ′2(c†i+cj+ − c
†
i−cj−) + H.c. (18)

In terms of the chiral basis c± = (cx ± icy)/
√

2 associated
with px ± ipy orbitals, the hopping terms in Eq. (18) become
imaninery values. As illustrated in Fig. 5(b), orbitals of dif-
ferent chirality experience finite and opposite magnetic fluxes,
and the model as a whole preserves time-reversal symmetry.
Microscopically, the chiral Wannier orbitals c± originate from
states near different valleys ±K of graphene. When intervalley
coupling is negligible, the orbital U(1) symmetry cτ → eiτφcτ

is respected. H1 breaks SU(4) symmetry down to U(1)×SU(2),

where U(1) refers to orbital chirality conservation and SU(2)
refers to spin rotation symmetry.

In principle, we can further include the Hamiltonian break-
ing orbital U(1) symmetry as follows:

H2 =
∑
〈ij〉

t ′1[c†i · e‖
ij e‖

ij · cj − c†i · e⊥
ij e⊥

ij · cj + H.c.], (19)

where e‖,⊥
ij denote in-plane unit vectors in the direction parallel

and perpendicular to the nearest-neighbor bond 〈ij 〉, respec-
tively. This symmetry-breaking term arises when intervalley
scattering is included, and leads to Dirac mass generation,
which we will discuss later in Sec. V.

Symmetry-breaking terms Eqs. (18) and (19) have impor-
tant effects on the band structure. Denoting τ as Pauli matrices
acting in chiral orbital index and σ as Pauli matrices acting
in the sublattice index of the honeycomb lattice, then in the
chiral basis the tight-binding Hamiltonian Htb leads to the k · p

Hamiltonian near � point in MBZ:

H (k) = H1(k) + H2(k),

H1(k) = t1

(
3 − A2

4
|k|2

)
σx + vk · τσy − μ, (20)

H2(k) = t2

(
3 − 9A2

4
|k|2

)
+ λ(k3

+ + k3
−)τz,

where v =
√

3
2 At ′1, λ = − 3

√
3

16 A3t ′2, k± = kx ± iky .
Interestingly, the t ′2 term (k3

+ + k3
−)τz is the orbital analog of

hexagonal warping in spin-helical surface states of topological
insulators [25]. In the full MBZ, the hexagonal warping
term vanishes along �K and MK lines and becomes finite
along �M lines. Hence orbital degeneracy is preserved by
hexagonal warping term along �K and MK lines, consistent
with numerical band structures [11,26]. The t ′1 term further
beaks the orbital degeneracy at any point of the MBZ except
�,K , which corresponds to the reduced symmetry group
D3 × SU(2) where SU(2) is spin rotation group and D3 is point
group acting jointly on lattice sites and (px,py) orbitals. These
effects can be seen from band structures in Figs. 5(c) and 5(d),
where the band structure in Fig. 5(c) with t ′1 = 0 agrees with
calculations by Nam and Koshino [11], and the band structure
in Fig. 5(d) with finite t ′1 shows no band degeneracy except �,K

points where D3 is respected and 2D representation is realized.

IV. HUBBARD MODEL AND METAL-INSULATOR
TRANSITION

From numerical calculations on band structure of TBG, we
expect the lowest band width and hence hopping parameters
t1,t2,t

′
1,t

′
2 are of order of meV. With such small kinetic energy,

the effect of interaction have to be considered. In terms of
Wannier orbitals, we write down the general form of symmetry-
allowed two-orbital on-site Hubbard interaction Hamiltonian:

HUJ = U
∑
i,τ

niτ↑niτ↓ + U ′ ∑
i

nixniy

+ J
∑
i,s,s ′

c
†
ixsc

†
iys ′cixs ′ciys + J ′ ∑

i,τ 	=τ ′
c
†
iτ↑c

†
iτ↓ciτ ′↓ciτ ′↑,

(21)
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where U,U ′,J,J ′ denote the intraorbital Coulomb, interorbital
Coulomb, exchange, and pair-hopping interactions, respec-
tively. τ = x,y is the orbital index and s = ↑,↓ is the spin
index. Here niτs = c

†
iτ sciτs is the number of electrons at site

i with orbital τ and spin s, and niτ = niτ↑ + niτ↓. Since we
choose real px,y orbitals, we further find J = J ′ denotes the
Hund’s coupling.

In general, the density-density interactions should be com-
parable with each other but much larger than Hund’s coupling,
U ∼ U ′ � J,J ′. At the simplest level of approximation,
we set U = U ′ and write down the two-orbital Hubbard
model as H = H0 + H1 + H2 + HU where the on-site inter-
action is

HU = 1

2
U

∑
i

(ni − 1)2 (ni = nix + niy), (22)

and H0,1,2 are given in Eqs. (17), (18), and (19).
As mentioned earlier in Sec. II, the Wannier orbitals are

expected to extend over the supercell. Hence electron-electron
interaction between nearby sites

HV =
∑
ij

Vijninj (23)

is also present and may be important. Finally, we note that the
strength of Coulomb repulsion is reduced by screening from
excited bands of TBG which span a wide range of energies from
10 meV to 10 eV. Furthermore, in typical graphene devices, the
long-range Coulomb interaction is screened by nearby metallic
gates at a distance comparable to the size of the supercell.
We thus expect a model with a few short-range interactions is
sufficient.

We now address the metal-insulator transition in the two-
orbital honeycomb Hubbard model and connect our findings
to experimental results. With two sites per unit cell and two
orbitals at every site, our honeycomb lattice model can accom-
modate up to eight electrons per unit cell, which corresponds
to the complete filling of the miniband in TBG. The charge
neutrality point of TBG corresponds to on average n = 4
electrons per unit cell or equivalently q = 2 electrons per site
of honeycomb lattice in our model. The Mott insulator state
found in experiments occurs at n = 2 electrons/holes per unit
cell, or equivalently q = 1 electron/hole per site.

Generally speaking, in Hubbard models with an integer
average number q of electrons per site, a transition from
metal to Mott insulator is induced by increasing the ratio
of Coulomb repulsion and bandwidth U/t . When the twist
angle approaches the magic value, the miniband bandwidth
decreases very rapidly [11,13]. Therefore varying the twist
angle slightly induces a bandwidth-controlled metal-insulator
transition. Importantly, in two-orbital Hubbard models, the
critical value of U depends on q. In the SU(4) symmetric limit,
the critical coupling Uc for q = 2 is known to be larger than
that for q = 1, because orbital fluctuations are largest in the
former case [27,28]. This is consistent with the experimental
finding of the insulating state at q = 1, but not at q = 2 (charge
neutrality).

Transport measurement reveals that the insulating state in
TBG has a thermal activation gap of 0.3 meV, and is destroyed
by the application of an in-plane or perpendicular magnetic

field of 8 T corresponding to a Zeeman energy of 0.5 meV
[1]. This implies that the charge gap of the correlated insulator
is much smaller than the bandwidth. Therefore, the insulating
state is a weak Mott insulator close to a metal-insulator tran-
sition, ruling out the possibility of U � t . Moreover, before
it becomes highly insulating at low temperature, above 4 K,
resistivity increases linearly with temperature. This behavior
is characteristic of high-temperature bad-metal regime of a
Mott insulator with or without doping, seen in many oxides
and in numerical study of Hubbard model [29].

V. DIRAC FERMION RECONSTRUCTION
AT CHARGE NEUTRALITY

We now highlight an interesting finding in the experimental
paper [1], whose significance may have not been fully recog-
nized. Over a wide range of densities around charge neutrality,
Landau-level degeneracy is found to be fourfold instead of
eightfold, as expected from the eight degenerate massless Dirac
fermions coming from graphene valley, electron spin, and ±K
points of MBZ.

Our work offers a possible solution to this problem. As
we showed previously in Secs. I and III, after band folding,
the Dirac doublet at +K 1 in layer 1 and the one at −K 2

in layer 2 will fall on top of each other at +K of MBZ.
From symmetry considerations, the resulting four states at
+K consist of one doublet (E) and two singlets (A1 and A2),
representation of the D3 point group. The same result applies
to the −K point. Therefore, half of the Dirac fermions in the
doublet representation are protected by symmetry, while the
other half in the singlet representation are unstable and can
become massive if perturbations are considered.

First, the interlayer tunneling Hamiltonian Eq. (1) contains
terms that scatter states at different valleys on different layers,
which generates single-particle mass for the half unstable Dirac
fermions. However, as we mentioned earlier, the intervalley
scattering requires large momentum transfer and is very weak
when the twist angle is small.

On the other hand, when the twist angle approaches
the magic value, the miniband bandwidth decreases rapidly
[11,13], lattice relaxation and Coulomb interaction become
important and can strongly renormalize the single-particle
band dispersion. In particular, we envision that these cor-
relation effects can significantly enhance the single-particle
intervalley scattering and hence the corresponding Dirac mass
term, without breaking any lattice symmetry. If this scenario
is correct, we expect the correlation-enhanced Dirac mass in
TBG near charge neutrality will be controlled by the twist
angle, becoming very small away from the magic angle. This
prediction can be tested by systematically studying Landau-
level degeneracy in TBG with different twist angles.

In terms of our tight-binding model, the mass generation
term corresponds to t ′1 term in Eq. (19), which breaks U(1)
symmetry in orbital space. As we discussed in Sec. III and
shown in Figs. 5(a) and 5(b), for t ′1 	= 0, the unstable Dirac
fermions are gapped out at low energy and only half of
Dirac fermions remain robust. As a result, the Landau-level
degeneracy becomes fourfold, coming from ±K points of
MBZ and electron spin.
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VI. OUTLOOK

The two-orbital honeycomb Hubbard model proposed
in this paper provides a theoretical framework for studying
correlated electron phenomena in graphene superlattices.
Many important questions remain to be addressed, among
which we highlight a few. First, the nature of the correlated
insulator ground state at q = 1. It may exhibit long-range
order, such as spin, orbital, or valence bond solid order.
Alternatively, because of the proximity to metal-insulator
transition and/or the presence of orbital fluctuations [30], the
correlated insulator may be a quantum spin liquid. In this
regard, it is worth noting that in the special limit of our Hubbard
model with SU(4) symmetry, the effective Hamiltonian for
the correlated insulator at strong coupling is the SU(4)
generalization of Heisenberg model (Kugel-Khomskii model)
on the honeycomb lattice. Analytical and numerical studies
of this model indicate the lack of any long-range order [31]
and suggest a possible quantum spin liquid with gapless
neutral fermionic excitations [32]. Thermal conductivity
measurements can tell the existence or absence of gapless
neutral excitations in the correlated insulator state of TBG.

Our model also provides a starting point for studying super-
conductivity in TBG. The strong electron repulsion disfavors

on-site pairing, and opens the possibility of unconventional
pairing symmetry. We leave the study of superconductiv-
ity in the two-orbital honeycomb Hubbard model to future
work.

Note added. Recently, the prediction of this work based on
symmetry analysis that Wannier orbitals of the lowest mini-
bands of TBG have (px,py) symmetry and form a honeycomb
lattice has been verified by explicit numerical calculations
[33,34]. These works also found tight-binding models of the
same form as ours. In contrast, a different honeycomb model
was proposed in Ref. [35], where orbitals have two different
on-site energies, instead of being degenerate as dictated by the
D3 lattice symmetry of TBG.
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