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Although numerical studies modeling the quantum Hall effect at filling fraction 5/2 predict either the Pfaffian
(Pf) or its particle-hole conjugate, the anti-Pfaffian (aPf) state, recent experiments appear to favor a quantized
thermal Hall conductivity with quantum number K = 5/2, rather than the value K = 7/2 or 3/2 expected for
the Pf or aPF state, respectively. While a particle-hole symmetric topological order (the PH-Pfaffian) would be
consistent with the experiments, this state is believed to be energetically unfavorable in a homogenous system.
Here we study the effects of disorder that are assumed to locally nucleate domains of Pf and aPf. When the disorder
is relatively weak and the size of domains is relatively large, we find that when the electrical Hall conductance
is on the quantized plateau with oy, = (5 /2)(e?/ h), the value of K can be only 7/2 or 3/2, with a possible
first-order-like transition between them as the magnetic field is varied. However, for sufficiently strong disorder,
an intermediate state might appear, which we analyze within a network model of the domain walls. Predominantly,
we find a thermal metal phase, where K varies continuously and the longitudinal thermal conductivity is nonzero,
while the electrical Hall conductivity remains quantized at (5/2)e*/ h. However, in a restricted parameter range
we find a thermal insulator with K = 5/2, a disorder stabilized phase which is adiabatically connected to the

PH-Pfaffian. We discuss a possible scenario to rationalize these special values of parameters.

DOLI: 10.1103/PhysRevB.98.045112

I. INTRODUCTION

An even-denominator fractional quantized Hall (FQH)
state at filling fraction v = 5/2, in a strongly-confined two-
dimensional electron system, was first observed by Willett
et al. in 1987 [1]. There have been debates about the nature
of this state ever since. Exact diagonalization calculations in
finite systems as well as density-matrix-renormalization-group
calculations have strongly suggested [2-9] that the ground state
atv = 5/2 should either be a state with the quantum numbers of
the Pfaffian (Pf) state suggested by Moore and Read [10], or its
particle-hole conjugate, commonly denoted the anti-Pfaffian
(aPf) state [11,12]. The Pf and aPf states can both be thought
of as paired states [13] of composite fermions [14—16], and
have many common properties, including the existence of
charge e/4 quasiparticles with non-Abelian statistics, but they
have been shown to be topologically distinct. In particular,
the quantized thermal Hall conductance resulting from edge
modes in the two states are predicted to have different values.
Specifically, it is predicted that if the thermal Hall conductance
is written as k¢, = K«oT, where ko = (n2k§/3h), then K is
the chiral central charge of the boundary conformal field theory
[17], with K = (7/2) for the Pf state and K = (3/2) for the
aPf state.

In the limit where the participating electrons are perfectly
confined to the second Landau level and are completely spin
polarized, and interact with purely two-body interactions, the
Pf and aPf states must have identical energies, by the particle-
hole (PH) symmetry of the projected Hamiltonian. Although
this degeneracy will generally be broken by Landau level
mixing effects, it appears from various calculations that the
energy difference at v = 5/2 between the Pf and aPf states is
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relatively small for Hamiltonians relevant to the experimental
situation in GaAs, and there has not been unanimous agreement
about which of the two states should have lower energy (current
numerical calculations seem to favor aPf [6,8,9]).

If one ignores effects of Landau level mixing, the choice
between Pf and aPf in a finite sample could be determined
by boundary effects, which clearly will violate PH symmetry.
PH symmetry will also be broken by any deviations of the
electron density from the value corresponding to v = 5/2.
In particular, in either one of the two states, the energy to
create a positively charged quasiparticle, with charge e/4 will
be different from the energy to produce a negatively charged
quasiparticle, with charge —e/4. If, for the sake of argument,
the positive quasiparticle has the lower energy in the aPf state,
then the negative quasiparticle will have the lower energy, by
an equal amount, in the aPf state. Then in a sample with filling
fraction v slightly less than 5/2, but still within the v =5/2
quantized Hall plateau, we would expect the system to prefer
the aPf state, whereas for v slightly greater than 5/2, the Pf state
would have lower total energy. If the effects of Landau level
mixing are not zero but are sufficiently small, the transition
point between the two states might be shifted slightly away
from v = 5/2, but in the absence of boundary effects or of
possible complications due to disorder, we would still expect
a sharp transition between the two states. If the effects of
Landau level mixing are too large, then only one of the two
states would exist within the allowed range of v. Thus, if one
were to measure the thermal Hall conductance at any fixed
filling fraction inside the 5/2 plateau, one should obtain either
K = (3/2) or (7/2), with perhaps a sharp transition between
the two values as one varies the filling factor.
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Recent measurements [18] by Banerjee et al. of the thermal
conductance at v =5/2 are in dramatic disagreement with
the above scenario. They obtain the result K = (5/2), with a
small uncertainty, which clearly distinguishes the result from
ether K = (7/2) or (3/2). The puzzle is how to explain this
discrepancy.

Recently, the composite fermion description of the half
filled Landau level [ 16] was augmented to incorporate particle-
hole symmetry [19]. Effectively, this theory endows composite
fermions with a Dirac character, or more precisely maps the
problem to that of the Dirac surface states of three dimensional
topological insulators [19-23]. A natural extension of this
inquiry is if there is a particle-hole symmetric quantized Hall
state for the half filled Landau level (unlike the Pfaffian and
anti-Pfaffian states which are mapped to one another under
particle-hole). Indeed, such a topological order was obtained
while studying the surface of a particle-hole symmetric topo-
logical insulator (Class AIIl) [24]. The same anyon content
appears in the T-Pfaffian state, a surface topological order
proposed for Z, topological insulators [25-29]. In Ref. [19],
it was shown that this particle-hole symmetric topological
order can be obtained from pairing Dirac composite fermions
[19-22,30] in the s-wave channel, where it was named the
PH-Pfaffian (we will adopt this terminology here). On the other
hand, pairing in the d + id (d — id) channels leads to the Pf
(aPf) state, since in the Dirac composite fermion description,
time reversal plays the role of particle-hole symmetry. Even
in the absence of particle-hole symmetry, the PH-Pfaffian
topological order is well defined and Ref. [12] had earlier
proposed that this same state could arise at the transition
between the Pfaffian and anti-Pfaffian phase.

Since the PH-Pfaffian FQH state at v = 5/2 is expected
to show K = 5/2, the experiments may be considered to be
evidence in favor of such a state. However, it has been widely
believed, based on numerical calculations, that a state with
the quantum numbers of the PH-Pfaffian would have a higher
energy than the Pf or aPf state, and might not even possess
an energy gap, for realistic interaction parameters. This belief
is partly based on unpublished results and on calculations
that focus on the accuracy of the Pf or aPf ground states in
spherical geometries but do not explicitly consider the flux
numbers appropriate for the PH-Pfaffian state [2,3,5,9,31],
and it probably deserves further examination. Nevertheless,
in order to investigate the effects of disorder, we assume here
that the belief is correct. It was also argued, analytically, in
Ref. [32] that a PH-Pfaffian state, when projected into a single
Landau level, must necessarily be gapless, but we have not been
able to completely follow the logic behind those arguments.

Motivated by previous experiments that seemed to deviate
from results expected for the Pf or aPf states, Zucker and
Feldman [33] have suggested that the PH-Pfaffian might some-
how be stabilized by disorder, but they were not very specific
about how this might come about. In the current manuscript,
we attempt to explore further the idea that the experimental
situation may be a consequence of disorder. We consider a
set of related models, with differing assumptions about the
energy scales separating the different possible phases and their
domain boundaries, as well as the length scale and magnitude
of asymmetry fluctuations due to disorder. We conclude that
a disorder-stabilized phase with the quantum numbers of the

PH Pfaffian is indeed possible in principle, but the conditions
for its realization may be very restrictive. We believe that it
remains very much an open question whether disorder-induced
stabilization is the explanation for the experimentally-observed
heat conductivity.

Our analysis begins with an assumption that PH asymmetry
due to Landau level mixing may be neglected and that the
ground state at v =5/2 in an infinite disorder-free system
may be indifferently the Pf or aPf state. We assume that the
actual system is subject to potential fluctuations on a length
scale & large compared to the magnetic length, arising from
fluctuations in the density of charged impurities in a doping
layer, which is set back from the electron layer. (Typically, &
will be of the order of the set-back distance.) We assume that
these fluctuations are large enough to favor the nucleation of
one or more charged quasiparticles of one or the other sign in a
typical region of size £. Then, provided that one could neglect
the energy cost of a domain wall and one could neglect the
thickness of such a wall, one might expect that sample would be
divided into Pf and aPf regions, with a characteristic size scale
of order &, and roughly equal amounts of each phase. In this
scenario, as we shall discuss further below, if one can neglect
tunneling between domain walls that come close together,
the macroscopic thermal Hall conductance would be either
K = (7/2) or (3/2) depending on which of the two phases
percolates across the sample. Consequently, in this model,
if one were to vary the average filling fraction by varying
magnetic field, one would expect a sharp transition between
the two values of K as first one, then the other phase percolates.
This is illustrated by the dashed blue curve in Fig. 1.

Other possibilities arise, however, if we assume that the
domain walls have a finite thickness, but we still neglect
the domain wall energy cost. By domain wall thickness, we
mean that if two domain walls become closer together than
the domain wall thickness, we must take into account the
possibility of the tunneling of excitations between the two
domain walls. Then we have the possibility that for a finite
range of v, neither Pf nor aPf will percolate; rather the domain
walls will form the percolating phase (see Fig. 2). Then we
should consider at least two possible outcomes. One is that low
energy neutral excitations can diffuse freely on the network of
domain walls, the second is that only localized excitations can
exist at low energies. We argue below that in the latter case,
the system will have a quantized thermal Hall conductance
with K = (5/2), and will share the topological properties
of the PH-Pfaffian phase. The state with delocalized neutral
excitations, which we denote as the “quantized Hall thermal
metal” (QHTM) state, will not have a quantized thermal
Hall conductance, but may have a value of K that varies
continuously as one varies v. The metallic phase will also
have a longitudinal thermal conductance «,,, which differs
from zero and which would have to be taken into account
in analyzing the experiments, which actually measure a two-
terminal thermal conductance. However, we emphasize that the
QHTM is still an (electrically insulating) quantized Hall state,
whose electrical Hall conductivity oy, = (5/ 2)e?/ h remains
quantized, and o,, = 0 at zero temperature, since charged
quasiparticles should still be localized by the disorder and
Coulomb interactions. The two scenarios are both illustrated,
in Fig. 1, by the red solid and dotted curves.

045112-2



TOPOLOGICAL ORDER FROM DISORDER AND THE ...

PHYSICAL REVIEW B 98, 045112 (2018)

PH Pf

v

Quantized Hall
thermal metal

anti-Pfaffian Pfaffian

Ve \4

K

12 rere e

' /'
5/2 —
32| .

>V

Ve

FIG. 1. (Top) Possible phase diagram containing four phases: Pf,
aPf, PH-Pf, and the quantized Hall thermal metal. The vertical axis
8 is primarily related to disorder strength, but could also be affected
by detailed energetics. At a given disorder strength, three scenarios
are possible as one varies the filling fraction v across the symmetric
point v (which is expected to be shifted slightly away from 5/2 due
to Landau level mixing): a direct first-order-like transition from Pf to
aPf phase (dashed blue line), an intermediate thermal metal (dashed
red line) and an intermediate PH-Pf phase separated from Pf/aPf by
a thermal metal (solid red line). The values of K as functions of v in
these scenarios are shown in the lower panel.

Even without disorder, a highly anisotropic version of the
quantized Hall thermal metal at v = 5/2 has been proposed
earlier in Ref. [34] as a candidate phase due to spontaneous
formation of Pf and aPf stripes. Here, we focus on the scenario
in which the system is a pure Pf or aPf state in the clean limit,
and the quantized Hall thermal metal phase, if realized, is a
result of disorder.

We note that the localization problem studied here will fall
into the Altlander-Zirnbauer symmetry class D [35], involving
fermions without any nontrivial global symmetry. In general,
systems in this class can be either localized or delocalized
[36,37], depending on microscopic details. Analysis of these
details will be a principal focus of the present paper.

It is important to note that in practice, the geometric domain
structure will be driven by energy considerations, and will
certainly not be completely random. For example, we must
take into account the energy cost of domain walls. If this energy
cost is too high, or if the domain size £ is too large relative to
the domain wall thickness, it may be energetically favorable
for the system to spontaneously minimize the length of domain
walls by arranging itself so that either the Pf phase or the aPf
phase percolates, rather than the domain walls, at any value
of the magnetic field. In this case, we return to the scenario
of the blue curve in Fig. 1, which is to say a direct first-order
transition between the Pf and aPf states.
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FIG. 2. Illustrations of inhomogeneous Pfaffian/anti-Pfaffian
mixtures. The upper panel describes when a single phase (for example
anti-Pfaffian) percolates, and the system behaves on macroscopic
scales as the percolated phase, with the corresponding edge states.
The lower panel describes when neither of the two phases percolates,
but the domain walls between them percolate. If the neutral modes
propagate diffusively on the domain walls, the system becomes a
thermal metal (but is still a quantized electric Hall insulator). If the
neutral modes are localized instead, the system becomes equivalent
to a PH-Pfaffian state on macroscopic scales, with the edge modes
that give K = 5/2.

It has been argued that in two dimensions, a first-order
transition should, in principle, be broadened in the presence
of disorder, by an amount of order exp(—1/8%), where 8 is
proportional to the root-mean-square strength of the fluctu-
ating disorder potential [38,39]. It is not clear whether these
arguments apply to the present situation, but in any case, the
broadening of the transition should be negligibly small in the
case of weak disorder. In a finite sample, the precise transition
point may depend on boundary conditions, and will generally
vary slightly from one realization to another. Also, there can be
a small range of parameters where both phases can percolate
across the sample in one direction. We neglect such finite-size
effects in our discussions.

If the disorder potential is weak, then only rare fluctuations
will be large enough to produce localized quasiparticles of
either sign. In this case, the length scale for possible formation
of Pf and aPf domains should become large. Then the energy
cost of domain walls should be dominant, and the first-order-
like transition scenario described above should be favored.

We present a schematic phase diagram in Fig. 1, which
describes a possible scenario consistent with the above dis-
cussion. If this phase diagram is correct, and if the phase
observed in experiments is indeed a PH-Pfaffian stabilized by
disorder, then there is an interesting prediction: with decreasing
disorder, the system would first enter the QHTM phase, with
unquantized thermal conductance, before landing on either the
Pf or aPf phase in the limit of very weak disorder.
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In all of the above scenarios, as previously mentioned, the
electrical Hall conductivity will remain quantized at the value
(5/2)e?/ h, and the longitudinal conductance o, will remain
zero, in the limit of zero temperature, as long as the charged
quasiparticles remain localized. Of course, if the filling fraction
deviates too far from 5/2, so that the density of quasiparticles
becomes too large, the quantized conductance will be lost,
either because the quasiparticles are delocalized and are free to
move, or because there is a transition to a completely different
phase. If the region of quantized electrical conductance is too
small, then one would not be able access more than one of the
phases shown in Fig. 1, and one might then observe only one
value of the thermal Hall conductance in the region where the
electrical Hall conductance is pinned on the 5/2 plateau.

In the following three sections, we shall formulate and
analyze a network model designed to study the possible phases
that can result if a first-order-like transition can be avoided, and
a percolating network of domain walls can be achieved. In the
two subsequent sections, we include some additional remarks,
and we restate our conclusions.

II. STRUCTURE OF THE DOMAIN WALLS
AND JUNCTIONS

Our goal here is to analyze the situation where domain
walls are allowed to intersect, potentially leading to either the
second or third scenario defined above. We assume that in the
interior of any Pf or aPf region there is a nonzero energy gap for
mobile excitations, so that heat conduction at low temperatures
is determined by the low-energy modes that propagate along
the domain boundaries. Our first task will be to characterize
these propagating modes. Then, we shall discuss the possible
ways that these modes can be connected at a junction between
two domain walls.

A. Domain wall structure

From topological considerations, we know that the bound-
ary between a Pf and aPf domain must carry a thermal con-
ductance with K = 2. Quite generally, this may be described
in terms of four co-propagating chiral Majorana modes, each
of which has K = 1/2. However, at least in the simplest cases,
we find that the four Majorana modes occur in pairs that
may be combined to give two complex chiral fermion modes,
generically with different velocities.

To model a domain boundary, we assume that the Pf and
APF phases can be represented as paired superconducting
states formed from a Fermi sea of composite fermions. We
employ specifically the formalism introduced by D. T. Son
[19], in which the system is described by a set of massless
Dirac fermions, interacting with an emergent gauge field a,,.
The Hamiltonian for the fermions may be written as H =
Hy + Hx, where

Ho = / Pryt ik - — v, )

Hy = /derk;‘l‘W{Af,(kx +iky)'}y +He (2
!

Here, k = p — d, where p = —ihV, the chemical potential
is a constant, and {, } is the anitcommutator. We shall consider
a uniform domain wall which is oriented along the x—axis and
centered at y = 0, so that the pairing potentials A; are functions
of y but are independent of x. Moreover, we consider a situation
in which @ = 0.

In principle, the pairing potentials should be determined
self-consistently by equations that have the form, in a local
approximation, of

Ap o< —hy (Yplky +iky) Py). 3

We shall assume here that A; = O for all / other than [ = 42,
and that A» = A_, > 0. Thus only / = &2 will enter in Eq. (2).
We shall not actually solve any self-consistency equations here,
but shall only make use of the qualitative form of A;. We shall
assume that |A| is small compared to the Fermi energy, Er =
vpkp, but not necessarily very small.

To describe a domain wall, we assume that A, — 0, for
y = —o00, and A_; — 0, for y — +o00. Further, we assume
that A, and A_, go to constants for y — =00, respectively,
with equal magnitudes given by the bulk order parameter,
and with specified phases, ¢, and ¢_,. Placing the center
of the domain wall at y = 0, we may assume by symmetry
that |Ax(y)| = |A_2(—y)|, so the two order parameters have
equal values at y = 0. If we neglect the spatial variation of
the order parameters about y = 0, we then find that the energy
spectrum there has four Weyl nodes, located at points with
ky + ik, = kre'®, with

40, = — 8¢ + 2j, )

where j goes from 1 to 4, and §¢ = ¢ — ¢_».

If the spatial variation of the order parameter is slow
compared to 1/kr, we can neglect mixing between the nodes,
and the effect is that of a mass parameter that varies linearly
with y in the vicinity of y = 0. This model can be solved by
standard methods [40], and one finds that each of the four nodes
gives rise to a one-dimensional chiral Majorana mode, with
a linear dispersion along the direction of the domain wall, in
addition to some number of massive fermion modes, which we
neglect here, assuming that the temperature is sufficiently low.
This domain wall structure with four chiral Majorana fermions
was discussed in Ref. [41]. The velocities of the Majorana
modes are given by

vj = (v3cos?6; + vl sin?6;) ", (5)

where
va = 4| As|/kr, (6)

and Ay, here, is the value of the/ = 2 order parameterat y = 0.
For a domain wall oriented at an angle « relative to the x axis,
the arguments 6; in Eq. (5) should be replaced by (6; — o).

Because the four nodes 6; are separated in momentum
by an amount of order kr, disorder with wave vectors small
compared to kr will not be effective in mixing the Majorana
modes, which originate from different nodes. Also, if the
domain wall changes its direction on a length scale large
compared to 1/kp, the Majorana modes should follow along
adiabatically, without significant mixing.
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FIG. 3. (a) Scattering at each domain wall junction, described
by the scattering matrix M. (b) Illustration of the network model.
Associated with each link is an O(4) flavor mixing matrix, and with
each vertex a scattering matrix M.

Perturbations that can cause scattering between the Majo-
rana modes can occur, however, if there is a localized charged
quasiparticle very close to the domain wall. Quasiparticles
are associated with vortices in the superconducting order
parameter, which can cause large momentum transfers for
composite fermions close to the vortex core.

We remark that the phase difference ¢ is expected to be
constant, or at most a slowly varying function of position,
along any connected network of domain walls. This is because
the order parameters A, and A_; couple to the same vector
potential_ﬁ, and to minimize the energy we require that
(V¢ — a) and (V¢_, — d) should both vanish in any region
where both order parameters are different from zero, so the
phase gradients must be equal.

B. Junction between domain walls

‘We now consider what happens if two domain walls cross at
apoint, as indicated in Fig. 3(a). The junction is here oriented so
that there are four Majorana modes each entering from the left
and from the right, and four modes, each, leaving towards the
top and towards the bottom. Transmission through the junction
can be described by a scattering matrix of the form

Z3 Y Z 7
<Z4) B <Zz)’ @

where Z; and Z; (Z3 and Z,) are the four-component real
amplitudes of the incoming (outgoing) Majorana fermions.

If there are no charge quasiparticles close to the junction, we
may assume that the two order parameters vary smoothly near
the junction, and that the difference |A,|?> — |A_5|? vanishes
quadratically near the center. (For the geometry illustrated, this
difference is proportional to xy.) Then there should, again, be
no mixing between the four Majorana “flavors,” corresponding
to the four nodes 6;, and M will be block-diagonal in the flavor
space. More generally, if we take into account the possibility of
scattering between the four modes on any given domain wall,
we may write M in the general form

M = 0103(®;M;)040,, 3

where O, is an O(4) rotation matrix acting on Z, (a =
1,2,3,4) that describes the mixing of the four flavors of
Majorana fermions on link a, and the reduced scattering matrix
(®&:iM;) = M is block-diagonal in the flavor space (j being the

flavor index). Unitarity requires the real matrix M; to take the
form

cosa; sina;
M; = . ©

—Sindo; CoSK;

The probability amplitude for mode i to turn left and right is
given by cos «; and sin «;, respectively. The critical point is at
o, =m/4.

Formally, we can absorb the flavor-mixing matrices O,
to the links and think of M as the scattering matrices at the
vertices, even if physically the flavor mixing can happen at
both the links and the vertices.

III. CHALKER-CODDINGTON-TYPE ANALYSIS

Model setup

Here, we analyze the localization problem of the Majorana
fermions on the Pfaffian/anti-Pfaffian domain walls, assuming
that the domain walls (instead of the Pfaffian or anti-Pfaffian
domains) percolate over the entire sample. The analysis is
carried out using a Chalker-Coddington type of network model,
where one assumes a regular geometry for the domain walls,
as illustrated in Fig. 3(b), but introduces randomness for the
propagators along the bonds and/or for the unitary matrices
at the junctions [42]. A closely related model with only one
Majorana fermions per link has been studied previously in
Ref. [37]. At each vertex of the network there is a scattering
matrix M as defined in previous section, and along each link we
introduce a flavor mixing matrix O,, which takes into account
any flavor mixing due to scattering along the link, as well as
rotations accumulate during passage along the link due to any
differences in the wave vectors associated with the different
modes. In the simulations described below, we assume that M
is spatially uniform, and put all the randomness in O,.

Numerically, we simulate the model on a quasi-one-
dimensional L x N cylinder, where N can be large (maximally
we go to 5 x 10%) and L is relatively small (maximally we
go to 32). The total transfer matrix describing propagations
across the entire cylinder (in the N direction) is obtained by
multiplying up all the scattering matrices on the vertices and
the mixing matrices on the links. The localization length &, of
this quasi-1D system is then extracted using standard methods
[42,43]. Whether the two-dimensional system is localized or
not is determined by whether &, saturates as L grows, or
equivalently, whether A; = & /L decreases as L grows. There
are two groups of parameters that determine the model: the
uniform part, given by «;, and the random part, given by the
form of the random matrices O, (namely, how random they
are allowed to be).

For each fermion flavor, at o, = 7 /4, the vertex is sym-
metric between left-turning and right-turning. In the clean
limit of the network model (O, = 1), this simply gives a
gapless Majorana fermion describing the transition between
a trivial and a p + ip topological superconductor. Away from
this special value of @, = 7 /4 the Majorana fermion becomes
gapped, and time-reversal symmetry (now broken) relates
a to o = /2 — «, corresponding to positive and negative
Majorana mass, respectively (again in the clean limit of the
network model).

045112-5



WANG, VISHWANATH, AND HALPERIN

PHYSICAL REVIEW B 98, 045112 (2018)

We now discuss the form of randomness on O,. There are
roughly three classes of randomness here.

(1) The fermions can mix due to random scattering, which
comes from a unitary process and gives an O, € SO(4) (not
0O(4)). As discussed in Sec. I A, this requires short-range
disorder, which is, in principle, different from the longer-
ranged disorder that is primarily responsible for the formation
of the domain walls. We implement this on each link as e®-i 7,
where T; ; is one of the six generators of S O(4) that rotates in
the (i, j)plane (1 < i < j < 4),and 1, j are picked randomly at
each link, giving rise to mixing of two flavors chosen randomly.
¢, is arandom number uniformly distributed in (—#; ;7,n; ;)
with some number 7; ; controlling the strength of scattering
in the channel given by the generator 7; ;. Strong scattering
corresponds to 7 = 1 where the two flavors can mix arbitrarily,
while a small n means weak scattering (mixing). One can
implement an even stronger mixing by first generating several
independent O € SO(4) and then taking their product. We
expect that this will not change the results qualitatively, though
we will use a version of this in Sec. IV B for convenience.

(2) Random vortices (7 -fluxes) within the domains. In our
physical context, they correspond to charge +e/4 quasiparti-
cles nucleated by impurity potentials, and therefore should be
included in general unless there exist some highly nontrivial
mechanism to suppress unpaired vortex excitations within the
domains. Notice that a real e/4 quasiparticle (vortex) comes
with a localized Majorana zero mode associated with it, and,
in principle, this zero mode can mix with the fermions on the
domain walls. However, since the domain size should be much
larger than the correlation length (otherwise it could hardly
be called a domain), the vortices will typically be deep within
the domains and therefore their zero modes will not mix with
the domain wall fermions. Therefore we do not attempt to
include such zero modes in our network model. In our model,
an odd number of vortices within a domain correspond to a
nontrivial flux O; 0, 0304 = —1 on a plaquette (1,2,3,4 being
the edges of the plaquette), and therefore random vorticity
is implemented through random signs on each link that are
seen by all the four flavors, i.e., O, = £1. Physically, it
seems natural to assume that half of the domains contain odd
number of vortices, so the random signs come with equal
probability. One can also consider more general cases with
different average vortex density, implemented in the model by
having probability p for O, = —1 on each link. Notice that this
type of randomness is already contained in the S O(4) mixing
from random scattering, unless there is at least one flavor i that
is only weakly mixing with any other flavor (1; ; <« 1 for some
i and any j), in which case this random vorticity disorder has
to be included separately.

(3) Random “improper” vortices: these are 7 vortices that
are seen only by one or three out of the four Majorana fermions.
Formally, this enlarges the space of O, from SO(4) to O(4).
Physically, they correspond to vortices that lie in between
the Majorana fermions (assuming they have some spatial
separation). However, such vortices should be (1) very rare,
and (2) energetically unstable toward redrawing the domain
walls. We therefore assume that they are irrelevant for realistic
systems. One can still study them as a theoretical problem,
and we find that they almost always lead to a thermal metal
(delocalized) phase, in agreement with earlier works with

only one flavor of Majorana fermion [37]. We do not include
improper vortices in any calculations described below.

IV. RESULTS OF THE NETWORK MODEL

As we shall see below, our network model does not behave
in a universal manner (in contrast to the usual Chalker-
Coddington model describing quantum Hall plateau transi-
tions). Instead the long-distance behaviors depend heavily on
detailed choices of various parameters, which in turn depend on
microscopic details including energetics of the domain walls
and junctions. Given that we understand very little about the
exact structures of the domain walls and junctions, we will
discuss several distinct scenarios below, in decreasing order
of “naturalness”—a scenario is considered more natural if it
involves less nontrivial assumptions about the domain walls.
We find that in the scenario with minimal assumption, there
is only a metallic phase between the Pfaffian and anti-Pfaffian
states at finite disorder, which is at odds with the experimental
observation of K = 5/2. A PH-Pfaffian state could emerge
(with K = 5/2) in some other scenarios if we make certain
extra assumptions about the domain wall structures. Among
the simpler ones of those scenarios, the PH-Pfaffian state and
the Pfaffian/anti-Pfaffian states are separated by an intervening
thermal metal. In such cases we predict that if one further
reduce the disorder strength, the system would go through a
thermal metal phase with nonzero «.,/7T, before eventually
going into either the Pfaffian or anti-Pfaffian state in the clean
limit.

A. Scenario A: an intervening metal (and nothing else)

We first look at the simplest scenario, which as we shall see
does not explain experimental measurements. In this scenario,
we do not assume any special structures between the four
Majorana fermions on the domain walls. In particular, we
assume that the scattering (or tunneling) at the domain wall
junctions (vertices in the network model) does not discriminate
different flavors. For the network model, this means that
n;,j = nisidentical for all (i, j), and o; = « is identical for the
four flavors. As one tunes the system from the Pfaffian to the
anti-Pfaffian state, the value of « turns fromo < a.toao > «,.
In the clean limit of the network model (O, = 1), this simply
describes four Majorana fermions with identical mass gaps.

Numerically, we find that in this scenario the Pfaffian/anti-
Pfaffian states are stable as long as « is sufficiently far away
from .. When o becomes close (not necessarily identical) to
o, the system becomes delocalized and we obtain a thermal
metal. The metallic region broadens as 1 grows. There is no
other localized phase in between. A crude phase diagram is
shown in Fig. 4. Notice that for the real physical system, o
is related but not directly identified with v: if disorder is too
weak, the transition between Pf and aPf states is first-order-
like, and we expect a discontinuous jump in « as one tunes v
across V.. Only in the intermediate disorder regime we expect
(@ —ac) ~ (v —.).

Random vortices, which should be included for real sys-
tems, were omitted in the above consideration, except in the
limit with strong 1, where random vortices are automati-
cally included. Adding random vortices in our model will
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FIG. 4. Phase diagram of the network model in scenario A, with
n;,; = n forany (i, j) and o; = o for any i. The Pfaffian/anti-Pfaffian
transition in the clean limit (n — 0 and o = 7 /4) is broadened to a
thermal metal phase upon introducing a generic disorder. Here, as in
Figs. 6 and 7, points represent data, while lines are guides for the eye.

significantly broaden the metallic region at small . In fact,
when n — 0, it was already noted in Ref. [37] that a finite
density of uncorrelated random vortices makes the system
metallic for any « (except at the two extreme points o = 0
or r/2). This, however, does not change our conclusion for
the real system at clean limit, which is described by a first-
order-like switching between Pf and aPf phases.

Notice that the broadening of the transition into a metallic
phase is in sharp contrast with some other symmetry classes
of disordered free fermion systems that do not allow metallic
phases. For example, if we have a clean system realizing
a direct continuous transition between a v =1 and v = —1
integer quantum Hall phases (symmetry class A, with only
charge conservation), once disorder is introduced, the critical
point will be localized to a stable phase (v = 0 insulator),
with two transitions nearby, one from v =1 to v =0 and
the other from v = 0 to v = —1. However, in our case (class
D) since a metal is allowed, the critical point between the
Pfaffian and anti-Pfaffian states simply broadens to a metal
upon introducing disorder. From the scaling theory point of
view, this means that the transition point in the clean limit has
kyx/ T, whichis already greater than that at the metal-insulator
transition, so introducing disorder will only make it more
metallic. We notice that the broadening of similar transitions to
thermal metal phases under sufficiently generic disorder was
already discussed in Ref. [13].

If this scenario holds, there should be no state between Pfaf-
fian and anti-Pfaffian with K = 5/2 unless the system happens
to be fine-tuned, which is in tension with the experimental
findings. We therefore switch to other scenarios with additional
assumptions on the domain wall structures.

B. Scenario B: PH-Pfaffian and thermal metal

We now consider the possibility that the four chiral Majo-
rana modes on a domain wall are spatially separated into two

g

anti-Pfaffian Pfaffian

Pfaffian " anti-Pfaffian

Ve

FIG. 5. A PH-Pfaffian state can be stabilized if we assume the
two pairs of Majorana chiral modes on each domain wall are spatially
separated.

pairs, as shown in Fig. 5. This could happen if, for example,
a sliver of s-wave pairing (giving rise to PH-Pfaffian state)
appears within the domain wall. We do not have a satisfactory
justification for why this would happen, except to note that it
is not forbidden (or ruled out by existing evidence), and we
shall proceed without further justification of this assumption.
The scattering at the junction will acquire a nontrivial structure
due to the spatial separation: each pair will predominantly be
scattered to the “right pair” of modes through the junction. In
the network model, this means that ; ; < 1 unless (i, ) is
(1,3) or (2,4). In fact, we can implement a slightly modified
model that will turn out to be more convenient; on each link
a, we have O, = 00,03 where O; = e¢;,3T‘v3, 0, = ePralra
and O3 = e%T.i, where (i,j) are picked randomly among
all six possible pairs. We take ¢; ; € (—nm,nm) with n < 1
independent of (7, j), while ¢ 5,0 4 € (—NintraT0, Ninra70) With
a different constant 7., that can be much larger than 7. The
intrapair scattering [(1,3) and (2,4)] are greatly enhanced in
this model.

Atafixed finite disorder strength that is not too small, as one
tunes v starting from the anti-Pfaffian state to a Pfaffian/anti-
Pfaffian mixture (Fig. 2), one of the two pairs of Majorana
modes turn from predominantly right-turning to predominantly
left-turning. This is modeled in the network model as having
o) = a3, 0 = a4, and we tune Aaverage = (O _; @;)/4 while
keeping Aa = oy — o fixed.

We find that this could give rise to a localized intermediate
state when o 3 < o, and a4 > o, which is adiabatically
connected to the PH-Pfaffian state. There is also a thermal
metal phase separating the PH-Pfaffian from the Pfaffian and
anti-Pfaffian states. (See Fig. 6 for examples of both.) A crude
phase diagram of the model is shown in Fig. 7. Notice that if the
disorder strength in the real system is weak, the particle-hole
asymmetry is switched suddenly as one tunes across v., so
the entire intermediate region collapses to a first-order-like
transition. The implied phase diagram is shown in Fig. 1,
assuming that as disorder strength grows, 1y 3 = 124 grow
first, and the growth of other ; ;’s comes much later due to the
spatial separation between the modes.

Naively, one may think that the PH-Pfaffian state is stable
as long as the disorder is weak. Indeed, if only weak random
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FIG. 6. The reduced localization length A; = &, /L as a function
of the transverse dimension L. We choose 1, =134 = 1,1, ; = 0.1
for other (i, j) pairs. (Top) tanc; , = 1/6 and tan a3 4 = 6, the trend
of localizing to a PH-Pfaffian state is clear. (Bottom) tan «t; » = 2/3
and tan a3 4 = 3/2, a delocalized (metallic) state.

scattering is considered, i.e., O, is close to the identity matrix
on every link [7; ; < 1 for every (i, j)], then the system stays
localized. However, we should include random vortices, i.e.,
random overall signs for each O,, since they are not captured
by weak scatterings (small »; ;). We find that with random
vortices (even at low density) and weak scattering the system
actually delocalizes, which is the metallic region in Fig. 7 at
small n.

In fact, there is yet another possible mechanism to stabilize
an intermediate PH-Pfaffian state, which we now briefly
discuss. If there is a U(1) symmetry that is approximately
preserved at each link, namely a pair (7, j) for which all the
O,’s approximately commute with T; ;, then the Pfaffian and
anti-Pfaffian states can be thought of as v =1 and v = —1
quantum Hall states with this conserved U(1) symmetry. With

Nintra
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FIG. 7. Phase diagram of the network model in scenario B.
We assume a weak SO(4) flavor mixing with 7; ; = 0.1, but a
different mixing between flavor (1,3) and (2,4), given by 7, (vertical
axis). The horizontal axis ofyeraee describes the average particle-
hole asymmetry. We assume Aa = /6, o) = o3 = max(Qayerage —
Aa/2,7/100), and o) = o4 = Min(Uayerage + Act/2,7/2 — 71/100).
We have also put in random vortices by having a random sign with
equal probabilities on each link, which caused the metallic region in
the small n regime to significantly broaden.

the U(1) symmetry, the transition between the v = 1 and —1
state will generically split into two transitions upon introducing
disorder, with the symmetric point localized to a v = O state,
which in our case is nothing but the PH-Pfaffian state. Breaking
the approximate U(1) weakly will not destroy the localized
v = 0 state, but will broaden the transitions between v = 0 to
the other two phases into metallic regions. This scenario will
give rise to a phase diagram that schematically look like Fig. 8,
which differs from Fig. 1 at weak disorder. However, for the
physical system, we do not see a good reason for the system to
have an approximate U(1) symmetry [it is important that the
approximate symmetry is just U(1) but not U(1) x U(1)].

If we assume either of the above scenarios and interpret the
observed «,, = 5/2 as the disorder-induced PH-Pfaffian state,
then we can predict the behavior of the system as one makes it
less disordered. If the disorder strength is very low, the system
will eventually land on either the Pfaffian or anti-Pfaffian state.

>y

FIG. 8. Schematic phase diagram of the network model with an
approximate U(1) symmetry. The shaded area represents a first-order-
like transition in a finite sample.
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However, before that, one necessarily encounters a thermal
metal phase.

C. Scenario C: PH-Pfaffian and Abelian phases

We can consider an even more exotic scenario, in which
all of the four domain wall modes are spatially separated
from each other. This seems much harder to justify than even
scenario B, but given how little we know about the domain
wall structures, we will nevertheless discuss this scenario for
completeness. For the network model, this scenario implies
that (a) n; ; < 1 for all (i, j) pairs, and (b) as one tunes v, the
«;’s are tuned across o one by one.

It turns out that we need to consider two different pos-
sibilities even within scenario C, namely whether unpaired
vortices are nucleated randomly within each Pfaffian/anti-
Pfaffian domain. Since we expect some vortices to be nucleated
within each domain, the question becomes whether itis cheaper
to nucleate a single vortex (a e/4 quasiparticle) or a pair of it. It
seems much more natural to assume that unpaired vortices can
be nucleated by the disorder potential, giving rise to random
 vortices in the network model. However, we will consider
both possibilities here.

1. Scenario C1: with random vortices

In the presence of random vortices (even with relatively low
density), we find that there is only a metallic phase in between
the Pfaffian and anti-Pfaffian states. This gives qualitatively
the same phase diagram as scenario A (Fig. 4).

2. Scenario C2: with only paired vortices

In this scenario, there is no random 7 flux in the network
model, and we assume that flavor-mixing is always weak. As
one tunes each «; separately through «,, four separate direct
transitions are observed. At each transition, «,/7T jumps by
1/2. The three intermediate phases are the PH-Pfaffian state,
the Abelian K = 8 state equivalent to a v = 1/8 Laughlin
state of paired electrons [44] and its particle-hole conjugate
known as the (113) state [45]. A closely related transition
between Pfaffian and (331) phases has been discussed recently
in Ref. [46]. A similar transition in the context of topological
superconductors has also been discussed recently in Ref. [47].
A thermal metal state does not appear in this scenario as
long as 7 is sufficiently small. At very low disorder level, the
four transitions collapses to a single first-order-like transition
due to sudden switching of the particle-hole asymmetry. The
schematic phase diagram is shown in Fig. 9.

As one decreases the disorder strength gradually, one would
eventually land on the anti-Pfaffian (or Pfaffian) state. The
phase diagram then implies that one would necessarily go
through an intermediate Abelian state with integer .,/ T'. This
is a very different prediction than what we reached from the
scenario B.

D. Some remarks on localization in class D

Now we offer some physical pictures to help us understand
our numerical results, in particular how generic these results
should be. We focus on the regimes where all the «;’s are
sufficiently far away from o,—some much larger, and some

A Thermal metal

Pf A-Pf

>y

FIG. 9. Schematic phase diagram of the network model in sce-
nario C2. The shaded area represents a first-order-like transition in a
finite sample.

much smaller. These are the regimes in which the system is
expected to be gapped in the “clean” limit (meaning O, = 1 for
every link a). If the randomness is purely due to weak random
scattering, so that O, is close to identity matrix on every link,
then the gapped phase should be stable—this is indeed what
we found in such regimes. However, when random vortices
are included, the system becomes easily delocalized—the only
exception is a PH-Pfaffian phase when the (1,3) and (2,4)
scatterings become strong while the other scatterings remain
weak. In fact, the drastic appearance of delocalization upon
introducing random vortices was first noticed in Ref. [37],
where a similar network model was studied, with only one
chiral Majorana fermion propagating on each link.

So why is the effect of random vortices so drastic? The
physical reason is actually quite simple: in the absence of flavor
mixing, a vortex (7 flux) creates a zero-energy mode for each
flavor of Majorana fermions circulating around the vortex. A
finite vortex density gives a finite density of zero modes. The
average physical separation between two zero modes is given
by the vortex density and is a fixed number, unlike in the strong
Anderson localization scenario, where the separation between
two levels with almost degenerate energy becomes arbitrarily
large. Therefore it is not surprising that such systems will
eventually delocalize and form thermal metals. We believe that
this is the physical reason behind the metallic phases found
in Ref. [37]. Interestingly, this mechanism of delocalization
by random 7 flux can also be applied to the other two
symmetry classes that allow metallic phases in 2 D—class AL
(spin-orbit coupled insulators) and DIII (spin-orbit coupled
superconductor).

Now we consider the effect of flavor mixing. We first
consider the case with a3 > o, and ap4 < o, which in
the clean limit has Pfaffian islands circulated by fermions
x1.3 and anti-Pfaffian islands circulated by x4, and overall
gives the PH-Pfaffian state. The intraisland mixing n; 3 (172.4)
gives a splitting of the local energy levels on the Pfaffian
(anti-Pfaffian) island, which is in analogy with the random
chemical potential in the Anderson localization picture. We
will thus schematically call this splitting Au, even though
this is really the energy level of some Bogoliubov fermions.
This picture does not change even with random vortices,
since a vortex creates an even number of zero modes on
each island, which will be lifted by the random intraisland
mixing. Therefore, in order to have localization, we need
strong intraisland mixing to produce a large variation of A, in
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accordance with the Anderson picture. In addition, we need to
keep the interisland mixing (e.g., n1,3) to be small, otherwise an
effective random hopping amplitude Ar will be generated and
will be comparable to Au, which according to our numerical
results leads to delocalization.

Now we consider the case with a1 23 > o, and a4 < o,
which in the clean limit gives the Abelian K = 8 state (or its
particle-hole conjugate). It is now easy to see why it is hard
to avoid delocalization from random vortices: each island has
an odd number (one or three) of chiral Majorana fermions
circulating it, and in the presence of a m vortex, an odd
number of Majorana zero modes are generated, which cannot
be completely lifted through intraisland coupling—generically
one zero mode will survive.

Notice that this is not to say that the Abelian K = 8 phase
is absolutely impossible to appear in the presence of random
vortices. However, in order for it to appear, the Majorana
fermions on the domain walls must further mix with some other
degrees of freedom. For example, if disorder is sufficiently
strong, the domain wall fermions can mix with some gapped
degrees of freedom, which could then lead to localization. Of
course, at strong disorder many other phenomena could take
place and it is not clear whether K = 8 can really be stabilized
there. Another possibility is that the domains are quite small,
so the zero modes from the domain walls can mix with the zero
modes associated with the e/4 quasiparticles (the vortices)
inside the domains. In reality, we expect the domains to be at
least of the same scale as the typical wavelength of the disorder
potential, which should be much larger than the correlation
length of the Pfaffian/anti-Pfaffian state. So this “small domain
wall” mechanism is unlikely to apply. Therefore we conclude
that in real systems the Abelian K = 8 phase and its particle-
hole conjugate are very unlikely to appear. Instead, there is the
metallic phase that sits between PH-Pfaffian (if it exists) and
Pfaffian/anti-Pfaffian as one tunes a parameter controlling the
degree of particle-hole asymmetry, say by tuning the filling
fraction if the Hall plateau does not disappear.

Finally, we turn to the “improper vortices,” introduced at
the end of Sec. III, but not included in any of the calculations
discussed above. By now, it is obvious why the improper
vortex, seen by an odd number of fermions around a domain,
always leads to delocalization: it induces an odd number of
Majorana zero modes on the domain wall, which cannot be
lifted locally, and eventually proliferates and produces a metal.

V. ADDITIONAL REMARKS

One may ask whether disorder can help stabilizing the
PH-Pfaffian state through some mechanism other than the
ones considered above. For example, in the Son-Dirac picture,
the PH-Pfaffian state is obtained through an s-wave pairing
between Dirac composite fermions, while the Pfaffian and
anti-Pfaffian phases have d + id pairing. It is then natural to
ask whether disorder would suppress d-wave pairing more than
s-wave through some Anderson-like mechanism [48]. How-
ever, since the disorder potential locally breaks particle-hole
symmetry, the Dirac composite fermions effectively see a dis-
order potential which locally breaks time-reversal symmetry.
So the usual Anderson theorem does not apply in this case.
A direct calculation shows that the disorder-suppression of the

s-wave pairing is at least as much as that of the d-wave pairing.
So stabilizing the PH-Pfaffian phase through an Anderson-like
mechanism does not seem to be a viable approach.

We also note that though it requires certain nontrivial
assumptions to the stabilize PH-Pfaffian state in our network
model, it would be even much harder to stabilize the PH-
Pfaffian phase had the clean limit been the Abelian K = 8
phase (or its particle-hole conjugate). This is because a mixture
of K = 8 phase and its PH-conjugate will have two (instead
of four) chiral Majorana modes propagating on each domain
wall, and a PH-Pfaffian phase requires one mode to be left-
turning and the other one to be right-turning. Following our
discussion in Sec. IV D, once we introduce random vortices
into the domains, even with relatively small density, the system
becomes delocalized. From this point of view, the existence of
a K = 5/2 plateau can be seen as a supporting evidence that
the system in the clean limit should be a non-Abelian phase.

We have discussed the localization/delocalization of the
disordered Majorana fermions in a free fermion framework
(although the parameters of the network model itself may be
determined by domain wall energetics). In the real system,
there are certainly some residual interactions among the
Majorana fermions, and it is important to know whether the
interactions change the results qualitatively. The localized
phases, including the PH-Pfaffian state, are expected to be
stable against weak interactions. For the quantized Hall thermal
metal (QHTM) phase, it was argued in Ref. [49], based on the
replica nonlinear sigma model, that weak interactions do not
change the behaviors of the class-D thermal metal. Therefore
the general picture we obtained is unaffected by the residual
interactions as long as they are not too strong.

Although we have focused here on the possible effects of
disorder-induced inhomogeneity, one might also consider the
possibility of important effects due to systematic sources of
inhomogeneity. For example, if the Pf state were to be favored
by conditions at the sample boundary, while the aPf state
was favored in the bulk due to Landau-level mixing, there
would then be a domain wall separating the two phases, in the
vicinity of the boundary. If this domain wall were sufficiently
thick, so that it engenders a spatial separation between the
two inner Majorana modes and the two outer Majorana modes
propagating along the wall, it is conceivable that the outer
modes would reach thermal equilibrium with the sample edge
while the inner modes remain isolated. In this case, the sample
would show a thermal conductance with K = 5/2.

VI. CONCLUSIONS

In this paper, we began with a microscopic analysis of the
disordered v = 5/2 state, assuming that in the clean limit,
only the Pfaffian or anti-Pfaffian states are realized. This led
us to construct an effective network model representing the
edge states surrounding puddles of these phases nucleated
by disorder. The effective parameters of this network model
should be determined by the underlying energetics of domain
walls, which evolve on changing the filling. Assuming that
the Pfaffian or anti-Pfaffian will tend to be favored away from
the center of the quantized Hall plateau, we identified three
scenarios for this evolution. First, the system could switch in a
“first-order”-type fashion, between these two states, which is
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expected to occur if disorder is relatively weak and domain
walls are expensive. In this scenario, K rapidly switches
between 7/2 and 3/2 on sweeping §v. Next, if disorder is
stronger, we expect a thermal metal phase to intervene. Despite
conducting heat like a metal, this quantized Hall thermal metal
is an electrical insulator with Hall conductance quantized to

Oyy = %eh—z, and it represents a new state of matter induced
by disorder. Finally, we discussed conditions under which an
intervening PH-Pfaffian topological order is stabilized, which
would be consistent with the current experimental observa-
tions. Although for generic parameters our network model
does not favor this behavior, this scenario may be realized
with certain additional constraints that either (i) effectively
assume that the PH-Pfaffian is a subdominant phase nucleated
in the domain walls or (ii) there is an effective U(1) symmetry
for Majorana modes along domain walls, that constrain the
scattering events. In view of the difficulty we have encountered
in finding realistic parameters that lead to stabilization of the
PH-Pfaffian by disorder, we suggest that there is a need for
further numerical calculations to see if there might be some
range of interaction parameters for which the PH-Pfaffian
can actually emerge as the ground state in a system without
disorder.

Finally, we close with some comments regarding future
directions. The picture of disorder induced nucleation of
domains of Pfaffian and anti-Pfaffian states can be checked
in numerical simulations. In particular, a key parameter, the
energy splitting between the e/4 quasielectron versus the
quasihole, which is expected to drive the nucleation, can be

calculated in the clean limit. We note that there are other
experimental platforms where an incompressible state has been
obtained in the half-filled Landau level. In particular, a robust
plateau was observed in Bernal bilayer graphene [50], where
the effect of Landau level mixing is expected to be stronger
than in the case of GaAs quantum. If so, the delicate balance
between the Pfaffian/antiPfaffian states invoked here would
be absent. Finally, on a more general note, the picture of
disorder inducing entirely new topological phases that are
not present in the clean limit is an intriguing possibility that,
if confirmed, would have important consequences for other
quantum Hall states as well as more generally for correlated
quantum systems.

Note added: during the completion of this work, we became
aware of the work by Mross et al. [51], which also addressed the
possibility of a disorder-induced PH-Pfaffian state at v = 5/2.
The model used in their analysis differs in some respects from
ours, and there are differences in our conclusions about the
most likely phase diagrams.
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