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We propose a scheme based on the neural-network quantum states to simulate the stationary states of open
quantum many-body systems. Using the high expressive power of the variational ansatz described by the
restricted Boltzmann machines, which we dub as the neural stationary state ansatz, we compute the stationary
states of quantum dynamics obeying the Lindblad master equations. The mapping of the stationary-state search
problem into finding a zero-energy ground state of an appropriate Hermitian operator allows us to apply the
conventional variational Monte Carlo method for the optimization. Our method is shown to simulate various
spin systems efficiently, i.e., the transverse-field Ising models in both one and two dimensions and the XYZ

model in one dimension.
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I. INTRODUCTON

The dramatic development of machine-learning techniques
has inspired physicists to invent new numerical algorithms
that further explore the frontier of condensed matter physics
[1,2]. Successful applications include the phase classification
using the well-established algorithms such as the deep learn-
ing [1,3-10], the acceleration of Monte Carlo simulations
[11-16], and the representation of the quantum many-body
states using the high expressive power of the neural net-
works [2,17-28]. In particular, the variational states based on
the restricted Boltzmann machine (RBM) architecture have
turned out to express the ground states of quantum many-body
Hamiltonians composed of large number of spins efficiently,
including one-dimensional (1D) and two-dimensional (2D)
systems [2] and highly entangled systems [17].

Despite its rapid progress, however, machine learning has
yet to be applied to one of the most challenging problems
in modern condensed matter physics—open quantum many-
body systems. Although the advancement of experiments
[29-33] motivates an active field of research on open quantum
many-body physics, it is notoriously difficult to solve the
fundamental equation of motion, which is often well captured
by the Lindblad master equation [34]. Due to the growth
of the number of parameters in proportion to the square
of the Hilbert space dimension, description of the quantum
states by density matrices requires additional computational
resource compared to the closed system. Accordingly, the
simulation of the Lindblad equation with the exact diagonal-
ization method is hard even for small system sizes. It is thus
important whether the machine learning techniques help us
to simulate open quantum many-body physics. Particularly
intriguing are nonequilibrium stationary states of dynamics,
which can exhibit exotic structures, such as entanglement
[35,36], nontrivial topology [37,38], and novel dissipative
phases of matter [39—43].
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In this work, we present a scheme for simulating the
stationary states of open quantum many-body systems by em-
ploying the ansatz which we refer to as the neural stationary
state (NSS) in the following. As is schematically illustrated in
Fig. 1, our NSS method is constituted by the following three
steps:

(a) Vector representation: Make a copy of the Hilbert
space and define a non-Hermitian operator £, which is the
generator of Lindblad dynamics in the doubled Hilbert space.

(b) Definition of the cost function: Consider a Hermitian
positive-semidefinite operator LTL, which becomes zero if
and only if the stationary state is reached [44].

(c) Optimization: Optimize the NSS ansatz using the vari-
ational Monte Carlo method (VMC).

We first demonstrate the expressive power of the ansatz
by showing that the generic NSS exhibits volume-law en-
tanglement entropy in the vector representation, which is
the so-called operator space entanglement entropy [45,46].
Next, we show that our NSS ansatz is capable of representing
the stationary states of the dissipative transverse-field Ising
models in 1D and 2D, and XYZ model in 1D.

We remark that there have been many previous propos-
als for simulating open quantum many-body systems nu-
merically. For example, the Lindblad dynamics is simulated
by the density matrix renormalization group [47-50] under
the tensor network representation, which works very well
especially in 1D as long as the operator space entangle-
ment entropy of the density matrix is small. In addition,
numerous works have focused particularly on the station-
ary states of the Lindblad dynamics. Cui et al. [44] pre-
sented an elegant variational method to search for the sta-
tionary states of the Lindblad dynamics by minimizing the
expectation value of L using the matrix product operator
(MPO) algorithm, which is powerful for 1D systems. Be-
yond 1D, Ref. [51] treated variational quantum states that
take low-order correlations around the product states into
account. It is also notable that certain approximations be-
yond the mean-field theory, e.g., the cluster mean-field theory
[52,53], were employed. Few methods have been proposed,
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FIG. 1. Schematic illustration of our method for the case with
two spins. (a) (Left) A spin model with dissipations [";, which are
indicated by the yellow zigzag arrows, described by the Lindblad
superoperator £. The usual Hermitian interaction is denoted by the
real black line. (Right) The vector representation of the Lindblad
superoperator as an operator L acting on the doubled Hilbert space.
The dissipations become the non-Hermitian interactions, denoted by
the yellow dotted lines, between the physical and newly introduced
fictitious spins. (b) The Hermitian operator £7 £ in the vector repre-
sentation, whose expectation value plays a role of the cost function
for the variational ansatz. (c) Our neural stationary state represented
by the RBM. The black thin lines denote the non-zero interaction
parameters in the ansatz between the physical spins o; (or fictitious
spins 7;) and hidden spins #;.

however, that can efficiently capture full quantum correlations
beyond 1D.

The rest of the paper is organized as follows. A brief
overview of open quantum systems in the Lindblad form and
its vector representation is given in Sec. II. This representation
allows us to map the stationary-state search problem into find-
ing a zero-energy ground state of an appropriate Hermitian
operator that is composed of the Lindblad operator and its
Hermitian adjoint operator. In Sec. III, we introduce the NSS
ansatz, which is optimized via the variational Monte Carlo
technique. We show in Sec. IV that our ansatz is capable of
expressing density matrices with volume-law operator space
entanglement and also the stationary states of various spins
systems, i.e., the transverse-field Ising models in both 1D and
2D, and the XYZ model in 1D. Finally, the summary of our
work and the discussion on the future directions are presented
in Sec. V. For completeness, we discuss the result for fitting
random density matrices with the NSS in Appendix A, and the
comparison of the computational time between the NSS and
Lanczos methods is discussed in Appendix B.

II. OPEN QUANTUM SYSTEMS IN THE LINDBLAD FORM

In this section, we first give a brief overview of the Lind-
blad form for describing open quantum systems. To simulate
the stationary states efficiently, we introduce the vector repre-
sentation of mixed states. Consequently, the stationary state of

the Lindblad dynamics can be obtained by finding the ground
state of an appropriate Hermitian matrix that is composed of
the Lindblad operator and its Hermitian adjoint, or £7£. We
propose that this problem can be solved efficiently via the
conventional VMC method with insight into the optimization
quality: the expectation value of £/ is regarded as the cost
function since the target state corresponds to the zero-energy
eigenstate of it.

A. Lindblad master equation

Open quantum physics consider situations where a system
interacts with their environments outside and follows non-
unitary time evolution. Such systems with certain conditions,
e.g., the Markovianity, are known to be well described by
the Lindblad equation [34], which possesses the completely
positive and trace-preserving property. Concretely, the time
evolution of a mixed state p(t) is given by

dp(t)
dt

= Lp(t) = —ilH, pO] + Y vDILAp@). (1)

Here, L is the Lindblad superoperator, which is a linear map
that takes a density matrix to another density matrix. The
first term in the right hand side, given by the commutator
[H, pl = H o — ,?)ﬁ , describes the unitary dynamics ruled by
the Hamiltonian H. The second term describes the nonunitary
dynamics due to the dissipations. The contribution of the
i-th term, whose strength is given as y;, is governed by a
superoperator D[I';] acting on the density matrix p(r) as

DINIp@) = FipOF] = 30 Tip@) — 50T (2)

Here, f‘i, or the i-th jump operator, determines the detail of
the dissipations.

B. Vector representation of the Lindblad equation

It is known that a time-independent Lindblad equation has
at least one stationary state satisfying

Lpss =0, 3)

where psg is a density matrix of the stationary state [54]. To
employ well-established numerical calculation schemes, we
first map the density “matrix” p to an element in the so-called
“operator space” as |p)) € H ® H. The representation of the
state, which we call the “vector” representation throughout
this manuscript, is explicitly given by

1
p=D pocloditl = 1p)) =2 pocloT)) &)

where |0, 1)) =|o) ® |t) € H ® H is a spin configuration
basis that spans H ® H and C = /), |ps-|> denotes the
normalization factor. In the doubled Hilbert space, we dis-
criminate the spins denoted by o and t by referring to them as
the physical and fictitious spins, respectively. We note that the
normalizations in two representations are different from each
other; the trace of the matrix is set to unity, i.e., Za Poo = 1,
in the matrix representation, whereas the L2-norm of |p)), or
({plp)), 1s unity in the vector representation.

Using the mapping in Eq. (4), operators A and B that,
respectively, act on p from left and right are mapped as
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follows:
ApB =" AsupusBur o) (zl, ®)
O UVT
— |ApB)) ZA(T;I.IO,U.U(B Jov o, T)) (6)
ouvT
=A®B" |p), )
where C"'=3" 1>, Ao upuvBy:|” is a normalization fac-

tor. Applying the mapping in Eq. (5) to Eq. (1), we obtain the
vector representation of the Lindblad equation as

dlp(t)>> — 21p()

(—i(ﬁ ®1-10H )+ ) yi@[f“i]) lp())),

(®)
with

Df =0l -IfTel-10 i1/ (9
Here, the Lindblad operator is denoted by the operator L
acting on the operator space H ® H. Hence, in this represen-
tation the problem of finding the stationary state is expressed
in terms of the standard linear algebra. Our goal is, concretely,
to solve the equation for a non-Hermitian operator £ as
follows:

Llpss)) =0, (10)

where |pss)) denotes the vector representation of the sta-
tionary state. Note that other right eigenvectors with nonzero
eigenvalues satisfy

L1pa)) = A |pa)), (11)

e 1)) = € o)), (12)

where |p,)) is the n-th right eigenvector with a right eigen-
value 1,,. For eigenmodes that are not stationary states, the real
part of the corresponding right eigenvalues satisfy R[A,] < O
[54,55], which implies that the modes eventually decay.

C. Stationary state as a “ground state” of LiL

The Lindblad operator in Eq. (10) is a non-Hermitian
matrix, whose eigenvalues are, in general, complex. In con-
trast, the product with the Hermitian-conjugated Lindblad
operator, EATLAZ, is a Hermitian matrix and has a real-valued
nonnegative spectrum. In this case, the lowest eigenstate(s)
with eigenvalue(s) A = 0 of LIL correspond to the stationary
state(s). In other words, |pss)) satisfies

LTL |pss)) = 0. (13)

This allows us to apply the well-established ground-state
search technique in closed systems such as the variational
approaches, in addition to the Lanczos method, if the first
excited energy of ££ does not vanish [44]. Therefore, the
expectation value of LT L is suited for the cost function in the
VMC method.

Note that the uniqueness of the stationary states is con-
firmed in various systems. For example, if the annihilation
operator, or the incoherent spin flip along the z-axis in the
language of spins, is included as the dissipation for each site,
the quantum system has a unique stationary state regardless
of the Hamiltonian [56]. Unique stationary states also ap-
pear for other types of dissipations, as demonstrated in, e.g.,
Refs. [47,57,58].

Let us emphasize that the variational approach has ad-
vantage in the sense of the cost function ((£7£)), where
((O)) denotes the expectation value of the operator 0 in
the vector representation. Since (LTLY) is exactly zero by
construction for stationary states, this indicates the quality of
the optimization. Note the difference from usual variational
problems of finding ground states of Hamiltonians, for which
quantification of the optimization quality is difficult without
knowing the ground-state energy. In that case, the conver-
gence of the cost function may both yield the desired state
or indicate an ill result due to the local minima.

III. NEURAL STATIONARY STATES

In this section, we present the method to compute our NSS
for a given Lindbladian of the system. First, we describe the
ansatz based on the complex-valued RBM, which is denoted
as |preM)) - Auxiliary binary degrees of freedom is introduced
to extend the expressive power of the ansatz as follows:

Zexp ZW,}a,h + Wl]r,h

({0, | orBM))

X exp Zaiﬂi +a;t; + Zblh] s
i J
(14)

where W;; (Wij) denotes complex interaction amplitude be-
tween the i-th physical (fictitious) spin o; (t;) and j-th hidden
spin h;, a; (@;) is a complex magnetic field on the i-th physical
(fictitious) spin, and b; is a complex magnetic field on the
j-th hidden spin. The normalization factor Z is determined
such that ({preMm|perBM)) = 1. Denoting the number of the
physical, fictitious, and hidden spins as N, N(=N), and M,
respectively, we define the number ratio of the spins as o =
M/(N + N) to compare the performance of the NSS ansatz
under different system sizes.

Although the NSS obtained from Eq. (14) is not positive-
semidefinite or Hermitian in general, sufficient optimization
of the cost function is expected to ensure these two conditions
in an approximated way [44]. In fact, we have confirmed
that absolute values of unphysical negative eigenvalues, if
any, and ||prem — Dygyll/||PreM + PRgyl| are in the order
of 1073, Both quantities are sufficiently small compared to
unity, which indicates that the NSS method works well, and
can be further reduced by, for instance, taking larger «. In
the following, physical observables such as the entropy are
computed using the symmetrized density matrix,

A At
N PrRBM + 0,
P}lzBM = —2 REM , (15)

which assures the physical observables to be real-valued.

214306-3



NOBUYUKI YOSHIOKA AND RYUSUKE HAMAZAKI

PHYSICAL REVIEW B 99, 214306 (2019)

We update the parameters given in Eq. (14) so as to
approximate the stationary state using the VMC sampling in
the vector representation over the probability distribution

2
p(o.7) = [{{o. TlprEM)D)” (16)
({orBM|PREM))
In the following, the number of the sampled spin configu-
rations at each step of optimization is denoted as N;. The
parameters in the NSS ansatz are updated using the stochastic
reconfiguration method [59], which is also known as the
natural gradient method [60,61]. This optimization, being
equivalent to the sufficiently long imaginary-time evolution
in the truncated Hilbert space spanned by variational ansatz
[20], successfully avoids the local minima and converges to
the desired state. Such an update step is repeated for Ny, times
until the cost function reaches the order of 1073 or less.

IV. MODEL AND RESULT

In this section, we first demonstrate that our NSS based on
the RBM is capable of simulating a state with large complex-
ity in the sense of the operator space entanglement entropy,
which is defined as the entanglement entropy of the mixed
state in the vector representation. We then verify our NSS
method by applying it to three models that are in principle
experimentally realizable using cold atoms or trapped ions
[62]: the transverse-field Ising models in 1D and 2D as well
as the XYZ model in 1D.

A. Random-valued NSS

The RBMs for pure states are known to be capable of
expressing quantum states with large entanglement efficiently.
Concretely, Ref. [17] has shown that the maximally entangled
states can be expressed using only O(L) hidden spins, where
L is the total number of spins in the system.

Similarly, we argue that the NSS ansatz given as Eq. (14)
efficiently expresses density matrices with large operator
space entanglement, namely, the entanglement entropy of
the density matrix in the vector representation [45,46]. Con-
crete definition of the operator space entanglement entropy
throughout this paper is given as follows. Let a mixed state
in the vector representation, |p)), be a pure state on the
doubled Hilbert space spanned by L physical and L fictitious
spins. After choosing [L/2] physical spins and corresponding
[L/2] fictitious spins to form a subsystem S, we compute
the entanglement entropy of Trg[|p)) ({(p|], where S is the
complement of S. Here, [x] denotes the largest integer that
does not exceed x.

To demonstrate our argument, we show that generic NSS
ansatz with random parameters exhibits volume-law scaling
of the operator space entanglement entropy. Shown in Fig. 2
is the system-size dependence of the operator space entan-
glement entropy in random-valued NSS ansatz characterized
by several different parameters (see the next paragraph). The
quantum entanglement in the operator space seems to increase
along the number of spins, which demonstrates the volume-
law scaling. We thus argue that the large operator space en-
tanglement entropy is not necessarily an obstacle for reliable
simulations for our NSS, in contrast with methods based on
the tensor network ansatz such as the MPO algorithm. As a

Operator Space EE

4 5 6 7 8 9 10
# of spins

FIG. 2. The volume-law scaling of the operator space en-
tanglement entropy in the random-valued NSS ansatz. Here,
the number ratios of the hidden spins are taken as (o, ay) =
(2,8),(2,6),(2,4), (2, 2). We do not observe any evident difference
between finite ¢, and hence we fix as o; = 2. The amplitudes
of the random parameters are set as r = 0.05, 0.003, 0.1, 0.1 for
Wi, Wi, a;, by, respectively. Note that each points show the averaged
value over 10 independently generated random states.

caveat, we note that not all volume-law states can be expressed
efficiently by NSS as is discussed in Appendix A.

The detailed calculation for random-valued RBM is done
as follows, which is necessarily to justify the positive-
semidefiniteness of the state [63]. A subset of hidden spins,
which are labeled by j with the number ratio of spins denoted
as oy, are connected to both physical and fictitious spins. The
interactions between the i-th physical (fictitious) spins, de-
noted as W;;(W;;) are required to satisfy W;; = W} and also the
magnetic field to be b; = 0. The rest of the hidden spins are
connected to either only physical or fictitious spins. Denoting
the labels for such hidden spins as k and k, the parameters
obey Wy = le and by = b;‘(f while the other parameters are
zero. The number ratio of spins for such hidden spins are given
by «, each, and hence the total is given as « = «; + 2a5.
Under such conditions, both the real and imaginary parts of
the parameters are drawn randomly from a section [—r, 7].

B. Transverse-field Ising model in one dimension

We now discuss the validity of our NSS ansatz for the
concrete open quantum many-body systems. We first consider
the stationary state of a 1D transverse-field Ising model with
the length L under the periodic boundary condition. The
Hamiltonian and the jump operators are given as

6767, + g &+, 17)

Fi = 6—1‘7’ yi = Va (18)

where 6/ (a =x,y,z) is the Pauli matrix that acts on the
i-th site, V is strength of the nearest-neighbor interaction, g
is amplitude of the transverse field along the x axis, and y
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FIG. 3. (a) The real and imaginary parts of the stationary-state
density matrix of the 1D transverse-field Ising model with dissi-
pations in Egs. (17) and (18) obtained by the Lanczos method.
(b) The real and imaginary parts of the stationary-state density matrix
obtained by the NSS ansatz. The fidelity F' between the stationary
states obtained by the Lanczos method and the NSS is over 0.999.
(c) Optimization of the cost function ((LTL)). The optimization
works well and ((£7L£)) reaches the order of 1073, (d) The entropy
contribution —p, In p,, where p, is the n-th eigenvalue of the density
matrix from the top. The blue and orange dots denote the results
for the NSS ansatz and Lanczos method, respectively. The relative
error for the total entropy is order of 1073, For all panels, we use
V =03,g=1, and y = 0.5, and the number ratio of the spins is
o = 1. The sampling number per iteration is N, = 2000, repeated
for Ny = 1500 iterations. The system sizes are given as L = 4 for
(a) and (b), while (c) and (d) are calculated for L = 8.

gives the magnitude of the homogeneous dissipations. To take
advantage of the periodic boundary condition, i.e., 6, = &y,
we impose translation symmetry on the NSS ansatz.

As was introduced in Sec. III, we optimize the expectation
value ((£TL)) using the stochastic reconfiguration method.
Figure 3 shows the comparison of stationary-state density
matrices obtained by the Lanczos method, which efficiently
approximates a subset of eigenvectors and eigenvalues of a
sparse matrix [64], and NSS ansatz with the number ratio of
the spins taken as « = 1. Here, the model parameters are taken
asV =0.3,g=1, and y = 0.5, which results in a stationary
state with the volume-law entropy. Figures 3(a) and 3(b)
visually illustrates that the approximation of the state with
the NSS well represents the stationary state calculated by the
Lanczos method. The accuracy of the stationary state is also
confirmed quantitatively via the calculation of the fidelity. The
fidelity between p; and p,, which are exclusively considered

(@ (b)

10! —e— NSS
TS 0.3 —e— Lanczos
—~ N
€ 107! oo
&y 10 g7
<8/ 10 o
~— 1073 ‘Q* 0.1

107

10°5 0.0

10° 10t 10? 10° 0 200 400
Iteration n

FIG. 4. (a) Optimization of the cost function ((£7L)) for the
2D transverse-field Ising model with dissipations in Egs. (20) and
(21). (b) The entropy contribution —p, In p, for nth eigenvalue. The
relative error of the total entropy is order of 107>. We use the
parameters L, =L, =3,V =0.3,g=1, and y = 1. The number
ratio of the spins is & = 4, and the resulting fidelity is F = 0.9996.
The sampling number per iteration is N; = 2000, repeated for N; =
4000 iterations.

as the stationary-state density matrices obtained by the NSS
optimization and Lanczos method in practice, is defined as

[65]
F(p1. p2) = (Try//pipay/ 1. (19)

This corresponds to the largest fidelity between any two
purifications of the density matrices. For the current case,
we find the fidelity to satisfy F > 0.999. We also observe
in Fig. 3(c) that the expectation value (LT L)), which gives
measure of the approximation [66], is nicely optimized and
reaches the order of 1073, Accordingly, the physical quantities
are in good agreement with the exact results. For example,
the entropy contribution for each eigenvalue of the density
matrix, i.e., —p, In p, for the nth eigenvalue p,, is remarkably
accurate [see Fig. 3(d)], such that the relative error of the total
entropy is the order of 1073.

As is the case with other VMC calculations, it must be
noted that both numerical cost and required memory for
optimizing the NSS ansatz is much suppressed compared to
methods that deal with the whole Hilbert space. In particular,
the wall time for the NSS and the Lanczos methods are
compared in Appendix B.

C. Transverse-field Ising model in two dimensions

We next optimize the NSS ansatz for the 2D transverse-
field Ising model on the square lattice with system size L,
and L, along the x and y axes, respectively. We again take the
periodic boundary condition. The Hamiltonian and the jump
operators are given as [53]

A= % > 667 + g Z &+, (20)

(0.7
[ vi=v, 1)

=46,
where the summation in the first term of H is taken over the
edges connecting the neighboring sites, which are denoted as
iand i’
The cost function in Fig. 4(a) shows that our optimiza-
tion works well even for the 2D case. Indeed, as shown in
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FIG. 5. The entropy contribution —p, In p, for the n-th eigen-
value of the stationary-state density matrix in 1D XYZ model with
dissipations in Egs. (22) and (23). The data for the NSS (blue) and
the exact diagonalization (orange) agree well with each other. The
fidelity of the NSS is over 0.998 and the relative error of the total
entropy is order of 1072, The parameters of the model is taken as
J.=09,J,=04,J. =1.0,L =4, and y = 1. The number ratio of
the spins is taken as & = 8 and the sampling number per iteration is
N; = 8000, repeated for N, = 4500 iterations.

Fig. 4(b), the NSS simulates the entropy contribution for each
eigenvalue of the stationary state with high accuracy. This
result strengthens the expectation that our NSS ansatz does not
suffer from high dimensionality, which can cause problems
for the MPO ansatz.

D. XYZ model in one dimension

Finally, we investigate the 1D XYZ model, in which the
dissipations are known to invoke dramatic change of the phase
diagram compared with the closed system [52]. The model is
defined as

~
|

T o AXAX Ay Ay AZA2
H= ) J.6/6;,+J6;6;  +J.6;6;, (22)

Il
S

A

Fi = 6’;, Yvi=YV, (23)

where J, denotes the interaction for a (a = x, y, z) component
of the spin. We particularly take J, =0.9,J, =0.4,J, =1,
and y = 1 with the periodic boundary condition, at which the
finite system shows remnants of the phase transition predicted
by the mean-field approximation [51].

Shown in Fig. 5 is the comparison of the translationally
symmetric NSS ansatz and the Lanczos method regarding
the entropy contribution for each eigenvalue. Even though
our choice of parameters leads to the nonsimple stationary
state of our small systems (as indicated from the peak of
the structure factor [52]), the NSS describes the exact results
well.

V. CONCLUSIONS AND OUTLOOKS

We have proposed that the neural quantum states are suited
for expressing the stationary states of open quantum many-

body systems. By mapping the original stationary-state search
problem of the Lindblad equation to the zero-energy ground
state search problem of an appropriate Hermitian operator, we
solve it with a variational ansatz based on the RBM, or the
neural stationary state (NSS).

We have confirmed that the NSS can even express den-
sity matrices with volume-law operator space entanglement,
which is the entanglement entropy in the vector represen-
tation. We have then demonstrated that our NSS ansatz is
capable of expressing the stationary states of the dissipative
one- and two-dimensional transverse-field Ising models and
one-dimensional XYZ model.

While the aim of our work is to make a first attempt to show
the adequacy of the NSS for open quantum many-body sys-
tems including highly entangled states and two-dimensional
states, we leave several intriguing questions as future works.
One naive question is whether our ansatz can simulate larger
system sizes, in which other methods suffer from expensive
numerical cost. Another important question is to clarify the
versatility of open quantum many-body systems addressable
by our method. We expect that our ansatz performs well
regardless of the dimensionality, as suggested in our calcu-
lations and the bipartite-graph structure of the RBM, which
is free from the geometry of the underlying physical lattice.
It is also interesting whether our method works for various
long-range interacting systems (such as the Haldane-Shastry
model [17]) with dissipations, whose mixed stationary states
can be highly entangled.

Note added. After completion of our work, we became
aware of some related works. References [67,68] discussed
the time evolution and stationary states of open quantum
many-body systems by using the complex RBM, and Ref. [69]
studied the approximation of the stationary states by the RBM
ansatz.
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APPENDIX A: APPROXIMATING RANDOM DENSITY
MATRICES BY NSS

In this Appendix, we randomly generate a density matrix
and fit it by the NSS to see that the expressive power of the
ansatz does not assure efficient representation of all volume-
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FIG. 6. The infidelity 1 — F of the NSS fitted to a random
density matrix generated by Eq. (Al). While the NSS with larger
a, or the number ratio of the spins, better approximates the random
density matrices, the number of parameters and accordingly the
numerical cost required to reach some fixed fidelity increase rapidly.

law states. Here, random density matrices are generated as

A

X2
Tr[X2]’

b= (AD)

where X is sampled from the Gaussian unitary ensembles of
random Hermitian matrices. We have numerically checked
that the operator space entanglement entropy defined as in the
main text exhibits a volume-law scaling, i.e., operator space
entanglement entropy o L for matrices with size 2F x 2
(data not shown).

Figure 6 shows that while a random density matrix gener-
ated following Eq. (A1) can be approximated better by the
NSS with larger «, or the number ratio of the spins, the

5]
10 —e— NSS

Lanczos

104 - /./’—/W
1o /./

102 J

Wall time [s]

101 J

100 J

6 8 10 12 14 16
# of physical spins

FIG. 7. The wall times for computing the stationary state of the
1D transverse-field Ising model withV =2, g=1,and y = 1. The
blue and orange dots are for the NSS ansatz optimization and the
Lanczos method, respectively. Here, the number ratio of the spins
is o« = 4. The NSS ansatz exhibits lower scaling as a function of
the number of physical spins. The number of sampling is N, = 2000
repeated for N = 1500 iterations, which we find to be sufficient for
the convergence of the VMC calculation. The computation for the
NSS and Lanczos is executed on 8 cores on Intel(R) Core i7-6820HQ
and 12 cores on Intel(R) Xeon(R) Silver 4110, respectively.

number of parameters and accordingly the numerical cost
required to reach some fixed fidelity increase rapidly.

APPENDIX B: COMPARISON OF COMPUTATIONAL COST

In Fig. 7, we show the scaling of the computational time
for calculating the stationary states by optimization of the NSS
and the Lanczos method. Our variational method exhibits only
polynomial scaling, which is, clearly, far more efficient than
the exponential scaling in the Lanczos method.
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