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Quantum entanglement in nuclear Cooper-pair tunneling with γ rays
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While Josephson-like junctions, transiently established in heavy-ion collisions (τcoll ≈ 10−21 s) between su-
perfluid nuclei—and through which Cooper-pair tunneling (Q-value Q2n) proceeds mainly in terms of successive
transfer of entangled nucleons—are deprived of the macroscopic aspects of a supercurrent, they display many of
the special effects associated with spontaneous symmetry breaking in gauge space (BCS condensation), which
can be studied in terms of individual quantum states and of tunneling of single Cooper pairs. From the results of
studies of one- and two-neutron transfer reactions carried out at energies below the Coulomb barrier we estimate
the value of the mean-square radius (correlation length) of the nuclear Cooper pair. A quantity related to the
largest distance of closest approach for which the absolute two-nucleon tunneling cross section is of the order of
the single-particle one. Furthermore, emission of γ rays of (Josephson) frequency νJ = Q2n/h distributed over
an energy range h̄/τcoll is predicted.

DOI: 10.1103/PhysRevC.103.L021601

Introduction. A pair of interacting electrons moving in
time-reversal states (ν, ν̃ )[≡ (k ↑,−k ↓)] above a noninter-
acting Fermi sea whose only role is to block, through Pauli
principle, states below the Fermi energy εF from participating
in the two-particle system, lead to a bound state provided the
interaction is attractive, no matter how weak it is [1].

At the basis of BCS superconductivity [2,3] one finds
the condensation of strongly overlapping, very extended,
weakly bound Cooper pairs corresponding to ordering in oc-
cupying momentum space, and not spacelike condensation
of strongly bound clusters which undergo Bose condensa-
tion. In BCS condensation, the inner intrinsic structure of
the pair, that is, the fact that it is made out of fermions
entangled in time-reversal states, is the characterizing fea-
ture, with its energy gap for both single-pair translation and
dissociation (see Refs. [4–7]), as it emerges from Schrief-
fer’s trial wave-function |�BCS〉 = ∏

ν>0(U ′
ν + e−2iφV ′

νP†
ν )|0〉

[8]. The associated spontaneously broken symmetry in the
two-dimensional gauge space, is quantitatively measured
by the generalized deformation (order) parameter α0 =
〈�BCS|P†|�BCS〉 = e−2iφα′

0. The pair creation operator is de-
fined as P† = ∑

ν>0 a†
νa†

ν̃ , where a†
ν (a†

ν̃ ) creates, acting on the
vacuum state |0〉, a fermion (electron) moving in state ν(ν̃)
while α′

0 = ∑
ν>0 U ′

νV ′
ν measures the number of Cooper pairs,

a quantity closely related to the pairing gap 	′ = Gα′
0(≈

1 meV), G being the pairing coupling constant. The intrinsic,
body-fixed frame of reference (x′ axis) subtends a gauge angle
2φ with the laboratory axis x (see, e.g., Fig. 11 Ref. [9]).

Weakly coupled superconductors. The Cooper-pair wave
function can be written as 〈r1σ1, r2σ2|

∑
ν>0 c′

νP†
ν |0〉 =

ϕq(r)eiq·Rχ (σ1, σ2). The variable r (R) is the relative

(center-of-mass) (c.m.) coordinate whereas q is the center-of-
mass momentum, χ being the singlet spin function. For q = 0
[8,10]

ϕ0(r) ≈ e−r/ξ cos kF r, (1)

the quantity

ξ = h̄vF

π	
, (2)

being the correlation length (≈104 Å).
In the calculation of the Cooper-pair tunneling probabil-

ity p2 between two weakly coupled superconductors (S-S),
also known as the Josephson junction, of typical width
d (≈10–30 Å 	 ξ ) one has to add the phased amplitudes
before one takes the modulus squared. As a consequence,
the probability p2 of a pair going through the junction is
comparable to the probability p1 for a single electron ([11],
see also Chap. 6 of Ref. [12]). This result is at the basis of the
Josephson effect(s) [13–17]: (a) unbiased junction; the small
but finite overlap of the condensed amplitudes |�BCS(�)〉 and
|�BCS(r)〉 is sufficient to lock the associated gauge phase
difference [φrel(R) = φ� − φr], function which acts as the
velocity potential of a collective flow (center-of-mass momen-
tum) superimposed on the Cooper pairs correlated intrinsic
motion (1). The associated direct supercurrent of carriers of
charge q = 2e and maximum value Ic = π

e 	�r
1

Rb
is undamped

because the internal degrees of freedom are frozen by the
reduced pairing gap 	�r = 	�	r

	�+	r
. In the above relation 	�

and 	r are the pairing gap of the left and right supercon-
ductors with respect to the junction. Similarly concerning the
gauge phases φ� and φr ; (b) biased junction; when there is a
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dc voltage V , and, thus, an associated chemical potential
difference (λ� − λr) across the junction, circulation of an al-
ternating current of carriers q = 2e, critical value Ic and of
frequency νJ = V 2e/h is observed, while φrel precesses at
the rate given by φ̇rel = (λ� − λr )/h̄ = Ve/h̄. There is then an
energy difference 	E = V 2e each time a Cooper pair tunnels
from one side of the junction to the other, energy which
must appear elsewhere. Being the process superconducting,
it is free of dissipation. To leave the quasiparticle distribution
unchanged, Cooper pairs can tunnel back and forth with the
emission of a photon of frequency νJ . The Josephson junction
not only converts a direct voltage into an alternating current,
but also works as an oscillatory circuit. It radiates electromag-
netic waves in the superhigh-frequency range.

The critical supercurrent Ic (of typical value ≈2 mA)
across an S-S junction is within a factor of π/4 equal to the
N-N single electron carrier current for an applied equivalent
potential bias Veq = (2	/e) (≈2 mV), S (N) indicating the
superconducting (normal) phase of the metal. That is

Ic = π

4

Veq

Rb
, (3)

where Rb(≈1 �) is the resistance of the junction
(Ic ≈ 1.6 mA). A relation which testifies to the correctness
of p2 ≈ p1, and constitutes one of the pillars on which the
validity of the BCS description of superconductivity rests.
Another one is provided by the photons of frequency,

νJ = KJV, (4)

emitted by a biased S-S junction. The Josephson constant,
inverse of the flux quantum (fluxon) is KJ = 2e/h. For
voltage differences across the junction of ≈1 mV one has
νJ ≈ 0.5 THz.

It is of note that in the tunneling process between two
superconductors in which a bias of value V � 2	/e is applied
to the junction, a momentum �q = h̄/ξ is given to the center
of mass of ϕq(r) and, as a result, Cooper pairs are broken and
quasiparticle excitations created–thus the labeling (S-Q) given
in the literature to such processes–through which a normal
(dissipative) current of carriers q = e flows [18]. In other
words, for T = 0 one is in the presence of processes connect-
ing a ground state (S) with ground and excited states (Q). The
importance of this fact in connection with the Josephson-like
junction transiently formed in heavy-ion reactions between
superfluid nuclei, becomes apparent below.

Cooper-pair tunneling in nuclei. Recently, a breakthrough
on the subject was made through the study of one- and two-
neutron transfer reactions with heavy-ion collisions in inverse
[19] and direct [20] kinematics, enabled by the use of mag-
netic and γ -ray spectrometers,

116Sn+ 60Ni→
{115Sn + 61Ni (Q1n ≈ −1.74 MeV), (5a)

114Sn + 62Ni (Q2n ≈ 1.307 MeV). (5b)

These reactions were carried out for twelve bombarding en-
ergies in the range of 140.60 MeV � Ec.m, � 167.95 MeV.
That is, from energies above the Coulomb barrier (EB =
157.60 MeV), to well below it. While the Cooper-pair trans-
fer channel [(5b)], is dominated by the ground-ground state

transition, the single-particle transfer one is inclusive. In fact,
the theoretical calculations of the differential cross section
associated with channel [(5a)] indicate the incoherent con-
tribution of a number of quasiparticle states of 61Ni lying at
energies �2.640 MeV ([19,21]). A value which is consistent
with twice the value of the pairing gap of Ni. In other words,
in the case of the reaction (5a), we are in the presence of a
S-Q-like transfer. Making use of the relation (2), as well as of
the values (vF /c) ≈ 0.3 and 	 ≈ 1.3–1.5 MeV, one obtains
ξ ≈ 13.6 fm (within this context see for example Fig. 7, Ap-
pendix A of Ref. [22]).

The analysis of the data associated with the reactions [(5a)]
and [(5b)] carried out in Refs. [19,20] makes use of a powerful
semiclassical approximation in which the optical potential
employed was microscopically calculated in terms of the
interaction energy per unit area, proximity potential propor-
tional to the surface tension and the reduced radius, regarding
the real part ([23] Eqs. (30) and (40)–(43), pp. 111 and 114).
The imaginary part was worked out in terms of first-order tran-
sition probabilities making use of the same microscopic form
factors used in the analysis of the data [24–26]. The resulting
potentials have been extensively tested throughout the mass
table [27–30]. The short wavelength of relative motion (de
Broglie reduced wavelength λ̄ = 0.36/2π fm ≈ 0.06 fm), al-
lows to accurately determine the distance of closest approach
D0 for each bombarding energy, by calculating the corre-
sponding classical trajectory as a solution of the equations of
motion associated with the real part of the optical potential
plus the Coulomb potential. The accuracy of the resulting
connection between Ec.m. and D0 was demonstrated by the
comparison between the theoretical and experimental values
of σel/σRuth displayed in the upper part of Fig. 3 of Ref. [19].
Making use of the U,V occupation amplitudes for both Sn
and Ni, as well as the optical potential given in Refs. [19,21]
we have calculated, within the framework of first- and second-
order distorted-wave Born approximation (DWBA) [31], the
absolute one- and two-nucleon transfer differential cross sec-
tions. In the second case, including both successive (dominant
channel) and simultaneous transfer, properly corrected by
nonorthogonality. Theory is compared with the experiment
in Table I. As expected [19], the results provide an overall
account of the experimental findings.

From direct inspection of this table it emerges that the dis-
tance of closest approach lying within the interval 13.12 fm �
D0 � 13.49 fm is the largest one for which dσ/d�|2n is,
within a factor of about [0.6 ≈ (π/4)2] of the same order
of dσ/d�|1n. In keeping with (1) and (2) one can posit that
the above interval provides a sensible bound to the size of the
nuclear Cooper-pair correlation length. Already increasing D0

by ≈0.6 fm (D0 = 14.05) σ1n becomes a factor of 6 larger
than σ2n. A signal indicating that stretching the transferred
Cooper pair to larger dimensions ruptures it, quenches its
pairing gap and unfreezes the quasiparticle degrees of free-
dom. Said differently, a consequence of forcing Cooper-pair
partners, in the dominant successive transfer process, to be at
a relative distance longer than ξ . This leads to a strain which
plays a role similar to that played by applying a momentum
q ≈ 1/ξ (associated with the critical bias Veq = 2	/e) to the
center of mass of the Cooper pairs, resulting in the transition
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TABLE I. Center-of-mass absolute differential cross section at 140◦ [19,20,46] associated with the reactions (5). In brackets the results
of the theoretical calculations carried out as explained in the text. For the 12 bombarding energies (E = Ec.m.) also the distance of closest
approach D0 is indicated.

E = 140.6 MeV E = 145.02 MeV E = 146.10 MeV E = 148.10 MeV E = 150.62 MeV E = 151.86 MeV

D0 (fm) 14.8 14.39 14.24 14.05 13.81 13.70

σ
exp
1n (σ th

1n) (mb/sr) 1.24 (1.10) 2.13 (2.01) 2.32 (2.29) 3.00 (2.96) 3.50 (3.75) 5.03 (4.51)

σ
exp
2n (σ th

2n) (mb/sr) 0.07(0.05) 0.23 (0.19) 0.31 (0.26) 0.5 (0.44) 1.00 (0.87) 1.83 (1.22)

E = 154.26 MeV E = 158.63 MeV E = 162.11 MeV E = 164.4 MeV E = 164.8 MeV E = 167.95 MeV
D0 (fm) 13.49 13.12 12.83 12.66 12.62 12.39

σ
exp
1n (σ th

1n) (mb/sr) 7.25 (6.03) 9.70 (9.08) 7.88 (9.51) 5.92 (4.64) 4.83 (4.53) <0.7 (0.25)

σ
exp
2n (σ th

2n) (mb/sr) 2.58 (2.35) 6.80 (7.54) 6.11 (8.85) 4.08 (2.34) 3.48 (1.68) <0.25 (0.07)

from the S-S transfer regime to the S-Q one. As a result, we
choose D0 = 13.49 fm as a representative value for ξ of the
transferred Cooper pair.

Nuclear analog of radiating Josephson junction. As stated
before, when the two superconducting elements of a junction
are at a different electric potential, the transfer of a pair of
electrons from one side (e.g., �) to the other one (r) involves
an energy change of (2e)V . If the process is truly a superfluid
process, free of dissipation, this energy must appear elsewhere
as a unit. In fact, it appears as a photon of energy hν = 2e×V
(radiofrequency) in keeping with (4), and as experimentally
observed (see, e.g., Ref. [32] and references therein).

In the nuclear case and in connection with the reaction
[(5b)] for bombarding conditions for which D0 = 13.49 fm
(namely Ec.m. ≈ 154.26 MeV, and τcoll ≈ ξ/(2Ec.m./μi )1/2 ≈
0.5×10−21 s) transfer takes place few MeV below the
Coulomb barrier. Consequently, the absorptive component of
the optical potential plays essentially no role in the process,
and tunneling takes place lossless, free of dissipation. Being
the bombarding energy ≈3.9 MeV/A (Elab = 452.5 MeV),
that is an order of magnitude smaller than the Fermi energy,
one can expect that there can be time for the two neutrons to
be transferred back and forth about three times. That is, for
about two (≈1.5) cycles of the quasielastic process,

116Sn + 60Ni → 114Sn + 62Ni → 116Sn + 60Ni. (6)

Due to the fact that nuclear Cooper pairs carry an ef-
fective charge (e)eff ≈ (−2eZ/A), one expects the transient
Josephson-like nuclear junction to emit γ rays of frequency
ν = Q2n/h (=1.307 MeV/h). Because of the short colli-
sion time (τcoll) the radiated photons will display a width
(≈h̄/τcoll). Due to the recoil of the �(Sn)-r(Ni) nuclear super-
conducting junction associated with Cooper-pair tunneling,
the corresponding line shape will be distorted with respect to
a Gaussian-like shape.

In what follows we calculate the γ -emission cross section
in terms of a macroscopic formulation of the (ac) Josephson
effect, particularly, suited to be used in connection with the
nuclear case.

Concerning the search for nuclear analogs of the Josephson
effect see (Refs. [33–39], see also Ref. [23]).

Macroscopic calculation of dipole emission. Making
use of α0 = e−2iφα′

0 one can introduce the density of

superconducting electron (fermion) pairs,

�∗� = α′
0

V = n′
s, (7)

in terms of the pair probability amplitude [40,41],

� = e−iφ
√

n′
s, (8)

where V is an appropriate volume element. Both n′
s and φ

can be functions of space (and time), and their variation
determines the motion of the BCS condensate, e.g., the su-
percurrent. Since the pairs are in the same state and must,
therefore, behave in an identical fashion, the equations of
motion of the macrostate must coincide with the equation of
motion for any single pair of this state [42]. In other words,
due to its unique coherence properties the condensed (super-
fluid) portion of the superconductor behaves, like a single
quantum particle of mass and charge twice that of an electron.

It is then sensible to expect that the dynamical behavior of
a Josephson junction—right (r) and left (�) weakly coupled
superconductors—would be similar to that of two quantum
levels weakly coupled to one another via an external field
[43]. Considering the situation in which the tunneling inter-
action is relatively constant over a coherence length [44], the
electrodynamics of a radiating Josephson junction is analo-
gous to that of a two-level atom placed in a static external
field, role which in the present case is played by the tun-
neling interaction inducing nonresonant transitions between
the two quantum levels. These transitions give rise to an
induced dipole moment whose oscillations generate the co-
herent Josephson radiation field, the intensity of the emitted
radiation being proportional to the number of Cooper pairs
that are involved in the tunneling process quantity squared,
the frequency being that defined in Eq. (4).

A similar, incipient superradiant Josephson-like phe-
nomenon is expected to arise in the case of the nuclear
heavy-ion reaction under discussion from an ensemble of cor-
related Cooper pairs [α′

0 ≈ 8 (2), 116Sn (60Ni)] undergoing
the coherent back and forth quasielastic Cooper-pair transfer
process. In what follows the associated γ -emission probabil-
ity is calculated.

According to Fermi’s golden rule, the rate of spontaneous
emission between two levels in the dipole approximation can
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be written as ([45], p. 340)

dPif

dt
= 4ω3

if |〈i|d| f 〉|2
3h̄c3

, (9)

where ωif = 2π/T is the emission frequency, T being the
associated period, d = qr the dipole moment operator and q
the charge.

In connection with the reaction [(5b)] i ≡ B(=A+2)+
b → f ≡ A + a(= b + 2), and q = 2eeff = −2×e(Zb + ZB)/
(Ab + AB), where (Ab, Zb) ≡ (60, 28) and (AB, ZB) ≡
(116, 50), one obtains q = −2×(78/176)e = −e×0.89,
and d = −e×0.89×13.49 fm = −e×12.01 fm. Let us now
calculate dPif

dt = N /T , where N is the number of photons
emitted per cycle,

N = T ×dPif

dt
= 8π

3

(h̄ωif )2d2

(h̄c)3
≈ 3.71×10−4, (10)

and h̄ωif = Q2n = 1.307 MeV. Making use of the exper-
imental value (see Table I), dσ2n(Ec.m. = 154.26 MeV)/

d�|θc.m.=140◦ ≈ 2.58 mb/sr, one expects the associated γ ra-
diation to be emitted perpendicular to the reaction plane with
a cross-section dσ/(d�dEγ ) = Ndσ2n/d�|θc.m.=140◦δ(Eγ −
Q2n) ≈ 0.96 μb/sr δ(Eγ − Q2n). In other words, one expects
a (reduced) strength function of centroid 1.307 MeV, width
h̄/τcoll ≈ 1.3 MeV and energy integrated area of 0.96 μb/sr.

Dipole radiation: microscopic calculation. A similar cal-
culation of the γ -emission quasielastic process, this time
fully microscopic, was carried out extending the second order
DWBA formalism employed in the calculation of the two-
nucleon transfer absolute differential cross sections displayed
in Table I to include the coupling to the electromagnetic field
in the dipole approximation.

The T matrix associated with the successive transfer of the
Cooper pairs, that is, half of a cycle of the process leading
to the result (10) and which contributes essentially all of the
corresponding cross section, can be written in the post-post
representation as

Tmγ
(k f , ki ) = 2

∑
ν,ν ′

B(A)
ν B(b)

ν ′

∫
χ∗

f (rBb, k f )
[
φ j f (rA1 )φ j f (rA2 )

]0∗
0 U (A)(rb1)

[
φ j f (rA2 )φ ji (rb1 )

]K

Md1
mγ

(rO1)drCc drb1 drA2

×
∫

G(rCc, r′
Cc)

[
φ j f (r′

A2
)φ ji (r

′
b1

)
]K∗

M U (A)(r′
c2)

[
φ ji (r

′
b2

)φ ji (r
′
b1

)
]0

0χi(r′
Aa, ki )dr′

cC dr′
b1

dr′
A2

, (11)

where B(i)
j = (

√
j + 1

2U (i)
j V (i)

j ) is the two-nucleon trans-
fer spectroscopic amplitude (see e.g., Ref. [31]; see also
Ref. [13]), while U (A)(r) is the mean-field potential1 me-
diating the successive transfer process B(= A + 2) + b →
F (= A + 1) + f (= b + 1) → A + a(= b + 2). The Green’s
function G(rCc, r′

cC ) propagates the intermediate channel
(F, f ) (no asymptotic waves), while χi, χ f are the distorted
waves describing the relative motion of the heavy ions in the
initial (B, b) and final (A, a) channels, the momenta ki and k f

ensuring energy conservation. The dipole operator is defined
as

d1
mγ

= q

√
4π

3
Y1mγ

(rO1), (12)

where Y1mγ
(rO1) is the vector spherical harmonic of order

one, Y1mγ
(rO1) = rO1Y 1

mγ
(r̂O1), and rO1 is the coordinate of

one of the transferred neutrons measured from the center of
mass.

The γ -strength function (double differential cross section)
associated with (11) can be written as

d2σ

d� dEγ

=
(

μiμ f

(2π h̄2)2

k f

ki

)(
8π

3

E2
γ

(h̄c)3

)
|Tmγ

(k f , ki )|2

×δ[Eγ + E f − (Ei + Q)], (13)

1It is of note that the mean-field potentials U (A) and U (b) are those
used in the calculation of the single-particle wave functions appear-
ing in Eq. (11).

where Eγ = h̄ωi f , ki = (2μiEi )1/2/h̄ and k f = (2μ f E f )1/2/h̄,

Ei and E f being the (c.m.) kinetic energy in initial and final
channels.

In addition to the analytic prefactors describing the electro-
magnetic and kinematical phase spaces, the strength function
(13) depends on the photon energy through the distorted
waves and the effective form factors which, in channel
[F (A + 1)], [ f (= b + 1)], restrict the integrations to the re-
gion of overlap between the partner nucleons of the tunneling
Cooper pair. In other words, for the overlap region associated
with the largest relative distance between the two ions in
which the normal and abnormal densities are simultaneously
present. That is, the distance of closest approach correspond-
ing to the correlation length ξ .

Making the ansatz θc.m. = 0◦(k̂i = k̂ f = ẑ), mA ≈ mB,

mb ≈ ma 
 1, and substituting the distorted waves by plane
waves one obtains for small momentum transfer (q →
0), T ≈ exp[−(Q − Eγ )2/	E2], and the FWHM of the line
shape is 	E ≈ √

3(h̄/τcoll ) (≈ 2.30 MeV). The fact that, in
a Josephson junction, the two superconductors S� and Sr are
macroscopic objects at rest implies that the δ function in
(13) is replaced by δ(ω − (2e)V/h) which in the nuclear case
translates into δ(Eγ − Q2n).

The γ -strength function (13) was worked out mak-
ing use of microscopic form factors [see Eq. (11)]. They
were obtained from the coherent summation of products of
single-particle wave functions weighted by the two-nucleon
spectroscopic amplitudes. These wave functions were calcu-
lated with the help of the mean-field potentials U (i), potentials
which also act in the transfer process, propagated from the ini-
tial to the final channel by the Green’s function. The distorted
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waves χ were determined with the help of the microscopic
optical potential of Ref. [19]. Up to 150 partial waves were
included in the calculation. The final results are shown in
Fig. 1(a) in terms of a dashed line. It describes a γ -strength
function with centroid, FWHM and energy integrated area of
4 MeV, 5 MeV, and 5.18 μb/sr, respectively, associated with
a dipole moment 〈d〉 = −e×9.36 fm (〈r〉 ≈ 10.52 fm).

Multiplying these results by
(

8π
3

(1.307)2 MeV2

(h̄c)3

)(
8π
3

E2
γ

(h̄c)3

)−1

one obtains a Gaussian-like reduced γ -strength function
[Figs. 1(a) and 1(b) continuous line]. The associated cen-
troid, FWHM, and energy integrated area being: 1.1 MeV,
3.6 MeV, and 0.57 μb/sr, respectively. Quantities which can
be compared at profit with the corresponding results of the
macroscopic calculations.2 Summing up, both the centroid,
width as well as the line shape of the γ -strength function
are distorted as compared to the simple dipole macroscopic
estimate let alone in relation to that observed in the radio-
frequency emission from a Josephson junction (see e.g.,
Ref. [32]). All this without jeopardizing the validity of the
nuclear analogy.

From the comparison of the estimate of the correlation
length of 13.49 fm made by following σ2n/σ1n as a func-
tion of the bombarding energy Ec.m. (D0) and determining
σ2n/σ1n|(D0 )max � 0.6, and that obtained from the quantum-
mechanical calculation of the value of the dipole operator
(12), i.e., of the distance of 10.52 fm over which the part-
ner nucleons of the transferred Cooper pair are correlated in
the associated successive tunneling process, one can ascribe
an error to the theoretical estimate of the correlation length
leading to ξ ≈ 12.0 ± 1.5 fm.

Conclusions. The special effect found in superconduc-
tivity by which a dc voltage V applied across a junction
between two superconductors does not determine the intensity
of the supercurrent (Ohm’s law) circulating through it, but

2Making use of the value 〈d〉 = −e×9.36 fm resulting from (11),
one can estimate, from the macroscopic prediction, a microscopic
one. Namely, (9.36/12.01)2×0.96 μb/sr ≈ 0.58 μb/sr. A result
which testifies to the validity of the separability between the γ

process (number of photons N ) and the two-nucleon transfer one
(σ2n), assumed in the macroscopic model.

FIG. 1. (a) Double differential cross section for γ emission at
θc.m. = 140◦ as a function of the energy of the emitted γ ray,
calculated with Eqs. (11) and (13) (dashed curve). The reduced
strength (continuous curve) has been obtained by dividing out from
dσ/d� dEγ the phase-space factor ∼ E 2

γ , and multiplying it by the
corresponding quantity with Eγ = 1.307 (MeV) (see the text for
details). The reduced γ -strength function is shown in (b) with a
different scale where the width and the position of the centroid are
more apparent.

the frequency of an alternating supercurrent (νJ = (2e)V/h),
finds its nuclear analog in the electromagnetic radiation pre-
dicted to be emitted in a quasielastic heavy-ion collision
between two superfluid nuclei in terms of γ rays of fre-
quency ν = Q2n/h. For the particular reaction studied, and
selecting the bombarding energy for which the distance of
closest approach is approximately equal to the correlation
length ξ ≈ 13.5 fm (largest of the measured distances of clos-
est approach for which σ2n ≈ σ1n within a factor of two),
theory predicts for the (energy integrated) reduced γ -strength
function dσγ /d�|θc.m.=140◦ ≈ 0.57 μb/sr (νJ ≈ 1.1 MeV/h)
corresponding to an observable (energy integrated) γ -
strength function dσγ /d�|θc.m.=140◦ ≈ 5.18 μb/sr, peaked at
≈4 MeV. It can be concluded that a nuclear analog to the (ac)
Josephson effect has been identified.
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