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Sonic Mach cones induced by fast partons in a perturbative quark-gluon plasma
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We derive the space-time distribution of energy and momentum deposited by a fast parton traversing a weakly
coupled quark-gluon plasma by treating the fast parton as the source of an external color field perturbing the
medium. We then use our result as a source term for the linearized hydrodynamical equations of the medium.
We show that the solution contains a sonic Mach cone and a dissipative wake if the parton moves at a supersonic
speed.
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An interesting problem in the physics of deconfined
strongly interacting matter—the quark-gluon plasma or
QGP—is to calculate the response of the medium to the
passage of a fast parton, i.e., a parton with velocity approaching
the speed of light. Fast partons are created experimentally
in high-energy collisions of two nuclei when two energetic
partons of the nuclear wave functions scatter at a large angle
and acquire a large transverse momentum relative to the beam
direction. If the interaction happens near the nuclear surface,
one parton (commonly called the “trigger jet”) rapidly leaves
the medium and decays into a jet of hadrons which are cleanly
observed in the detectors, while the second parton or “back
jet” propagates with high velocity through the medium and
deposits energy and momentum along the way in a process
known as jet quenching (see, e.g., Refs. [1,2]). Experimental
measurements [3,4] of dihadron correlation functions show
a double-peak structure in the back-jet distribution, which is
consistent with the formation of a Mach-cone-shaped emission
pattern.

The question of how the energy and momentum deposited
by the back jet affects the bulk behavior of an evolving QGP
has been examined by several authors (see, e.g., Refs. [5–13]).
Using a schematic source in a two-dimensional hydrodynamics
simulation of an expanding QGP, Chaudhuri and Heinz failed
to find the formation of a Mach cone except for extreme
values of the energy deposition [13]. On the other hand,
Casalderrey-Solana et al. [6] showed that if one couples an
appropriately chosen supersonic sound source to a linearized
hydrodynamical evolution, one obtains a propagating Mach
cone. In the above cases, the explicit form of the source term
expected from a supersonic parton moving through a QCD
plasma was not addressed.

Here we will derive the magnitude and shape of this
source term, valid at distances below the Debye screening
length, by calculating the effect of the color field of a fast
parton on a perturbative QGP. We then solve the linearized
hydrodynamical equations for a static QGP and analyze how
the perturbation propagates through the medium. For sound
propagation, we will use values of the sound attenuation length
�s that lie in the range compatible with perturbation theory.

These include the value obtained from the leading-order
perturbative result for the shear viscosity η [14] and the value
for η obtained by including three-body scattering processes
in the transport cross section [15,16]. We note that the latter
value is more consistent with shear viscosity allowed by data
from the BNL Relativistic Heavy Ion Collider (RHIC) [17].

As explained above, we consider the fast parton as the
source of an external color field that interacts with the medium.
Asakawa et al. [18] showed that in the presence of soft color
fields, the color singlet parton distribution in a perturbative
QGP obeys the dissipative Vlasov-Boltzmann equation[

∂

∂t
+ p

E
· ∇x − ∇pi

Dij (p, t)∇pj

]
f (x, p, t) = C[f ], (1)

where f (x, p, t) is the ensemble averaged phase-space distri-
bution of medium partons, p/E is the velocity of a parton with
momentum p and energy E, and

Dij (p, t) =
∫ t

−∞
dt ′Fi(x, t)Fj (x′, t ′), (2)

where Fi(x, t) is the color Lorentz force on a medium particle,
i.e.,

Fi(x, t) = gQa(t)
[
Ea

i (x, t) + (v × B)ai (x, t)
]
. (3)

Here we consider the color fields in Eq. (3) to be generated
by the fast parton. For a parton moving with velocity u with
respect to the medium, these fields, to lowest order in the
coupling constant g, have the Fourier representation

Ea(x, t) = igQa
p

(2π )3

∫
d4k e−ik·x (ωu − k)δ(ω − k · u)

k2 − ω2
, (4)

Ba(x, t) = igQa
p

(2π )3

∫
d4k e−ik·x (k × u)δ(ω − k · u)

k2 − ω2
, (5)

where kµ = (ω, k). In Eqs. (4) and (5), we have neglected the
screening of the color field by the medium. We will incorporate
the effect of color screening and short-distance quantum effects
by appropriate infrared and ultraviolet cutoffs.

The hydrodynamical equations for the medium are obtained
in the usual Chapman-Enskog approach by taking moments of
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the evolution equation (1). We assume that the medium is in
local thermal equilibrium, with an energy-momentum tensor
given by

T µν = (ε + p)uµuν − pgµν − η

× (∇µuν + ∇νuµ − 2
3	µν∂αuα

)
, (6)

where uµ = γ (1, v) denotes the medium four-velocity, 	µν =
uµuν − gµν,∇µ = 	µν∂ν , and η is the shear viscosity. We
evaluate each term by boosting to a frame comoving with our
volume element and then exploiting the assumption of local
thermal equilibrium. Introducing the notation

J ν =
∫

dp pν

(2π )3
(∇pi

Dij (p, t)∇pj
f (x, p, t)), (7)

we find that the resulting equations of motion for the medium
evolution are

∂µT µν = J ν, (8)

where J ν represents a source term due to the interaction of the
medium with the passing fast parton.

To solve the hydrodynamical equation (8), we assume that
the energy and momentum density deposited by the parton
is small compared to the equilibrium energy density of the
medium. This assumption permits us to linearize the hydro-
dynamical equations following the approach introduced in
Ref. [6]. We write the perturbations of the energy-momentum
tensor resulting from the source in an otherwise static medium
as δε = δT 00 and g with gi = δT 0i . The solutions of the
linearized hydrodynamical equations can then be expressed
in momentum space as

δε(k, ω) = ikJL(k, ω) + J 0(k, ω)(iω − �sk
2)

ω2 − c2
s k

2 + i�sωk2
, (9)

gL(k, ω) = iωk̂JL(k, ω) + ic2
s kJ 0(k, ω)

ω2 − c2
s k

2 + i�sωk2
, (10)

gT (k, ω) = iJT (k, ω)

ω + 3
4 i�sk2

, (11)

where ε0 and p0 are the unperturbed energy density and
pressure, respectively, cs denotes the speed of sound, and
�s ≡ 4η

3(ε0+p0) = 4η

3s0T
is the sound attenuation length. In the

above equations, we have divided the source and perturbed
momentum density vectors into transverse and longitudinal
parts: g = gL + gT and J = k̂JL + JT , with k̂ denoting the
unit vector in the direction of k. We note that Eq. (11) is the
diffusion equation and does not describe sound propagation.
If a Mach cone appears, it will be found in the dynamics of
Eqs. (9) and (10).

To proceed further, we need to evaluate the source term
(7). We consider a thermal plasma of massless gluons with the
unperturbed distribution

f0(x, p, t) = 2
(
N2

c − 1
)

eβp0 − 1
, (12)

where p0 = E = |p|, and Nc = 3 is the number of colors.
Ignoring the time dependence of Qa(t) in Eq. (3), we

eventually find that

J 0(x, t) = im2
D

(2π )8

∫
d4kd4k′ei(k+k′)·x−i(ω+ω′)t

×
∫

dv̂
(v̂ · Ea(k′))(v̂ · Ea(k))

4π (ω′ − k′ · v̂ + iε)
, (13)

and

J k(x, t) = im2
D

(2π )8

∫
d4kd4k′ ei(k+k′)·x−i(ω+ω′)t

×
∫

dv̂
(v̂ · Ea(k′))

[
Ea

k (k) + (v̂ × B)ak (k)
]

4π (ω′ − k′ · v̂ + iε)
, (14)

where the fields Ea(k) and Ba(k) are given by Eqs. (4)
and (5), respectively. The Debye mass for gluons is given
by mD = gT . If one includes massless quarks in the medium,
the expressions (13) and (14) remain unchanged except that
the quark contribution to the Debye mass needs to be included
in mD . The longitudinal part of J is obtained by multiplication
with k̂: JL = k̂ · J. The source distributions can be analytically
evaluated in the ultrarelativistic limit γ = (1 − u2)−1/2 � 1.
After a lengthy calculation, one obtains for a parton moving
in the positive z direction with velocity u,

J 0(ρ, z, t) = d(ρ, z, t)γ u2

(
1 − γ u(z − ut)

ρ

)
, (15)

Jz(ρ, z, t) = uJ 0(ρ, z, t) − d(ρ, z, t)u2 z − ut

ρ
, (16)

J⊥(ρ, z, t) = −d(ρ, z, t)u2 x⊥
ρ

, (17)

where we introduced the notation x⊥ = (x, y) and ρ = |x⊥|.
The function d is given by

d(ρ, z, t) = αsQ
2
pm2

D

8π [ρ2 + γ 2(z − ut)2]3/2
, (18)

encoding the Lorentz contracted field configuration of the fast
parton. A detailed derivation of the source term, including
color screening by the medium, is presented in Ref. [19]. Inte-
grating over all space and introducing infrared and ultraviolet
cutoffs for the ρ integration, we obtain the differential energy
loss

− dE

dx
=

∫
d3xJ 0(x) = αs

2
Q2

pm2
D ln

ρmax

ρmin
. (19)

For ρmax = 1/mD and ρmin = 1/(2
√

EpT ), where Ep is the
energy of the fast parton, one recovers the standard leading-
logarithmic result [20] for elastic energy loss in the medium.
A stronger than logarithmic dependence of the energy loss
on Ep, found in some other approaches, may be effectively
described by a parametric dependence of αsQ

2
p on Ep.

Since hydrodynamics is only valid at distances that are
large compared to the mean free path, and in a weakly coupled
plasma the mean free path is parametrically large compared
to the color screening length, the source term generated by an
energetic parton is, in first approximation, point-like. In this
spirit, the source term [Eqs. (15)–(18)] derived here can be
thought of as a sophisticated representation of a δ function.
However, it also contains, in the sense of effective field theory,
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an infinite series of higher derivative contributions, which
produce subleading corrections.

At leading order in the gradient expansion, both the
amplitude and structure of the Mach cone produced by the
projectile are uniquely determined by the rate of elastic energy
loss together with the value of viscosity. The source term
derived and used here provides a model of the subleading
momentum dependence of the source term for the special case
of a weakly coupled plasma, which approximately captures
the physics at the Debye screening scale, but ignores physics
at longer subhydrodynamic length scales.1

To calculate the propagating disturbance of the medium
by the projectile, we insert Eqs. (13) and (14) into Eqs.
(9)–(11). For a relativistic parton, propagating with velocity
u = (0, 0, u) and position x = (0, 0, ut), we obtain the follow-
ing expressions for the quantities (9)–(11), Fourier transformed
back to space-time:

δε(x, t) = iu2g2Q2
pm2

D

32π2(2π )3
(
u2 − c2

s

) ∫
dkdx′eik·(x−x′)−iukzt

×
(

−k · x′ + (2ukz + i�sk
2)

(
ρ ′γ − z′γ 2u

)
(
k2
z − λ2k2

T + iσ
)
ρ ′(ρ ′2 + γ 2z′2)3/2

)
,

(20)

gL(x, t) = iu2g2Q2
pm2

D

32π2(2π )3
(
u2 − c2

s

) ∫
dk dx′eik·(x−x′)−iukztk

×
(

−ukzk · x′ + ((ukz)2 + c2
s k

2)(ρ ′γ − z′γ 2u)

k2
(
k2
z − λ2k2

T + iσ
)
ρ ′(ρ ′2 + γ 2z′2)3/2

)
,

(21)

1We thank the referee for clarifying this point.

gT (x, t) = 1

(2π )3

∫
dk dx′eik·(x−x′)−iukzt

× J(x′)k2 − k(k · J(x′))
k2

( − iukz + 3
4�sk2

) , (22)

where λ2 = c2
s /(u2 − c2

s ), σ = �su(λ2/c2
s )kz(k2

T + k2
z ), and

Q2
p is the Casimir operator for the color charge of the projectile,

which is 4/3 for a quark and 3 for a gluon. In our evaluation of
Eqs. (20)–(22), we perform five of the six integrals analytically,
leaving the final integral over kT ≡ (k2

x + k2
y)1/2 to be done

numerically. In Eqs. (20) and (21), we perform the integral
over kz using contour integration and find poles at (among other
places) kz = ±(k2

T λ2 ∓ i|σ |)1/2, where |σ | is itself a function
of kz. We approximate σ (kz) by σ (±kT λ) when evaluating
the residues at these poles, which is permitted at momentum
scales for which the sound attenuation is small (kT � c2

s /�s).
We note that our expression contains the term (ρ ′2 + γ 2z′2)−3/2

which is (up to appropriate normalization) a nascent δ function
in z′ in the limit γ → ∞. With this insight, and noting that
we are working in the ultrarelativistic limit, we expand the z′
dependence of the exponent to first order to obtain analytically
manageable expressions. An ultraviolet cutoff of the order of
�s in the ρ ′ integration and an appropriate infrared cutoff in the
z′ integration are used to regularize the logarithmic divergences
when necessary.

We now present and discuss the numerical results obtained
from our evaluation of Eqs. (20)–(22) for the case of a gluon
moving along the positive z axis with velocity u = 0.99955c

(γ ≈ 33). As mentioned in the beginning, we will use two
different values of the sound attenuation length �s , which
have been calculated perturbatively, and compare the results.
The first value is determined from the leading-order result for
η/s obtained by Arnold et al. [14]. This result includes only
binary (2 → 2 and 1 → 2) processes and gives η/s = 0.48 for

FIG. 1. (Color online) Plots of the scaled perturbed energy density |x|δε(x)/(m2
DT ) (a), and momentum density |x|g(x)/(m2

DT ) (b), excited
by a gluon moving along the positive z axis at position ut and speed u = 0.99955c for η/s = 0.13. The results, which are cylindrically
symmetric around the z axis, are shown on the plane x = (x, 0, z − ut). The energy and momentum densities have been multiplied by the
distance |x| from the source to compensate for the geometric dilution effect of the cone. The values chosen for the parameters mD, αs, T , cs ,
and �s are discussed in the text.
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FIG. 2. (Color online) Same as in Fig. 1, but with η/s = 0.48. Just as in Fig. 1, the energy density wave excited in the medium develops
the shape of a Mach cone. Here, however, the distribution is more damped and spread out.

a gluonic plasma with αs = 0.3. The second value for η/s is
the one obtained by Xu and Greiner by going beyond leading
order in the diluteness of the medium [21]. Their calculation,
including 3 ↔ 2 scattering processes, found η/s = 0.13 for
a gluonic plasma with αs = 0.3 [15]. Even smaller values of
η/s may be compatible with the assumption of a perturbative

medium, if the viscosity is lowered by anomalous contribu-
tions [22]. Finally, we have chosen T = 350 MeV as the
temperature of the medium and use cs = c/

√
3 for the speed of

sound.
Figures 1 and 2 show the scaled energy density [Figs. 1(a)

and 2(a)] and momentum density [Figs. 1(b) and 2(b)]

FIG. 3. (Color online) Velocity field plotted for the same scenario as in Fig. 1. Plots (c) and (d) indicate the parallel (i.e., moving with the
source) components of the induced velocity flows for both the sound equation (21) and the diffusion equation (22); while (a) and (b) are for the
perpendicular components. The axes are plotted in units of inverse GeV.
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deposited in the medium by the projectile along the plane
(x, 0, z − ut) for η/s = 0.13 and η/s = 0.48, respectively. In
both cases, the energy density wave excited in the medium is
seen to develop the shape of a Mach cone whose intensity is
peaked near the source. At growing distance from the source,
the Mach cone slowly weakens and broadens. As one would
expect, the cone structure is more pronounced for the smaller
value of η/s. It is instructive to compare the wavelength below
which sound propagation is strongly damped, λc = 2π�s/cs ,
with the extent of the sound source, m−1

D ≈ 0.3 fm. For
η/s = 0.48, we have λc/4 ≈ 1.0 fm; whereas for η/s = 0.13,

we find λc/4 ≈ 0.25 fm, suggesting that the coupling of
the source term to the sound mode becomes increasingly
ineffective for η/s � 0.15.

We next consider the velocity fields induced by the moving
source, which are given by v = g/ε0, where ε0 ≈ 10GeV/fm3

is the energy density of a plasma of massless gluons at T =
350 MeV. We plot the induced velocity flow in Fig. 3 for both
the contribution from the sound equation (21) and that from the
diffusion equation (22) for the case of η/s = 0.13. The velocity
flow obtained from the sound equation has a similar structure
as the perturbed energy density with a well-defined Mach cone

trailing behind the moving parton. As mentioned before, the
velocity flow obtained from the diffusion equation does not
describe sound propagation but instead describes the source
pulling matter along in its wake. For our choice of parameters,
the collective flow induced by the diffusive wake has a
longitudinal velocity of approximately 0.15c at a distance of 4
fm behind the source and a much smaller transverse velocity.

In summary, we have derived the pattern of energy and
momentum deposition by a fast parton traversing a quark-
gluon plasma in perturbative QCD. Our result depends on the
following parameters: the source strength αsQ

2
p, the Debye

mass mD , the sound velocity cs , and the sound attenuation
length �s . Treating the propagation of the disturbance created
by the projectile in linearized viscous hydrodynamics, we have
shown that the fast-moving parton excites a sonic Mach cone
and a diffusive wake. The intensity of the Mach cone was
found to decrease with growing kinematic viscosity.
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Germany.
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