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New structural properties of post-Minkowskian (PM) gravity are derived, notably within its effective one
body (EOB) formulation. Our results concern both the mass dependence, and the high-energy behavior, of
the classical scattering angle. We generalize our previous work by deriving, up to the fourth post-
Minkowskian (4PM) level included, the explicit links between the scattering angle and the two types of
potentials entering the Hamiltonian description of PM dynamics within EOB theory. We compute the
scattering amplitude derived from quantizing the third post-Minkowskian (3PM) EOB radial potential
(including the contributions coming from the Born iterations), and point out various subtleties in the
relation between perturbative amplitudes and classical dynamics. We highlight an apparent tension between
the classical 3PM dynamics derived by Bern et al. [Phys. Rev. Lett. 122, 201603 (2019)], and previous
high-energy self-force results [Phys. Rev. D 86, 104041 (2012)], and propose several possible resolutions
of this tension. We point out that linear-in-mass-ratio self-force computations can give access to the exact
3PM and 4PM dynamics.
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I. INTRODUCTION

The recent, dramatically successful, beginning of
gravitational-wave astronomy [1–4], and the expected
future improvements in the sensitivity of gravitational-
wave detectors, give a renewed motivation for improving
our theoretical knowledge of the gravitational dynamics of
two-body systems in general relativity. Our current knowl-
edge of the dynamics and gravitational-wave emission of
binary systems has been acquired by combining several
types of (interrelated) analytical approximations schemes,
and furthermore, by completing analytical results with the
results of a certain number of numerical simulations of
coalescing binary black holes. The main types of analytical
schemes that have been used are: post-Minkowskian
(PM), post-Newtonian (PN), multipolar-post-Minkowskian,
effective-one-body (EOB), black-hole-perturbation, gravita-
tional self-force (SF), and effective-field-theory (EFT).
Recently, a new avenue for improving our theoretical

knowledge of gravitational dynamics1 has been actively
pursued. It consists of translating the (classical or quantum)
scattering observables of gravitationally interacting two-
body systems into some Hamiltonian counterpart. The idea
of mapping quantum gravitational scattering amplitudes
onto some type of gravitational potential had been first
explored long ago [6–11]. The idea of these works was to
construct a two-body Hamiltonian of the type

Hðx1;x2;p1;p2Þ ¼ c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ
p2
1

c2

s
þ c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ
p2
2

c2

s

þ Vðx1 − x2;p1;p2Þ; ð1:1Þ

such that the scattering amplitude in the momentum-
dependent potential Vðx1 − x2;p1;p2Þ (given by a usual
Born-type expansion) is equal to the scattering amplitude
computed by means of the Feynman-diagrams defined by a
(perturbative) quantum field theory comprising two scalar
fields ϕ1, ϕ2 (of masses m1 and m2) interacting via
perturbatively quantized Einstein gravity. This was done
within the framework of the PN approximation scheme,
i.e., using a small-velocity expansion, and working actually
with the PN-expanded form of the Hamiltonian, up to some
finite (and rather low) accuracy:

Hðx1;x2;p1;p2Þ ¼ ðm1 þm2Þc2 þ
p2
1

2m1

þ p2
2

2m2

−
p4
1

8m3
1c

2
−

p4
2

8m3
2c

2
þ � � �

þ VPNðx1 − x2;p1;p2Þ; ð1:2Þ

with

VPNðx1−x2;p1;p2Þ¼−
Gm1m2

jx1−x2j
þPN corrections: ð1:3Þ

This did not yield at the time results that could not be (often
more efficiently) obtained by conventional PN classical

*damour@ihes.fr
1We shall not discuss here the related issue of improving

our knowledge of gravitational-wave emission by amplitude
methods; see Ref. [5] and references therein.
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computations.2 A similar approach was also used in
quantum electrodynamics to derive the ðv2=c2Þ-accurate
(first post-Coulombian) Breit Hamiltonian. See, notably,
the fourth volume of the Landau-Lifshitz treatise of
theoretical physics [12] which derives the Breit
Hamiltonian by starting from the scattering amplitude A
of two massive, charged particles.
The idea of extracting classical gravitational dynamics

from the scattering amplitude M of two gravitationally
interacting massive particles has been further explored and
extended in more recent papers [13–18]. However, these
works limited their ambition to extracting leading terms in
the PN expansion of the dynamics.
It is only recently that the issue of linking the gravita-

tional scattering amplitude M to PM gravity, i.e., without
using a small-velocity expansion, has been explored. This
was done at the second post-Minkowskian (2PM) level
(i.e., OðG2Þ or one-loop) in Refs. [19–23], and at the third
post-Minkowskian (3PM) level (i.e., OðG3Þ or two-loop)
in the breakthrough work of Bern et al. [24,25]. Before
the latter work, the only extant two-loop result was the
trans-Planckian, eikonal-approximation two-loop result
of Amati, Ciafaloni and Veneziano (ACV) [26] (which
was recently generalized [27,28], and confirmed [28]).
[Reference [20] has extracted both 3PM and 4PM classical
information from the result of ACV.] Let us also mention
some further (partly conjectural) work concerning the link
between the gravitational scattering amplitude of spinning
particles and the classical gravitational interaction of
Kerr black holes [29–33], as well as work on the compu-
tation of classically measurable quantities from on-shell
amplitudes [34,35].
Those recent works dealing with PM gravity in con-

nection with the quantum amplitude M have been pre-
ceded by older investigations, using purely classical
methods, of the PM expansion of the gravitational dynam-
ics of two-body systems. The first post-Minkowskian
(1PM; OðG1Þ) dynamics was studied in Refs. [36–38],
while the second post-Minkowskian (2PM; OðG2Þ) one
was tackled in Refs. [39–42]). More recently, the inves-
tigation of classical PM gravity has been revived by
showing how the EOB formalism [43–45] was able to
provide a much simplified description of PM gravity, based
on the gauge-invariant information contained in the scatter-
ing function 1

2
χðE; JÞ. In particular: (i) Ref. [46] has shown

how the 1PM-accurate classical scattering of two non-
spinning bodies could be transcribed, within the EOB
formalism into the geodesic dynamics of a particle of mass

μ ¼ m1m2=ðm1 þm2Þ in a (linearized) Schwarzschild
background of massM ¼ m1 þm2. [This EOB formulation
of the 1PM dynamics is much simpler than the previously
obtainedArnowitt-Deser-Misner one [38].]; (ii) Ref. [47] has
shown how to transcribe within the EOB formalism the 1PM
gravitational interaction of spinning bodies at all orders in the
spins (see also [48]); (iii)Ref. [20] derived, for the first time, a
next-to-leading-order, OðG2Þ (second-post-Minkowskian,
2PM) Hamiltonian EOB description of the (nonspinning)
two-body dynamics from the classical 2PM scattering angle
[41] [This EOB description of the 2PM dynamics is
equivalent, but simpler, than the one later derived in [22],
using a potential of the form of Eq. (1.1)]; (iv) Ref. [49]
derived (by using the 2PM-accurate metric of Ref. [40]) a
2PM-accurate Hamiltonian EOB description of the gravita-
tional interaction of two spinning bodies at linear order in
spins; and (v) a conjectural 2PM-level generalization of the
1PM result of Ref. [47] concerning the nonlinear-in-spin
dynamics of aligned-spin bodies was proposed in Ref. [50].
In addition, the 5PN-level truncation of the classical 3PM
dynamics extracted from the two-loop result of Bern et al.
[24,25] (see also Ref. [51]) has been confirmed by an
independent, purely classical computation [52]. See below
for the discussion of more recent, classical and quantum,
6PN-level confirmations.
The main aim of the present work is to derive some

structural properties of the classical scattering angle, χ,
considered as a function of the various arguments in which
it can be expressed: energy, angular momentum, impact
parameter, and masses. This will allow us to derive several
new results of direct importance for improving our current
knowledge of the dynamics of two-body systems. In
particular, we shall derive a property of the dependence
of χ on the masses which was crucially used in Ref. [52] for
determining most of the mass dependence of the 5PN-level
dynamics. We shall also discuss a constraint on the high-
energy behavior of χ that follows from the SF result of
Ref. [53]. The latter high-energy constraint seems to be
discrepant with the high-energy (or massless) limit of the
3PM-level results of Bern et al. [24,25]. We will suggest
two types of possible resolutions of this apparent discrep-
ancy. One resolution consists in conjecturing that the 3PM
dynamics is described by another classical Hamiltonian,
yielding the same 5PN-levelOðG3Þ scattering angle (which
was recently independently obtained [52]), but a softer
high-energy behavior than that of Refs. [24,25]. Another
resolution consists in conjecturing a special structure of the
4PM (OðG4Þ) dynamics, such that its high-energy behavior
modifies the consequences drawn from considering the
high-energy behavior of the 3PM-level-only result of Bern
et al.. Both types of resolutions will be shown to lead to a
classical massless scattering angle that disagrees with the
one derived from the eikonal-approximated quantum two-
loop massless amplitude [26,28].

2Let us note that Corinaldesi [6] incorrectly concluded that the
full 1PN Einstein-Infeld-Hoffmann equations of motion could be
derived from the one-graviton-exchange amplitude. The first
formally correct and complete derivation of the 1PN Hamiltonian
from the one-loop scattering amplitude of two scalar particles is
due to Iwasaki [10].
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A secondary aim of the present work is to clarify the
various links between the physical quantities involved in
the maps that have been recently used to relate classical and
quantum dynamics. These three quantities are: the classical
scattering angle χ, the quantum scattering amplitude M
(considered in a limit formally corresponding to classical
scattering), and the two different potentials (EOB-type [20]
or EFT-type [22]) used to transcribe (classical or quantum)
scattering observables into an Hamiltonian description. In
this connection, we will explicitly derive below the map
going from the 3PM-level classical Hamiltonian to the
corresponding piece of the two-loop amplitude. [Some of
the results derived below (which have been presented in
various talks [54]), have been recently discussed from quite
different (non-EOB-based) perspectives in two papers
[55,56].] Our 3PM-level map will be found to be fully
compatible with the corresponding results in Sec. 10 of
Ref. [25], but are more complete in that they detail the IR-
divergent contributions coming from iterating the 1PM and
2PM levels, which also contribute IR-finite terms.
In addition, we will point out various subtleties in the

relation between perturbative amplitudes and classical
dynamics. Several tools, concerning the link between the
classical PM dynamics and the quantum amplitude M,
have been presented in the recent literature [13–26,34,35].
These tools have been checked to give a correct result at the
2PM (one-loop) level [19–21]. As the 3PM-level classical
dynamics of Refs. [24,25] has not yet been confirmed by an
independent classical derivation, it might be useful to point
out the existence of conceptual subtleties in the map going
from the quantumM toward the classical dynamics (which
is the inverse of the classical-to-quantum map that we shall
discuss below). We shall recall in this respect a classic
result of Niels Bohr [57] highlighting the lack of overlap
between the domains of validity of classical and quantum
(perturbative) scattering theory.
Technically speaking, we will be dealing below with the

3PM-accurate expansions (i.e., the expansions in powers
of the gravitational constant G up to G3 included) of
various physical quantities: the classical (half) scattering
angle expressed as a function of (center-of-mass) energy
(E ¼ ffiffiffi

s
p

) and angular momentum (J),

1

2
χðE; JÞ ¼ χ1ðÊeff ; νÞ

j
þ χ2ðÊeff ; νÞ

j2
þ χ3ðÊeff ; νÞ

j3
þOðG4Þ;

ð1:4Þ

(see below the definitions of the dimensionless variables
Êeff , j and ν); the (relativistic) quantum scattering ampli-
tude expressed as a function of Mandelstam invariants s ¼
−ðp1 þ p2Þ2 and t ¼ −ðp0

1 − p1Þ2 (in the mostly plus
signature we use),

Mðs; tÞ ¼ GM1ðs; tÞ þ G2M2ðs; tÞ
þG3M3ðs; tÞ þOðG4Þ; ð1:5Þ

and the PM expansions of the two (closely connected) types
of EOB potentials describing the gravitational interaction of
two classicalmasses.Namely, withu≡GM=REOB, and now
including the 4PM, OðG4Þ, contribution,

Q̂ðp; uÞ ¼ u2q2ðpÞ þ u3q3ðpÞ þ u4q4ðpÞ þ � � � ; ð1:6Þ

and (with ū≡ GM=R̄EOB; in isotropic coordinates)

wðγ; ūÞ ¼ w1ðγÞūþ w2ðγÞū2 þ w3ðγÞū3 þ w4ðγÞū4 þ � � �
ð1:7Þ

As we will explicitly discuss, these EOB potentials are
equivalent (and simpler) than the more traditional type of
potential Vðx1 − x2;p1;p2Þ entering Eq. (1.1), and used in
the EFT-type formalism of Refs. [22,24,25]. We briefly
discuss in the Appendix A the link between the EOB
potentials and the PM expansion of the isotropic-gauge
EFT-type potential [22] in the center of mass (c.m.) frame,

VðP;XÞ¼G
c1ðP2Þ
jXj þG2

c2ðP2Þ
jXj2 þG3

c3ðP2Þ
jXj3 þ�� � ð1:8Þ

The precise technical meaning of the EOB potentials,
Q̂ðp; uÞ and wðγ; ūÞ, will be presented below. On the
right-hand side of Eq. (1.4) we have replaced the total
c.m. energy of the two-body system, E ¼ Ereal ¼

ffiffiffi
s

p
, by

the corresponding dimensionless EOB “effective energy”
[43–46],

Êeff ≡ Eeff

μ
≡ ðErealÞ2 −m2

1 −m2
2

2m1m2

¼ s −m2
1 −m2

2

2m1m2

: ð1:9Þ

Let us note in advance that, in scattering situations, Êeff is
equal to the relative Lorentz gamma factor of the incoming
worldlines, denoted γ below (and σ in Refs. [24,25]). In
addition, we have replaced the total (c.m.) angular momen-
tum J by the dimensionless variable

j≡ J
Gm1m2

¼ J
GμM

; ð1:10Þ

with

M≡m1þm2; μ≡ m1m2

m1þm2

; ν≡ μ

M
¼ m1m2

ðm1þm2Þ2
:

ð1:11Þ

As 1=j ¼ Gm1m2=J, the perturbative expansion of the
(classical) scattering function in powers of the gravitational
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constantG (i.e., its PM expansion) is seen to be equivalent to
an expansion in inverse powers of the angular momentum.

II. ON THE MASS DEPENDENCE OF THE
CLASSICAL TWO-BODY SCATTERING

FUNCTION

The aim of the present section is to extract from PM
perturbation theory simple rules constraining the mass
dependence of the scattering function at each PM order.
Though their technical origin is rather simple, these rules
turn out to give very useful constraints on the functional
structure of the scattering function. The PM perturbation
theory of interacting point masses has been worked out at
the 2PM (one-loop) level long ago [39–41]. Recently,
Refs. [20,46,49] have outlined a formal iteration scheme
for computing the PM expansion of the scattering function
to all PM orders, and showed how it could be naturally
expressed as a sum of Feynman-like diagrams (see Fig. 1
in [46], and Figs. 1 and 2 in [20]). Let us recall this
construction. The PM expansion of the classical momen-
tum transfer (dubbed the “impulse” in Ref. [34]), i.e., the
total change Δpaμ, between the infinite past and the infinite
future, of the 4-momentum paμ ¼ mauaμ of the particle
labeled by a ¼ 1, 2, is obtained by inserting on the right-
hand side of the integral expression

Δpaμ ¼ −
ma

2

Z þ∞

−∞
dsa∂μgαβðxaÞuaαuaβ; ð2:1Þ

the iterative solutions (in successive powers of G) of the
combined system of equations describing the coupled
evolution of the two worldlines

dxμa
dsa

¼ gμνðxaÞuaν;
duaμ
dsa

¼ −
1

2
∂μgαβðxaÞuaαuaβ; ð2:2Þ

and of the metric gμν. The latter mediates the interaction
between the two worldlines, and is generated by them via
Einstein’s equations,

Rμν −
1

2
Rgμν ¼ 8πGTμν; ð2:3Þ

with

TμνðxÞ ¼
X
a¼1;2

ma

Z
dsau

μ
auνa

δ4ðx − xaðsaÞÞffiffiffi
g

p ; ð2:4Þ

where uμa ≡ gμνuaν and g ¼ − det gμν.
Here we need to work in some gauge (say in harmonic

gauge), and, as we are discussing the conservative dynam-
ics of two particles, we iteratively solve Einstein

equations (2.3) by means of the time-symmetric classical
graviton propagator (in Minkowski spacetime)

Pαβ;α0β0 ðx − yÞ ¼
�
ηαα

0
ηββ

0 −
1

2
ηαβηα

0β0
�
Gsymðx − yÞ;

ð2:5Þ

with Gsymðx − yÞ ¼ δ½ημνðxμ − yμÞðxν − yνÞ�.
The crucial point for our present purpose is that this

iterative procedure, which involves expanding in powers of
G both the worldlines, say

xμaðsaÞ¼ 0x
μ
aðsaÞþG1x

μ
aðsaÞþG2

2x
μ
aðsaÞþ �� � ;

uaμðsaÞ¼ 0
uaμðsaÞþG1uaμðsaÞþG2

2uaμðsaÞþ �� � ð2:6Þ

and the metric

gμνðxÞ ¼ ημν − Ghμν1 ðxÞ − G2hμν2 ðxÞ − � � � ; ð2:7Þ

yields, at each order Gn, expressions that are homogeneous
polynomials of degree n in the masses ma. E.g.,

hμν1 ðxÞ ¼ m1h
μν
m1
ðxÞ þm2h

μν
m2
ðxÞ;

hμν2 ðxÞ ¼ m2
1h

μν
m2

1

ðxÞ þm2
2h

μν
m2

2

ðxÞ þm1m2h
μν
m1m2

ðxÞ: ð2:8Þ

Here, we assume that the iterative solutions are system-
atically expressed in terms of the mass-independent data
describing the two asymptotic incoming worldlines, say

0x
μ
aðsaÞ ¼ xμa0 þ uμa0sa. See, e.g., Sec. IVof Ref. [49] for an

explicit example of the structure of the PM-expanded
metric, and worldlines, expressed as explicit functionals
of the incoming worldline data (and for a discussion of the
logarithmic asymptotic corrections to the asymptotic free
motions). From a geometric perspective, the latter incom-
ing worldline data can be described by the two incoming
4-velocity vectors uμ10 and uμ20, and by the vectorial impact
parameter bμ ¼ xμ10 − xμ20 (chosen so as to be orthogonal to
uμ10 and uμ20).
At the end of the day, one gets a PM expansion for

Δp1μ ¼ −Δp2μ (expressed in terms of bμ=b, uμ10 and uμ20)
that is, at each order inG, a polynomial in the masses. It can
be written as

Δp1μ ¼ −2Gm1m2

2ðu10 · u20Þ2 − 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu10 · u20Þ2 − 1

p bμ
b2

þ Gm1m2

b
Δμ:

ð2:9Þ

Here we displayed the leading-order term [37,41,46] and
indicated that the higher PM contributions (described by

the term Gm1m2

b Δμ with Δμ ¼ GΔð1Þ
μ þ G2Δð2Þ

μ þ � � �) all
contain m1m2 as a common factor. Each PM contribution

ΔðnÞ
μ is a combination of the three vectors bμ=b, uμ10 and u

μ
20,
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with coefficients that are, at each order in G, homogeneous
polynomials in Gm1 and Gm2. By dimensional analysis, as
the only length scale entering each order in the PM
expansion3 is the impact parameter b, we can write the

three vectorial coefficients of the dimensionless ΔðnÞ
μ as

polynomials in Gm1=b and Gm2=b, with coefficients
depending only on the dimensionless quantity

γ ≡ −u10 · u20: ð2:10Þ

The latter quantity (denoted σ in Refs. [24,25]), which is
the relative Lorentz factor between the two incoming
particles, will play a central role in the following. Let us
immediately note that it is equal to the dimensionless
effective EOB energy of the binary system:

γ ¼ Êeff : ð2:11Þ

Indeed,

γ ¼ −
p10 · p20

m1m2

¼ −
ðp10 þ p20Þ2 − p2

10 − p2
20

2m1m2

¼ s −m2
1 −m2

2

2m1m2

; ð2:12Þ

to be compared with the EOB definition (1.9).
Let us now consider the magnitude of the (classical)

momentum transfer, namely

Q≡ ffiffiffiffiffi
−t

p ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ημνΔp1μΔp1ν

p
; ð2:13Þ

which is related to the center-of-mass (c.m.) scattering
angle χ, and the c.m. three-momentum Pc:m:, via

Q ¼ 2Pc:m: sin
χ

2
: ð2:14Þ

The structure of the PM expansion of the vectorial
momentum transfer (2.9) is easily seen to imply that

Q ¼ 2Gm1m2

b

�
Q1PMðγÞ þ

�
Q2PM

1 ðγÞGm1

b
þQ2PM

2 ðγÞGm2

b

�
þ
�
Q3PM

11 ðγÞ
�
Gm1

b

�
2

þQ3PM
22 ðγÞ

�
Gm2

b

�
2

þQ3PM
12 ðγÞGm1

b
Gm2

b

�
þ
�
Q4PM

111 ðγÞ
�
Gm1

b

�
3

þQ4PM
222 ðγÞ

�
Gm2

b

�
3

þQ4PM
112 ðγÞ

�
Gm1

b

�
2Gm2

b
þQ4PM

122 ðγÞ
Gm1

b

�
Gm2

b

�
2
�
þ � � �

�
ð2:15Þ

where

Q1PMðγÞ ¼ 2γ2 − 1ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p : ð2:16Þ

Three apparently trivial, but quite useful, pieces of informa-
tion controlling the structure of this PM expansion are: (i) the
homogeneous polynomial dependence in m1 and m2 (and
therefore, by dimensional analysis, inGm1=b andGm2=b) at
each PM order; (ii) the exchange symmetry between the two
masses; and (iii) the consideration of the test-particle limit
where, say,m1 ≪ m2. The exchange symmetry tells us that,
for instance, Q2PM

1 ðγÞ ¼ Q2PM
2 ðγÞ, Q3PM

11 ðγÞ ¼ Q3PM
22 ðγÞ,

Q4PM
111 ðγÞ ¼ Q4PM

222 ðγÞ, Q4PM
112 ðγÞ ¼ Q4PM

122 ðγÞ, etc. In other
words, at each PM order, we will have a symmetric
polynomial in m1 and m2, with γ-dependent coefficients.
In addition, the test-mass limit tells us that all the functions
involving only one mass are equal to the corresponding
function of γ appearing in the scattering of a test mass around
a Schwarzschild black hole. Therefore, we have

Q1PMðγÞ ¼ Q1PM
S ðγÞ;

Q2PM
1 ðγÞ ¼ Q2PM

2 ðγÞ ¼ Q2PM
S ðγÞ;

Q3PM
11 ðγÞ ¼ Q3PM

22 ðγÞ ¼ Q3PM
S ðγÞ;

Q4PM
111 ðγÞ ¼ Q4PM

222 ðγÞ ¼ Q4PM
S ðγÞ; ð2:17Þ

where the subscript S refers to the Schwarzschild limit.
The 1PM-level result [first line of Eq. (2.17)] was

already used in [46] to show that the 1PM dynamics is
equivalent (after using the EOB energy map) to geodesic
motion in a linearized Schwarzschild metric of mass
M ¼ m1 þm2. Let us emphasize that the 2PM-level result
[second line of (2.17)] gives a one-line proof that the 2PM
fractional contribution to the momentum transfer (consid-
ered as a function of the impact parameter) of a two-body
system is simply given by the formula,

Q2PM
S ðγÞGðm1 þm2Þ

b
; ð2:18Þ

where Q2PM
S ðγÞ denotes the function of γ obtained by

computing the 2PM-accurate scattering of a test particle
around a Schwarzschild black hole, namely (see, e.g., [20])

3This contrasts with the PN expansion where one has two
different length scales: b and the characteristic wavelength of the
gravitational radiation λ ∼ cb=v.
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Q2PM
S ðγÞ ¼ 3π

8

5γ2 − 1ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p : ð2:19Þ

The test-mass computation yielding (2.19) (equivalent to
Eq. (3.19) in [20]) is much simpler than the full, two-body
2PM scattering computation (involving complicated non-
linear terms and recoil effects) first done by Westpfahl [41]
(and recently redone in [49]). The simple link between the
2PM test-mass result and the two-body one was also
recently discussed in Ref. [50], but in a different context,
and arguing from the structure of the so-called classical part
of the one-loop amplitude [19,21], instead of our purely
classical analysis above. Note that the mass-dependence we
are talking about here has taken an especially simple form
because we focused on the variableQ as a function of γ and
b. As we shall see next, the mass-dependence of the
scattering angle χ as a function of γ and either b or j≡

J
Gm1m2

is more involved.
Summarizing so far, we conclude that both the 1PM and

2PM two-body scattering can be deduced (without any
extra calculation) from the 1PM and 2PM test-mass
scattering.
Let us now consider what happens at higher PM orders.

At the 3PM order, OðG3Þ, we conclude from the above
results that the scattering depends not only on the test-
mass-derivable function Q3PM

11 ðγÞ ¼ Q3PM
22 ðγÞ ¼ Q3PM

S ðγÞ,
but also on a single further function of γ, namely Q3PM

12 ðγÞ.
Similarly, at the 4PM order, the full two-body scattering
depends, besides the test-mass-derivable function
Q4PM

111 ðγÞ ¼ Q4PM
222 ðγÞ ¼ Q4PM

S ðγÞ, on a single further func-
tion of γ, namely Q4PM

112 ðγÞ ¼ Q4PM
122 ðγÞ.

It is easy to generalize this result to higher PM orders.
E.g., at 5PM, modulo the 1 ↔ 2 symmetrization, there will
be terms ∝ m4

1, m
3
1m2 and m2

1m
2
2. The first one of these is

deducible from the test-mass limit, so that the full two-body
5PM scattering depends on only two nontrivial extra
functions of γ. The same counting applies at the 6PM
level where there will be (modulo 1 ↔ 2 symmetrization)
terms ∝ m5

1 (test-mass-deducible), m4
1m2 and m3

1m
2
2. The

general rule is that, at the nPM order, there will appear only
(using ½� � �� to denote the integer part)

dðnÞ≡
�
n − 1

2

�
; ð2:20Þ

nontest-mass-deducible functions of γ.
The latter result can be translated into a dependence on

the symmetric mass ratio ν≡m1m2=ðm1 þm2Þ2 if one
expresses m1 and m2 (with, say, m1 ≤ m2) in terms of the
total mass M ¼ m1 þm2, and of the two dimensionless
mass ratios

X1 ≡ m1

m1 þm2

¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ν

p

2
;

X2 ≡ m2

m1 þm2

¼ 1 − X1 ¼
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4ν
p

2
; ð2:21Þ

such that ν≡ X1X2. Indeed, an homogeneous, symmetric
polynomial of degree n in the masses yields (after division
by Mn) a sum

P
k ckX

k
1X

n−k
2 . Using X2 ≡ 1 − X1 and

symmetrizing over 1 ↔ 2 yields a sum
P

k c
0
kðXk

1 þ Xk
2Þ

over 0 ≤ k ≤ n. What will be important here is the
maximum power of ν entering such symmetric polynomials
in the mass ratios. We note the following results

X2
1 þ X2

2 ¼ 1 − 2ν;

X3
1 þ X3

2 ¼ 1 − 3ν;

X4
1 þ X4

2 ¼ 1 − 4νþ 2ν2;

X5
1 þ X5

2 ¼ 1 − 5νþ 5ν2: ð2:22Þ

More generally, Xk
1 þ Xk

2 is a polynomial in ν of degree ½k
2
�.

At the nPM order, after having factored the prefactor,

2Gm1m2

b

�
GM
b

�
n−1

; ð2:23Þ

there appears such an homogeneous, symmetric polyno-
mial of degree n − 1 in X1 and X2.
Finally, the PM expansion of the momentum transfer can

be written as:

Q ¼ 2Gm1m2

b

X
n≥1

�
GM
b

�
n−1

Qn PMðγ; νÞ; ð2:24Þ

where Qn PMðγ; νÞ is a polynomial in ν of degree
dðnÞ≡ ½n−1

2
�:

Qn PMðγ; νÞ ¼ Qn PM
0 ðγÞ þ νQn PM

1 ðγÞ þ � � � þ νdðnÞQn PM
dðnÞ ðγÞ:
ð2:25Þ

For instance, at the 3PM level, we have explicitly

Q3PMðγ; νÞ ¼ Q3PM
11 ðγÞðX2

1 þ X2
2Þ þQ3PM

12 ðγÞX1X2

¼ Q3PM
S ðγÞð1 − 2νÞ þQ3PM

12 ðγÞν: ð2:26Þ

It is easily seen that, at all PM orders, the coefficient of ν0 is
simply the result given by the test-mass computation:

Qn PM
0 ðγÞ ¼ Qn PM

S ðγÞ: ð2:27Þ

Let us now translate the above structural information into
an information about the classical scattering function itself,
i.e., the half scattering angle χ=2 considered as a function of
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the energy and angular momentum of the system. As
indicated in Eq. (1.4), it is convenient to measure the total
c.m. energy of the system by means of the dimensionless
effective energy Êeff ¼ γ given by Eq. (1.9), and to measure
the total c.m. angular momentum by means of the dimen-
sionless variable j ¼ J=ðGm1m2Þ, Eq. (1.10). We also need
the relations connecting the c.m. linear momentum Pc:m:.
both to b, to J and to γ. These are (see Eqs. (7.6) and
(10.27) in [20])

bPc:m: ¼ J ¼ Gm1m2j;

ErealPc:m: ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp10 · p20Þ2 − p2

10p
2
20

q
¼ m1m2

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

q
:

ð2:28Þ

From these links follows the relation

GM
b

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
hðγ; νÞj ¼ peob

hðγ; νÞj : ð2:29Þ

Here we introduced some abbreviated notation for
two dimensionless quantities crucially entering many
equations, namely

hðγ; νÞ≡ Ereal

M
¼

ffiffiffi
s

p
M

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2νðγ − 1Þ

p
;

peob ≡
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

q
≡ p∞: ð2:30Þ

[We will indifferently use the notation peob or p∞.]
Inserting these relations in the above expression of the
momentum transfer Q, and computing

sin
χ

2
¼ Q

2Pc:m:
; ð2:31Þ

yields

sin
χ

2
¼ 1

j

X
n≥1

�
peob

hðγ; νÞj
�

n−1
Qn PMðγ; νÞ: ð2:32Þ

This reads more explicitly

sin
χ

2
¼ Q1PMðγÞ

j
þ peobQ2PMðγÞ

hðγ; νÞj2

þ p2
eobQ

3PMðγ; νÞ
h2ðγ; νÞj3 þ p3

eobQ
4PMðγ; νÞ

h3ðγ; νÞj4
þ � � � ð2:33Þ

Let us compare this expression to the usual way of
writing the scattering function, namely (using γ ≡ Êeff as
energy variable and j≡ J=ðGm1m2Þ as angular momentum
variable)

1

2
χðEreal; JÞ ¼

χ1ðγ; νÞ
j

þ χ2ðγ; νÞ
j2

þ χ3ðγ; νÞ
j3

þ χ4ðγ; νÞ
j4

þ � � � ; ð2:34Þ

which implies

sin
1

2
χðγ; j; νÞ ¼ χ̃1ðγ; νÞ

j
þ χ̃2ðγ; νÞ

j2
þ χ̃3ðγ; νÞ

j3

þ χ̃4ðγ; νÞ
j4

þ � � � : ð2:35Þ

where

χ̃1 ¼ χ1;

χ̃2 ¼ χ2;

χ̃3 ¼ χ3 −
1

6
χ31;

χ̃4 ¼ χ4 −
1

2
χ21χ2: ð2:36Þ

When comparing the definitions of the expansion co-
efficients χn and χ̃n to the structural result (2.33) we find

χ̃nðγ; νÞ ¼
pn−1
eob Q

n PMðγ; νÞ
hn−1ðγ; νÞ : ð2:37Þ

Remember the fact that Qn PMðγ; νÞ was proven above to be
a polynomial in ν of degree dðnÞ (with γ-dependent
coefficients). We then get the rule that

hn−1ðγ; νÞχ̃nðγ; νÞ ¼ P̃γ
dðnÞðνÞ; ð2:38Þ

where P̃γ
dðnÞðνÞ denotes a polynomial in ν of degreedðnÞwith

γ-dependent coefficients.When transferring this information
into a corresponding information for the expansion coef-
ficients χnðγ; νÞ of 12 χðγ; jÞ, usingEqs. (2.36), it is easily seen
that we have the same structure for them, namely

hn−1ðγ; νÞχnðγ; νÞ ¼ Pγ
dðnÞðνÞ; ð2:39Þ

wherePγ
dðnÞðνÞ denotes another degree-dðnÞ polynomial in ν

with γ-dependent coefficients.
We can combine this structural information with the

knowledge of the test-mass limit of the χnðγ; νÞ’s. In the
context of the functions χnðγ; νÞ, the test-mass limit is
simply the ν → 0 limit. Therefore, the ν → 0 limit of the
various χnðγ; νÞ’s must coincide with the values χSchwn ðγÞ of
the scattering coefficients for a test particle in a
Schwarzschild background. The latter values were com-
puted in [20] with the results
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χSchw1 ðpeobÞ ¼
2p2

eob þ 1

peob
¼ 2γ2 − 1ffiffiffiffiffiffiffiffiffiffiffiffi

γ2 − 1
p ; ð2:40Þ

χSchw2 ðpeobÞ ¼
3π

8
ð5p2

eob þ 4Þ ¼ 3π

8
ð5γ2 − 1Þ; ð2:41Þ

χSchw3 ðpeobÞ ¼
64p6

eob þ 72p4
eob þ 12p2

eob − 1

3p3
eob

; ð2:42Þ

χSchw4 ðpeobÞ ¼
105π

128
ð33p4

eob þ 48p2
eob þ 16Þ: ð2:43Þ

We then get the information that

Pγ
dðnÞð0Þ ¼ χSchwn ðpeobÞ: ð2:44Þ

As already implied by the discussion above, this fully
determines the 1PM [37,46] and 2PM [41,49] scattering
coefficients, namely

χ1ðγ; νÞ ¼ χSchw1 ðγÞ ¼ 2γ2 − 1ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p ; ð2:45Þ

and

χ2ðγ; νÞ ¼
χSchw2 ðγÞ
hðγ; νÞ ¼ 3π

8

ð5γ2 − 1Þ
hðγ; νÞ : ð2:46Þ

Note in passing that it is crucial, in order to find the ν-
independence of χ1ðγ; νÞ, to measure the energy by means
of γ (i.e., the EOB effective energy), and not by means of
the total c.m. energy Ereal ¼

ffiffiffi
s

p ¼ Mhðγ; νÞ.
Concerning the higher-order expansion coefficients,

using the fact that h2ðγ; νÞ ¼ 1þ 2νðγ − 1Þ is a linear
function of ν [so that a polynomial in ν can be reexpressed
as a polynomial in h2ðγ; νÞ] they can be written in the
following form

χ3ðγ; νÞ ¼ χ̂ð0Þ3 ðγÞ þ χ̂ð2Þ3 ðγÞ
h2ðγ; νÞ ;

χ4ðγ; νÞ ¼
χ̂ð1Þ4 ðγÞ
hðγ; νÞ þ

χ̂ð3Þ4 ðγÞ
h3ðγ; νÞ ;

χ5ðγ; νÞ ¼ χ̂ð0Þ5 ðγÞ þ χ̂ð2Þ5 ðγÞ
h2ðγ; νÞ þ

χ̂ð4Þ5 ðγÞ
h4ðγ; νÞ ;

χ6ðγ; νÞ ¼
χ̂ð1Þ6 ðγÞ
hðγ; νÞ þ

χ̂ð3Þ6 ðγÞ
h3ðγ; νÞ þ

χ̂ð5Þ6 ðγÞ
h5ðγ; νÞ ; ð2:47Þ

with the information that, at each PM order, the sum over k

of the various numerators χ̂ðkÞn ðγÞ is equal to the
Schwarzschild limit χSchwn ðγÞ. This implies, for instance,
that at the 3PM level we can also write

χ3ðγ; νÞ ¼ χSchw3 ðγÞ þ χ̂ð2Þ3 ðγÞ
�

1

h2ðγ; νÞ − 1

�
; ð2:48Þ

where the last term vanishes when ν → 0. A similar
structure describes the 4PM-level scattering, namely

χ4ðγ; νÞ ¼
χSchw4 ðγÞ
hðγ; νÞ þ χ̂ð3Þ4 ðγÞ

hðγ; νÞ
�

1

h2ðγ; νÞ − 1

�
: ð2:49Þ

In both cases, we see that the full 3PM and 4PM dynamical
information is encapsulated in a single function of γ,

namely χ̂ð2Þ3 ðγÞ and χ̂ð3Þ4 ðγÞ, respectively.
Let us note that in the high-energy (HE) limit (γ → ∞,

i.e., peob → ∞) we have the following asymptotic behavior
of the test-mass-limit scattering coefficients

χSchwn ðpeobÞ¼HEc χSchw
n pn

eob¼HEc χSchw
n γn; ð2:50Þ

where c χSchw
n is a numerical constant. It was suggested in

Ref. [20] that the same asymptotic behavior (though with
different numerical constants c χ

n ) holds for the building

blocks χ̂ðkÞn ðγÞ introduced above. We shall rediscuss this
suggestion below.

III. PM-EXPANDED EOB HAMILTONIAN AND
EOB RADIAL POTENTIAL

A. EOB Hamiltonian in PM gravity

References [20,46] introduced a new, PM-based,
approach to the conservative dynamics of two-body sys-
tems based on the EOB formalism. This led to simple EOB
descriptions of the 1PM [46], 2PM [20], and 3PM [51]
Hamiltonians. Here, we will reconsider the 3PM EOB
Hamiltonian derived from the quantum-amplitude
approach of Refs. [24,25]. Let us start by recalling the
PM-EOB formalism of Refs. [20,46].
The basic feature of the EOB formalism [43–45] is to

describe the two-body dynamics in terms of a one-body
Hamiltonian, which describes the dynamics of the relative
two-body motion within the c.m. frame of the two-body
system. The simplest way to define the EOB Hamiltonian is
to say that: (i) the (“real”) c.m. Hamiltonian of the two-
body system is related to the conserved energy Eeff of the
“effective” dynamics by Eq. (1.9), i.e.,

HrealðR;PÞ ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ν

�
Eeff

μ
− 1

�s
; ð3:1Þ

and, (ii) the effective energy Eeff is related to the dynamical
variables R, P describing the relative c.m. dynamics via a
mass-shell condition of the form

0 ¼ gμνeffPμPν þ μ2 þQðXμ; PμÞ; ð3:2Þ
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where gμνeff is (the inverse of) an effective metric of the form

geffμνdxμdxν ¼ −AðRÞdT2 þ BðRÞdR2

þ CðRÞðdθ2 þ sin2θdφ2Þ; ð3:3Þ

and where QðXμ; PμÞ is a Finsler-type additional contri-
bution, which contains higher-than-quadratic momenta
contributions. The time-invariance, and spherical sym-
metry, of the effective metric (and of Q), implies (for
equatorial motions) the existence of the two conserved
quantities P0 and Pφ, which are respectively identified with

P0 ¼ −Eeff ; Pφ ¼ J: ð3:4Þ

For any given additional mass-shell contribution
Q expressed as a function of R, P, and Eeff , say
Q ¼ QðR;P; EeffÞ, the effective Hamiltonian Eeff ¼
HeffðR;PÞ is then obtained by solving

0 ¼ −
E2
eff

A
þ P2

R

B
þ P2

φ

C
þ μ2 þQðR;P; EeffÞ; ð3:5Þ

with respect to Eeff , and then inserting the result in the real,
two-body Hamiltonian (3.1).
In a PM framework, i.e., when working perturbatively in

G, it was shown in [20,46] that: (i) the effective metric
can be taken to be a Schwarzschild metric of mass
M ¼ m1 þm2; (ii) the Q term starts at order G2; and
(iii) one can (by using some gauge freedom) constructQ so
that it depends only on R ¼ jRj and some energy-like
variable ( “energy gauge”). There are two simple choices
for defining such an energy-gauge. Using the shorthand
notation

u≡GM
R

; ð3:6Þ

one can either write Q as a function of u and Eeff ,

QEðu; EeffÞ ¼ u2Q2ðEeffÞ þ u3Q3ðEeffÞ
þ u4QE

4 ðEeffÞ þOðG5Þ; ð3:7Þ

or, one can express Q as a function of position and
momenta by writing

QHðu;HSÞ ¼ u2Q2ðHSÞ þ u3Q3ðHSÞ
þ u4QH

4 ðHSÞ þOðG5Þ; ð3:8Þ

where HS denotes the Schwarzschild Hamiltonian, i.e.,

HSðu; PR; PφÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðRÞ

�
P2
R

BðRÞ þ
P2
φ

CðRÞ þ μ2
�s
: ð3:9Þ

The second form was initially advocated in [20] because it
allows one to explicitly solve the mass shell condition (3.5)
for Eeff as a function of position and momenta, namely

Eeff ¼ HeffðR;PÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A

�
P2
R

B
þ P2

φ

C
þ μ2 þQH½u;HSðu; PR; PφÞ�

�s
:

ð3:10Þ

However, Ref. [20] also used the first form (3.7) because of
its usefulness in getting an explicit energy-dependent
potential that can be easily quantized. As indicated by
the notation used in Eqs. (3.7), (3.8), the difference between
the expansion coefficients Qn entering these two perturba-
tive expansions starts at orderG4. This follows from the fact
that Q itself starts at order G2.
In the following we will mostly work with the first,

E-form of the energy gauge. It will also be convenient to
work with dimensionless, rescaled quantities, say

Q̂≡ Q
μ2

; p≡ P
μ
; Ĥeff ≡Heff

μ
; ð3:11Þ

and to denote the PM expansion coefficients of Q̂ simply as
qn ≡Qn=μ2, e.g.,

Q̂Eðu;γÞ¼ u2q2ðγÞþu3q3ðγÞþu4qE4 ðγÞþOðG5Þ; ð3:12Þ

where we used Eq. (2.11) to write Êeff ≡ Eeff=μ simply as γ.

B. Energy-dependent, radial scattering potential within
the EOB framework

In the previous subsection we recalled how PM gravity
can be encoded, within the EOB formalism, by means of a
PM-expanded mass-shell function QðR;P; EeffÞ. When
discussing the quantum scattering amplitude corresponding
to a given PM-expandedQ, it was found convenient in [20]
to transform Q into an equivalent PM-expanded, energy-
dependent radial potential WðR̄; EeffÞ. Let us recall this
transformation.
Most of the past work in EOB dynamics has found it

convenient to represent the EOB effective metric (3.3) by
using a Schwarzschild-like radial coordinate, i.e., by
choosing a coordinate R such that the coefficient CðRÞ
of dθ2 þ sin2 θdφ2 is equal to R2. In keeping with the latter
usage, we shall denote simply by R such a Schwarzschild-
like radial coordinate, and by u the corresponding quantity
GM=R. On the other hand, when discussing the effective
potential describing the scattering dynamics, it is conven-
ient [following the 2PM-level treatment of Sec. X of
Ref. [20]) to use isotropic coordinates, i.e., a new radial
coordinate, say R̄, such that CðR̄Þ ¼ R̄2BðR̄Þ] for the
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Schwarzschild metric entering the EOB mass shell con-
dition (3.5). The link between R and R̄ is

R ¼ R̄

�
1þGM

2R̄

�
2

; ð3:13Þ

or

u ¼ ū

�
1þ ū

2

�
−2
: ð3:14Þ

In these coordinates, the usual formulas AðuÞ ¼ 1–2u ¼
1=BðuÞ transform into

ĀðūÞ ¼
�
1 − 1

2
ū

1þ 1
2
ū

�
2

; B̄ðūÞ ¼
�
1þ 1

2
ū

�
4

; ð3:15Þ

where we added a bar on A, and B (and on the argument u),
to recall the use of isotropic coordinates.
We shall denote the Cartesian coordinates linked in the

usual way to R̄; θ;φ as Xi ¼ X, and the corresponding
(covariant) momenta Pi as P (for simplicity we do not put
bars on X and P). The E-type mass shell condition then
directly leads to an energy-dependent quadratic constraint
on the momenta of the form

P2 ¼ P2
∞ þWðū; P∞Þ; ð3:16Þ

where

P2
∞ ≡ E2

eff − μ2 ¼ μ2ðγ2 − 1Þ; ð3:17Þ

and where the energy-dependent “potential” W is
defined by

P2
∞þWðū;P∞Þ≡ B̄ðūÞ

�
E2
eff

ĀðūÞ−μ2−Qðū;EeffÞ
�
: ð3:18Þ

The radial potentialWðū; P∞Þ tends to zero at large distances
(i.e., when ū ¼ GM=R̄ → 0) and can be rewritten as

Wðū; P∞Þ ¼ E2
eff

�
B̄ðūÞ
ĀðūÞ − 1

�

− μ2ðB̄ðūÞ − 1Þ − B̄ðūÞQEðū; EeffÞ: ð3:19Þ

Its PM expansion directly follows by combining the ū
expansion of the metric functions ĀðūÞ; B̄ðūÞ, with the
PM expansion of QEðū; EeffÞ. It reads

Wðū; P∞Þ ¼ W1ūþW2ū2 þW3ū3 þW4ū4 þ � � �

¼ GMW1

R̄
þ G2M2W2

R̄2
þG3M3W3

R̄3
þG4M4W4

R̄4

þ � � � ð3:20Þ

It is oftenmore convenient toworkwith a rescaled version of
these results in which one uses the dimensionless variables

r̄¼ R̄
GM

; p¼P
μ
; p∞ ¼P∞

μ
¼

ffiffiffiffiffiffiffiffiffiffiffi
γ2−1

q
: ð3:21Þ

One then has

p2 ¼ p2
∞ þ wðū; p∞Þ; ð3:22Þ

where

wðū; p∞Þ ¼
Wðū; p∞Þ

μ2
; ð3:23Þ

i.e.,

wðū; p∞Þ ¼ γ2
�
B̄ðūÞ
ĀðūÞ − 1

�

− ðB̄ðūÞ − 1Þ − B̄ðūÞQ̂Eðū; γÞ: ð3:24Þ

The rescaled potential wðū; p∞Þ has the following PM
expansion

wðū;p∞Þ¼w1ðγÞūþw2ðγÞū2þw3ðγÞū3þw4ðγÞū4þ�� �

¼w1ðγÞ
r̄

þw2ðγÞ
r̄2

þw3ðγÞ
r̄3

þw4ðγÞ
r̄4

þ��� ð3:25Þ

where

wnðγÞ ¼
WnðγÞ
μ2

: ð3:26Þ

Note that these results mean that the relativistic (scattering)
dynamics of a two-body system can bemapped (by using the
EOB framework) onto the nonrelativistic dynamics of one
particle of mass μ in an energy-dependent radial potential.
We can now use Eq. (3.25) to compute the link between

the (rescaled) coefficients wnðγÞ entering the PM expansion
of the (rescaled) potential wðū; γÞ, and the coefficients
qEn ðγÞ entering the PM expansion of the energy-gauge Q
function entering the EOB mass shell condition (3.2). The
Q term is numerically independent of the radial gauge used
in the EOB effective metric (3.3), but we must distinguish
the functions u → Q̂Eðu; γÞ and ū → Q̂Eðū; γÞ. We shall
denote their respective PM expansion coefficients as

Q̂Eðu;γÞ¼ u2q2ðγÞþu3q3ðγÞþu4qE4 ðγÞþOðG5Þ; ð3:27Þ

and

THIBAULT DAMOUR PHYS. REV. D 102, 024060 (2020)

024060-10



Q̂Eðū;EeffÞ¼ ū2q̄2ðγÞþ ū3q̄3ðγÞþ ū4q̄E4 ðγÞþOðG5Þ;
ð3:28Þ

with similar equations for Q̂Hðu; ĤSÞ and Q̂Hðū; ĤSÞ.
The relations between the qn’s and the q̄n’s is easily

obtained from Eq. (3.14). For instance, we have

q̄2ðγÞ ¼ q2ðγÞ;
q̄3ðγÞ ¼ q3ðγÞ − 2q2ðγÞ;

q̄E4 ðγÞ ¼ qE4 ðγÞ − 3q3ðγÞ þ
5

2
q2ðγÞ: ð3:29Þ

We can then express the expansion coefficients wnðγÞ of
the EOB potential either in terms of the qn’s or the q̄n’s.
More precisely, the coefficient of 1=r̄ entirely comes from
the linearized Schwarzschild metric and reads [20]

w1ðγÞ ¼ 2ð2γ2 − 1Þ; ð3:30Þ

while the coefficients of higher powers of 1=r̄ are related to
the q̄n’s via

w2ðγÞ ¼
15

2
γ2 −

3

2
− q̄2ðγÞ;

w3ðγÞ ¼ 9γ2 −
1

2
− q̄3ðγÞ − 2q̄2ðγÞ;

w4ðγÞ ¼
129

16
γ2 −

1

16
− q̄E4 ðγÞ − 2q̄3ðγÞ −

3

2
q̄2ðγÞ; ð3:31Þ

i.e.,

w2ðγÞ ¼
15

2
γ2 −

3

2
− q2ðγÞ;

w3ðγÞ ¼ 9γ2 −
1

2
− q3ðγÞ;

w4ðγÞ ¼
129

16
γ2 −

1

16
− qE4 ðγÞ þ q3ðγÞ: ð3:32Þ

At the 2PM level, it was shown in [20] that

q2ðγ; νÞ ¼
3

2
ð5γ2 − 1Þ

�
1 −

1

hðγ; νÞ
�
; ð3:33Þ

where we recall that hðγ; νÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2νðγ − 1Þp

, so that

w2ðγ; νÞ ¼
3

2
ð5γ2 − 1Þ 1

hðγ; νÞ : ð3:34Þ

The current knowledge of the values of the 3PM co-
efficients q3ðγ; νÞ and w3ðγ; νÞ will be assessed below.

C. Scattering function and scattering invariants of an
energy-dependent radial potential

References [20,46] showed how to derive the scattering
function χðEeff ; JÞ directly from theQ-form of the EOB PM
dynamics. An equivalent, alternative procedure is to derive
χðEeff ; JÞ from the EOB radial potential Wðū; P∞Þ corre-
sponding to the Schwarzschild-metric-plus-Q formulation.
Actually this link is very general and applies to any
dynamical formulation involving a radial potential.
The usual formulas of nonrelativistic potential scattering

(recalled, e.g., in [46]) yield

π þ χðEeff ; JÞ ¼ −
Z þ∞

−∞
dR̄

∂PRðR̄; Eeff ; JÞ
∂J ; ð3:35Þ

where the radial momentum PRðR̄; Eeff ; JÞ is obtained by
solving the mass-shell condition with respect to PR. When
using an energy gauge, the mass-shell condition reads,

P2 ¼ P2
R þ J2

R̄2
¼ P2

∞ þWðū; P∞Þ; ð3:36Þ

so that

PRðR̄; Eeff ; JÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
∞ þWðū; P∞Þ −

J2

R̄2

r
: ð3:37Þ

Here the (energy-gauge) potential Wðū; P∞Þ (where we
recall that ū ¼ GM=R̄ and P∞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
eff − μ2

p
) does not

depend on the angular momentum J. We can then write (as
in usual nonrelativistic potential theory)

π

2
þ 1

2
χðEeff ; JÞ ¼ þ

Z þ∞

R̄min

J
dR̄
R̄2

1

PRðR̄; Eeff ; JÞ
; ð3:38Þ

where Rmin ¼ RminðEeff ; JÞ is the radial turning point
defined by the vanishing of PR.
In terms of rescaled variables [including j ¼ J=ðGMμÞ],

this reads

π

2
þ 1

2
χðγ; jÞ ¼ þ

Z þ∞

r̄min

j
dr̄
r̄2

1

prðr̄; γ; jÞ
; ð3:39Þ

where

prðr̄; γ; jÞ ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
∞ þ wðū; p∞Þ −

j2

r̄2

r
: ð3:40Þ

Indeed, one must use the positive square roots in the
integrals above that have been written from the radial
turning points (R̄min or r̄min) to infinity.
In terms of the variable ū ¼ 1=r̄ ¼ GM=R̄, the above

integral reads (with ūmax ≡ 1=r̄min)
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π

2
þ1

2
χðγ;jÞ¼þ

Z
umaxðγ;jÞ

0

jdūffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
∞þwðū;p∞Þ− j2ū2

p :

ð3:41Þ

Introducing the integration variable

x≡ jū
p∞

; ð3:42Þ

this reads

π

2
þ 1

2
χðγ; jÞ ¼

Z
xmaxðγ;jÞ

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2 þ w̃ðxj ; p∞Þ

q ; ð3:43Þ

where

w̃

�
x
j
; p∞

�
≡ 1

p2
∞
½wðū; p∞Þ�ū↦xp∞=j: ð3:44Þ

The PM expansion of wðūÞ yields the following large-j
expansion of w̃ðxj ; p∞Þ:

w̃

�
x
j
;p∞

�
¼ w̃1

x
j
þ w̃2

x2

j2
þ w̃3

x3

j3
þ w̃4

x4

j4
þ � � � ð3:45Þ

where we introduced

w̃1ðp∞Þ ¼
w1ðp∞Þ
p∞

;

w̃2ðp∞Þ ¼ w2ðp∞Þ;
w̃3ðp∞Þ ¼ p∞w3ðp∞Þ;
w̃4ðp∞Þ ¼ p2

∞w4ðp∞Þ: ð3:46Þ

Before doing any calculation, we see from the integral
expression (3.43), with the expansion (3.45), that the
scattering function χðγ; jÞ will only depend on the
coefficients

ŵn ≡ w̃nðp∞Þ
jn

; ð3:47Þ

entering

w̃

�
x
j
; p∞

�
¼

X
n

ŵnxn: ð3:48Þ

Moreover, as 1=j ¼ OðGÞ, the nth order term, ∝ Gn, in the
PM expansion of 1

2
χðγ; jÞ ¼ P

n χn=j
n must be a poly-

nomial in the ŵm’s of total degree
P

mi ¼ n. In other
words, the coefficient χn of 1=jn must be a polynomial
in the w̃m’s of total degree

P
mi ¼ n. This trivial

remark suffices to prove that all the coefficients w̃nðγÞ

are gauge-invariant functions, independent of any canonical
transformation (reducing to the identity when G → 0)
acting on the rescaled dynamical variables x and p (or
on their unrescaled versions X, P).
To have more information on the physical meaning of the

various gauge-invariant coefficients w̃nðγÞ, one needs to
explicitly compute the PM (or 1=j) expansion of the
integral expression (3.43). One a priori technical difficulty
is that if one straightforwardly expands the integral on the
right-hand side (rhs) of Eq. (3.43) in powers of G, i.e.,
in powers of w̃ðxj ; p∞Þ ¼ OðGÞ, one generates formally
divergent integrals. In addition, the upper limit of integra-
tion (where the expanded integral diverges) depends also
on G: xmaxðγ; jÞ ¼ 1þOðGÞ. However, there is a simple
way out. It was indeed shown in Ref. [58], that the correct
result for such an expanded integral is simply obtained by
ignoring the expansion of the upper limit, and by taking the
Hadamard partie finie (Pf) of the divergent integrals. This
yields the expansion

χðγ;jÞ
2

¼
X
n≥1

Pf
Z

1

0

dx

�−1
2

n

�
ð1−x2Þ−1

2
−n
�
w̃

�
x
j

��
n
: ð3:49Þ

Each integral in this expansion (after reexpanding the nth
power of w̃ðx=jÞ ¼ w̃1x=jþ w̃2x2=j2 þ � � � in powers of
1=j ¼ OðGÞ) is an integral of the type

Pf
Z

1

0

dxð1 − x2Þ−1
2
−nxm: ð3:50Þ

Replacing, e.g., x by z
1
2, the latter integral becomes an Euler

Beta function (and its Hadamard partie finie is trivially
obtained by analytical continuation in the original power
− 1

2
→ − 1

2
þ ϵ, taking finally ϵ → 0). This yields for the

coefficients χn of the expansion of χ=2 in powers of 1=j

χ1 ¼
1

2
w̃1;

χ2 ¼
π

4
w̃2;

χ3 ¼ −
1

24
w̃3
1 þ

1

2
w̃1w̃2 þ w̃3;

χ4 ¼
3π

8

�
1

2
w̃2
2 þ w̃1w̃3 þ w̃4

�
: ð3:51Þ

By inserting in Eqs. (3.51) the definitions (3.46) of the w̃n’s
one gets the expressions of the χn’s in terms of the
coefficients wn of the potential WðūÞ. Relations equivalent
to the latter relations have been also written down to 4PM
order in Eq. (11.25) of [25], and to all orders in [55,56].
Then, by inserting in the latter expressions the expres-

sions (3.32) of the wn’s in terms of the qn’s, we get the χn’s
in terms of the coefficients qn of the EOB Q function. For
instance, we get at the 2PM, 3PM and 4PM levels
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χ2 ¼
π

4

�
3

2
ð5γ2 − 1Þ − q2ðγÞ

�
;

χ3 ¼
−1þ 12p2

∞ þ 72p4
∞ þ 64p6

∞

3p3
∞

− p∞

�
q3ðγÞ þ

2γ2 − 1

γ2 − 1
q2ðγÞ

�
;

χ4 ¼
105π

128
ð16þ 48p2

∞ þ 33p4
∞Þ

−
3π

16
½3ð4þ 5p2

∞Þq2ðγÞ − q2ðγÞ2

þð4þ 6p2
∞Þq3ðγÞ þ 2p2

∞q4ðγÞ�; ð3:52Þ

where we mixed the use of γ and p∞ ≡ ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
. The first

two links (at the 2PM and 3PM levels) have already been
obtained (by using theQ route) in [20], see Eqs. (5.5), (5.6)
and (5.8) there.
We recall that the qn’s are functions both of γ and of the

symmetric mass ratio ν, and that qn → 0 as ν → 0. This
implies in particular that the qn → 0 limits of the rhs’s of
the above equations are simply the values χSchwn of the χn’s
for a test particle moving in a Schwarzschild background
(as given in Eqs. (3.18)–(3.21) of [20]). Let us also note in
passing that, despite the appearance of denominators
blowing up at low velocities (when p2

eob → 0, i.e.,
γ2 → 1) in some of the expressions we will give below
for them, the functions qnðγ; νÞ are all regular as p2

eob → 0.

D. Summary of the current knowledge
of the PM-expanded dynamics

The above-derived links between χn, qn and wn can be
used in various ways. In particular, if one has derived the
scattering coefficients χn up to some PM level, one can
directly deduce from them the values of the corresponding
qn’s and wn’s. This the way Refs. [20,46] derived the values
of the qn’s and wn’s at the 1PM and 2PM levels. Let us
summarize these results here.

χ1ðγ; νÞ ¼
2γ2 − 1ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p ¼ χSchw1 ðγÞ; ð3:53Þ

χ2ðγ; νÞ ¼
3π

8

ð5γ2 − 1Þ
hðγ; νÞ ¼ χSchw2 ðγÞ

hðγ; νÞ ; ð3:54Þ

q1ðγ; νÞ ¼ 0; ð3:55Þ

q2ðγ; νÞ ¼
3

2
ð5γ2 − 1Þ

�
1 −

1

hðγ; νÞ
�
; ð3:56Þ

w1ðγ; νÞ ¼ 2ð2γ2 − 1Þ; ð3:57Þ

w2ðγ; νÞ ¼
3

2

ð5γ2 − 1Þ
hðγ; νÞ : ð3:58Þ

Concerning the 3PM level, we have seen above that it
depends on the knowledge of a single function of γ, entering
as the coefficient of 1=h2ðγ; νÞ in χ3ðγ; νÞ − χ3ðγ; 0Þ. Let us
define the auxiliary function BðγÞ as

BðγÞ≡ 3

2

ð2γ2 − 1Þð5γ2 − 1Þ
γ2 − 1

; ð3:59Þ

and introduce two other functions of γ, AðγÞ and CðγÞ,
constrained to identically satisfy

AðγÞ þ BðγÞ þ CðγÞ≡ 0: ð3:60Þ

With this notation (and p∞ ≡ peob ≡
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
), our results

above give the following structural information at the 3PM
level

χ3ðγ; νÞ ¼ χSchw3 ðγÞ − p∞ðAðγÞ þ BðγÞÞ
�
1 −

1

h2ðγ; νÞ
�
;

ð3:61Þ

q3ðγ; νÞ ¼ AðγÞ þ BðγÞ
hðγ; νÞ þ

CðγÞ
h2ðγ; νÞ ; ð3:62Þ

w3ðγ; νÞ ¼ 9γ2 −
1

2
− q3ðγ; νÞ: ð3:63Þ

If we further introduce the notation

C̄ðγÞ≡ ðγ − 1ÞðAðγÞ þ BðγÞÞ ¼ −ðγ − 1ÞCðγÞ; ð3:64Þ

we can rewrite Eq. (3.61) as

χ3ðγ; νÞ ¼ χSchw3 ðγÞ − 2νp∞

h2ðγ; νÞ C̄ðγÞ; ð3:65Þ

and Eq. (3.62) as

q3ðγ; νÞ ¼ BðγÞ
�

1

hðγ; νÞ − 1

�
þ 2νC̄ðγÞ
h2ðγ; νÞ : ð3:66Þ

This shows that the univariate function C̄ðγÞ directly para-
metrizes the bivariate 3PM scattering coefficient χ3ðγ; νÞ via
the expression

2νp∞C̄ðγÞ ¼ −h2ðγ; νÞðχ3ðγ; νÞ − χSchw3 ðγÞÞ: ð3:67Þ

Let us now discuss what is our current secure ( i.e., cross-
checked by at least two independent calculations) knowl-
edge of χ3ðγ; νÞ, and therefore of the function C̄ðγÞ. From
the OðG3Þ term in the 4PN-accurate expression of the
scattering angle derived in Ref. [59], one can straightfor-
wardly derive the following 4PN-accurate value of the
function C̄ðγÞ (expanded in powers of p∞ ¼ peob):
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C̄4PNðpeobÞ ¼ 4þ 18p2
∞ þ 91

10
p4
∞ þOðp6

∞Þ: ð3:68Þ

Recently, a new (purely classical) method [52] allowed one
to compute the 5PN-level term in the OðG3Þ scattering
angle, with the result

C̄5PNðpeobÞ ¼ 4þ 18p2
∞ þ 91

10
p4
∞ −

69

140
p6
∞ þOðp8

∞Þ:
ð3:69Þ

On the other hand, the quantum-amplitude approach of
Refs. [24,25] resulted in the computation of a classical
value for χ3ðγ; νÞ (see Eq. (11.32) of Ref. [25], and
Ref. [51]), from which one can derive the following value
of the function C̄ðγÞ:

C̄BðγÞ ¼ 2

3
γð14γ2 þ 25Þ

þ 4ð4γ4 − 12γ2 − 3Þ as ðγÞffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p ; ð3:70Þ

where we used the shorthand notation

asðγÞ≡ arcsinh

ffiffiffiffiffiffiffiffiffiffi
γ − 1

2

r
: ð3:71Þ

Note in passing that the expression obtained by inserting
Eq. (3.70) in the above formula for χ3 is simpler than
(though equivalent to) Eq. (11.32) of Ref. [25]. In particu-
lar, the aþ b=h2 structure of χ3 is present (though some-
what hidden) in their Eq. (11.32).
Let us also note, for future use, other (simpler) forms of

the arcsinh function, namely

asðγÞ ¼ 1

2
ln ðγ þ p∞Þ ¼ −

1

2
ln ðγ − p∞Þ; ð3:72Þ

where we recall that p∞ ≡ ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
, and

asðγÞ ¼ 1

4
ln
γ þ p∞

γ − p∞
¼ 1

4
ln
1þ v∞
1 − v∞

: ð3:73Þ

Here v∞ denotes the (Lorentz-invariant) asymptotic relative
velocity between the two bodies

v∞ ≡ p∞

γ
≡

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

γ2

s
such that γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2∞
p : ð3:74Þ

Note that in the slow-velocity limit (γ → 1, or p∞ → 0)

asðγÞ ¼ 1

2
p∞ −

1

12
p3
∞ þ 3

80
p5
∞ −

5

224
p7
∞ þ… ð3:75Þ

so that the ratio asðγÞ=
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
¼ asðγÞ=p∞ entering

C̄BðγÞ has a smooth slow-velocity limit

asðγÞ
p∞

¼ 1

2
−

1

12
p2
∞ þ 3

80
p4
∞ −

5

224
p6
∞ þ… ð3:76Þ

and is an even function of p∞.
As we shall discuss below, the high-energy (γ → ∞)

behavior of the expression (3.70) seems, at face value, to be
in contradiction with the high-energy behavior found in the
SF computation of Ref. [53]. The origin of this tension lies
in the fact that the high-energy (HE) behavior of the asðγÞ
function is

asðγÞ¼HE 1
2
lnð2γÞ; ð3:77Þ

so that the leading-order term in the high-energy behavior
of the corresponding q3 potential is

qB3 ðγ; νÞ¼HE8γ2 lnð2γÞ: ð3:78Þ

By contrast, Ref. [20] (see Eq. (6.8) there) had suggested
that all EOB coefficients qnðγ; νÞ should have a logarithm-
free high-energy behavior of the type

qnðγ; νÞ¼HEcðqÞn γ2; ð3:79Þ

with a ν-independent coefficient cðqÞn . The latter high-
energy behavior was suggested by several independent
arguments, and notably because of its direct compatibility
with the high-energy behavior of the SF-expanded EOB
Hamiltonian found in Ref. [53]. We shall further discuss
below the relation between the high-energy behavior of
qB3 ðγ; νÞ and that of the SF-expanded EOBHamiltonian and
suggest several ways of relieving the tension between the
result (3.78), derived from Refs. [24,25], and the result of
Ref. [53]. We shall also emphasize the importance of 6PN-
accurate OðG3Þ computations to discriminate between
various possible ways of relieving the latter tension.

IV. MAP BETWEEN THE 3PM EOB POTENTIAL
AND THE QUANTUM SCATTERING AMPLITUDE

A. Prelude: Quasiclassical scattering amplitude
associated with the classical scattering function

As a prelude to our discussion of the link between the
quantum scattering amplitude and the classical dynamics,
let us mention a direct way of using the scattering function
1
2
χðÊeff ; jÞ for constructing the quasiclassical (Wentzel-

Kramers-Brillouin) approximation to the quantum scatter-
ing amplitude.
Let us start by clarifying the notation we shall use for the

scattering amplitude M. The Lorentz-invariant amplitude
M is defined from the two-body scattering matrix by
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hp0
1p

0
2jSjp1p2i

¼ Identityþ ið2πÞ4δ4ðp1 þ p2 − p0
1 − p0

2Þ
M
N

; ð4:1Þ

with the normalization factor N ¼ ð2E1Þ1=2ð2E2Þ1=2×
ð2E0

1Þ1=2ð2E0
2Þ1=2 when using the state normalization

hp0jpi ¼ ð2πÞ3δ3ðp − p0Þ. With this definition, M is
dimensionless.
Starting from the dimensionless Lorentz-invariant ampli-

tude Mðs; tÞ, it is convenient to introduce the associated
amplitude fRðθÞ defined as

M≡ 8π
s1=2

ℏ
fRðθÞ: ð4:2Þ

The amplitude fRðθÞ has the dimension of a length, and
is related to the differential c.m. cross-section via dσ ¼
jfRðθÞj2dΩc:m:. Let us then consider the partial-wave
expansion of the amplitude, written as

fRðθÞ ¼
ℏ

Pc:m:

X∞
l¼0

ð2lþ 1Þ e
2iδl − 1

2i
Plðcos θÞ: ð4:3Þ

Here θ denotes the c.m. scattering angle, and Pc:m: the c.m.
momentum, related to the Mandelstam invariant
s¼ðEtot

c:m:Þ2¼ðEc:m:
1 þEc:m:

2 Þ2, with Ec:m:
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ P2
c:m:

p
,

Ec:m:
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ P2
c:m:

p
. The angle θ is related to the second

Mandelstam invariant t ¼ −Q2
c:m: via

ffiffiffiffiffi
−t

p ¼ Qc:m: ¼ 2 sin
θ

2
Pc:m:: ð4:4Þ

In the expansion (4.3), δl denotes the (dimensionless) phase
shift of the partial wave corresponding to the c.m. angular
momentum L ¼ ℏl, where l ¼ 0; 1; 2;…. In the classical
limit we can identify the quantized total c.m. angular
momentum L ¼ ℏl with J. In terms of the dimensionless
quantities l and δl entering the expansion (4.3), a quasiclass-
ical description of the dynamics a priori corresponds to a
case where both of them are large: l ≫ 1 and δl ≫ 1. This is
formally clear because l ¼ L=ℏ, while, for potential scatter-
ing, the quasiclassical (Wentzel-Kramers-Brillouin) approxi-
mation to the phase shift is δl ≈ ΔSL=ℏ where ΔSL is the
(subtracted) half-radial action along a classical motion with
angular momentum L [60,61]. Most useful for our present
purpose is the fact that the phase-shift δl is linked, in the
classical limit, to the scattering angle χ by

1

2
χ ¼ −

∂δl
∂l : ð4:5Þ

When expressing l≡ L=ℏ≡ J=ℏ in terms of the classical
dimensionless angular momentum j≡ J=ðGm1m2Þ, the
latter result reads

1

2
χðÊeff; jÞ ¼ −ℏ̂

∂δl
∂j ; ð4:6Þ

where we defined (as in [20]) the following dimensionless
version of ℏ

ℏ̂≡ ℏ
Gm1m2

¼ ℏ
GMμ

: ð4:7Þ

Equation (4.6) shows that δl can be obtained (in the classical
limit) by integrating over j the classical scattering function
1
2
χðÊeff ; jÞ. Using the PM-expansion (1.4) of 1

2
χðjÞ (and

Êeff ¼ γ), then yields the following expansion for δl

δl ¼
1

ℏ̂

�
χ1ðγ; νÞ ln

�
j0
j

�
þ χ2ðγ; νÞ

j
þ 1

2

χ3ðγ; νÞ
j2

þ � � �
�
;

ð4:8Þ

where j0 is linked to the IR cutoff neededwhen evaluating the
corresponding IR-divergent Coulomb phase.

B. Computation of the quantum scattering amplitude
derived from the 3PM EOB potential

Reference [20] had shown how to map the simple 2PM-
accurate, energy-gauge EOB description of the two-body
dynamics onto a corresponding quantum scattering ampli-
tude, say M2PM

eob , and had checked that M2PM
eob agreed with

what Refs. [18,19] (later followed by Refs. [21,23]) had
computed as being the “classical part” of the G2-accurate
quantum scattering amplitude. In this section we extend
this result to the 3PM level. More precisely, we shall show
that the extension of the map defined in Ref. [20] leads to a
3PM-accurate amplitude, M3PM

eob , that coincides with what
Refs. [24,25] computed as being the classical part of the
G3-accurate quantum scattering amplitude.
Let us start by recalling that the approach of Ref. [20] is

simply to quantize the classical, energy-gauge EOB mass-
shell condition, i.e., to quantize the motion of a particle of
mass μ moving in a nonrelativisticlike radial potential.
Indeed, the energy-gauge EOBmass-shell condition has the
form

P2 ¼ P2
∞ þWðR;P∞Þ; ð4:9Þ

where

P2
∞ ≡ E2

eff − μ2 ¼ μ2ðγ2 − 1Þ; ð4:10Þ

and where, to ease the notation, we henceforth suppress the
bar over the isotropic EOB radial coordinate R ¼ jXj (and
its rescaled avatar r ¼ R=ðGMÞ ¼ r̄).
The canonical quantization of X and P, i.e.,

½Xi; Pj� ¼ iℏδij; ð4:11Þ
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is equivalent to solving the fixed-energy Schrödinger
equation in the energy-dependent radial potential
WðR;P∞Þ. As in the classical problem, it is convenient
to replace the canonically conjugated variables X, P by
their (dimensionless) rescaled avatars x≡X=ðGMÞ and
p≡ P=μ (with r≡ jxj), satisfying the following rescaled
commutation relation:

½xi; pj� ¼ iℏ̂δij: ð4:12Þ

Here (following [20]) ℏ̂ denotes the (dimensionless)
rescaled version of ℏ defined in Eq. (4.7). In terms of
these rescaled variables the mass-shell condition determin-
ing p reads

p2 ¼ p2
∞ þ wðr; p∞Þ; ð4:13Þ

where, as we have seen, the PM-expansion of the rescaled
radial potential w≡W=μ2 reads

wðr;p∞Þ¼
w1ðγÞ
r

þw2ðγÞ
r2

þw3ðγÞ
r3

þw4ðγÞ
r4

þ�� � ð4:14Þ

One should keep in mind that, as 1
r ¼ GM

R , a contribution to
the potential ∝ 1=rn is of order OðGnÞ.
The quantization of the EOB mass-shell condition (4.13)

yields the following time-independent Schrödinger equa-
tion (here truncated at the 3PM level)

−ℏ̂2ΔxψðxÞ ¼
�
p2
∞ þ w1

r
þ w2

r2
þ w3

r3
þO

�
1

r4

��
ψðxÞ:

ð4:15Þ

In other words (as was already pointed out in [20,54]), the
quantization of the isotropic-coordinates formulation of the
EOB dynamics of two spinless particles leads to a potential
scattering, with an energy-dependent potential which is a
deformation of a Coulomb potential w1

r by higher inverse
powers of r≡ r̄: w2

r2 þ w3

r3 þ � � �.
Given an incoming state jkai ¼ φa ¼ eika·x in the

infinite past, impinging on this EOB-potential w, the
scattering amplitude feobðk̂bÞ (where k̂b ¼ kb=jkbj) from
jkai to some outgoing state jkbi ¼ φb ¼ eikb·x is given by

feobðk̂bÞ ¼ þ 1

4πℏ̂2
hφbjwjψþ

a i: ð4:16Þ

Here ψþ
a is the stationary retarded-type solution of the

scattering equation (4.15) describing the incoming state
jkai ¼ φa ¼ eika·x in the infinite past, and having the
following asymptotic structure at large distances

ψþ
a ≈
r→∞

eika·x þ feobðΩÞ
eikr

r
; ð4:17Þ

whereΩ denotes the polar coordinates of x on the sphere of
scattering directions.
The crucial point of Ref. [20] was that, modulo a simple

rescaling, namely (see below)

Meob ¼
8πG
ℏ

ðEc:m:
real Þ2feob ¼

8πGs
ℏ

feob; ð4:18Þ

the EOB scattering amplitude could be identified, at the
then existing OðG2Þ approximation, with the so-called
classical part [18,19] of the quantum gravity amplitude
M. When rewriting Eq. (4.18) in terms of the correspond-
ing “nonrelativistically normalized” amplitude, sayMNR, as
used in Refs. [22,24,25], we have

MNR
eob ≡ Meob

4E∞
1 E

∞
2

¼ 2πG
ℏξ∞

feob; ð4:19Þ

where ξ∞ ¼ E∞
1 E

∞
2 =ðE∞

1 þ E∞
2 Þ2 is the asymptotic value

of the symmetric energy ratio ξ defined in [22] (see also
Eq. (A14) below).
In the dictionary of Ref. [20], the EOB scattering angle θ

between k̂a and k̂b is directly equal to the physical c.m.
scattering angle, as it enters the physical c.m. momentum
transfer

ffiffiffiffiffi
−t

p ¼ Qc:m: ¼ 2 sin
θ

2
Pc:m:: ð4:20Þ

This is the quantum version of the fact, proven in Ref. [46],
that the classical EOB scattering angle coincides with the
corresponding c.m. scattering angle. On the other hand, one
must remember that the various momenta and wave vectors,
p∞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
, ka, kb, q, entering the EOB description

differ by some rescaling factors from the corresponding
physical c.m. ones. First, the link between peob ≡ p∞ ¼ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
and the physical c.m. momentum is

PEOB
∞ ≡ μp∞ ¼ Ereal

M
Pc:m: ¼ hðγÞPc:m:: ð4:21Þ

In addition, the conserved norm of the (rescaled) wave
vector, k ¼ jkaj ¼ jkbj, is related to p∞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
via

p∞ ¼ ℏ̂k; ð4:22Þ

so that the rescaled momentum transfer reads

q ¼ kb − ka; q ¼ jqj ¼ 2k sin
θ

2
: ð4:23Þ

As a consequence of these relations, we have the link
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q ¼ 2 sin
θ

2

p∞

ℏ̂
¼ 2 sin

θ

2

hðγÞPc:m:

μℏ̂

¼ GM
ℏ

hðγÞQc:m:: ð4:24Þ

Rewriting the link (4.18) in terms of the relativistic
(partial-wave) amplitude fR, defined by Eq. (4.2), leads to
the following relation between fR and feob:

fR ¼ G
ffiffiffi
s

p
feob: ð4:25Þ

Note that while fR has the dimension of a length, feob is
dimensionless. The partial-wave expansion of feob is, in
close parallel to Eq. (4.3),

feobðθÞ ¼
ℏ̂
p∞

X∞
l¼0

ð2lþ 1Þ e
2iδl − 1

2i
Plðcos θÞ; ð4:26Þ

with the same phase shifts, but a prefactor ℏ̂
p∞

¼ 1
k which is

dimensionless, because of our various rescalings. At the
conceptual level, the relative normalization factor given in
Eq. (4.18) is most clearly understood by saying that the
pure phase-shift dimensionless factor of the real amplitude
M, say

f̂ðθÞ≡X∞
l¼0

ð2lþ 1Þ e
2iδl − 1

2i
Plðcos θÞ; ð4:27Þ

coincides with the corresponding EOB one. An alternative
way [20] to derive the relative normalization between M
and feob is to compare the LO value, (4.64), of M to the
corresponding LO value, w1=ðℏ̂2q2Þ, of feob, as given in
Eq. (10.23) of [20], and below.
Let us now derive the 3PM-accurate value of the EOB

scattering amplitude feob, and compare it to the result of
Refs. [24,25]. It can be written as

M3PM
eob ¼ M0

eob þM00
eob; ð4:28Þ

where

M0
eob ≡ 8πGs

ℏ
fweob; ð4:29Þ

denotes the first Born approximation to feob (which is
linear in the potential w), while

M00
eob ≡ 8πGs

ℏ
fw

2þw3þ…
eob ; ð4:30Þ

denotes the sum of the terms coming from higher order
Born iterations (which are nonlinear in the potential w).
The explicit form of the first Born approximation to feob

is defined by replacing in Eq. (4.16) ψþ
a by the unperturbed

state φa ¼ eika·x:

fweobðqÞ ¼ þ 1

4πℏ̂2
hφbjwðrÞjφai

¼ þ 1

4πℏ̂2

Z
d3xe−iq·xwðrÞ: ð4:31Þ

We recall that the EOB potential, wðrÞ, Eq. (4.14), is a sum
of contributions

P
n wn=rn coming from successive PM

approximations, i.e., wn=rn ¼ OðGnÞ. This generates a
corresponding sum of contributions in the first Born
approximation (4.31), namely

fweobðqÞ ¼
X
n

fwn
eobðqÞ; ð4:32Þ

with

fwn
eobðqÞ ¼ þ 1

4πℏ̂2
hφbj

wn

rn
jφai

¼ þ 1

4πℏ̂2

Z
d3xe−iq·x

wn

rn
: ð4:33Þ

This is easily computed from the value of the Fourier
transform of 1=rn, which is (in space dimension d)

F ðdÞ
�
1

rn

�
≡

Z
ddxe−iq·x

1

rn
¼ CðdÞ

n

qd−n
; ð4:34Þ

where

CðdÞ
n ¼ π

d
2

2n̄Γð1
2
n̄Þ

Γð1
2
nÞ ; with n̄≡ d − n: ð4:35Þ

The Fourier transforms of the 1=r (1PM) and 1=r2 (2PM)
potentials are convergent in dimension d ¼ 3,

F ð3Þ
�
1

r

�
¼ 4π

q2
; F ð3Þ

�
1

r2

�
¼ 2π2

q
; ð4:36Þ

while the 3PM-level 1=r3 potential leads to a UV (r → 0)
divergence whose dimensional regularization (d ¼ 3þ ϵ)
yields the result:

F ð3þϵÞ
�
1

r3

�
¼ 4π

�
1

ϵ
− ln qþ 1

2
lnð4πÞ − 1

2
γE þOðϵÞ

�

≡ −4π ln
q

Λ̂
; ð4:37Þ

where, in the last line, we denoted by Λ̂ a UV cutoff (in its
EOB-rescaled version). This yields

ℏ̂2fweob ¼
w1

q2
þ π

2

w2

q
− w3 ln

q

Λ̂
: ð4:38Þ

When inserting in this result the values of w1 and w2

derived in [20], and the value of w3 obtained by inserting

CLASSICAL AND QUANTUM SCATTERING IN POST- … PHYS. REV. D 102, 024060 (2020)

024060-17



(3.70) in Eqs. (3.62), (3.63), and using the above-defined
rescalings, it is straightforwardly checked that this yields

M0
eob ≡ 8πGs

ℏ
fweob ¼ M0

1 þM0
2 þM0

3; ð4:39Þ

where, following the notation used in Refs. [24,25], M0
i,

i ¼ 1, 2, 3, denote the IR-finite parts of the classical part of
the amplitudeM derived there (written in Eqs. (13) and the
first three lines of Eq. (8) in [24]). We work here with the
Lorentz-invariant amplitude M, i.e., we do not include
the factor ð4E∞

1 E
∞
2 Þ−1. [At the technical level, Eq. (4.39)

means that, at the 3PM level, the EOB potential coefficient
w3 can be simply identified with −1=ð6h2ðγ; νÞÞ times
the bracket ½3 − 6νþ 206νσ þ � � �� multiplying logq2 in
Eq. (8) of [25].]
The latter simple link between the Fourier transform of

the EOB energy potential and the IR-finite part of the
classical part of the amplitude M of Refs. [24,25] has also
been pointed out in recent works [55,56], however, we wish
to emphasize that it is in great part tautological (in the sense
that it follows from definitions). Indeed, on the one hand (as
clearly recognized in Ref. [56]) the EOB formulation [20]
of the map between the classical dynamics and the
amplitude M trivially shows that the linear-in-potential
part of M is simply given by the Fourier transform of the
EOB energy-gauge potential (as was explicitly explained in
several talks [54]), and, on the other hand Refs. [24,25] are
actually definingM0

i by selecting the parts of the total two-
loop amplitude which satisfy two criteria: (i) to correspond
to the ∼G=q2, ∼G2=q and G3 ln q terms that are precisely
corresponding to the classical dynamics; and, (ii) to have
been amputated of the extra contributions coming from
iterated Born approximations of the type denoted M00

eob ≡
8πGs
ℏ fw

2þw3þ…
eob above. Indeed, as is stated in Ref. [25], and

as we shall now check, the latter terms are precisely the IR-
divergent contributions left in the form of integrals in
Eq. (9.3) of Ref. [25]. In other words, given the simple
EOB map of Ref. [20], and given the methodology of
extracting the so-called classical part of M proposed in
[22], and implemented in [24,25], the apparently striking
result (4.39) is a tautology.
Let us now discuss the detailed structure of the iterated

Born approximations M00
eob ≡ 8πGs

ℏ fw
2þw3þ…

eob that must be
added to the linear-in-potential contribution M0

eob≡
8πGs
ℏ fweob. As wn ¼ OðGnÞ, the 3PM (OðG3Þ) accuracy

necessitates to consider both the second iteration (with
contributions proportional to w2

1 and w1w2), and the third
iteration (with contributions proportional to w3

1). [The 3PM-
level contribution coming from w3=r3 is included in the first
Born approximation, and does not need to be iterated.] The
iterations of theCoulomb-typew1=r potential can actually be
deduced from the known, exact Coulomb scattering ampli-
tude [60]. Alternatively, one can extract both the first two

iterations of the w1=r potential (Oðw2
1Þ þOðw3

1Þ) and the
mixed iteration of the w1=r and w2=r2 potentials (Oðw1w2Þ)
from an old result of Kang and Brown [62]. Indeed, the latter
reference computed the higher-Born approximations for the
Coulomb scattering amplitude of a Klein-Gordon particle,
i.e., for the wave equation

−ℏ2Δψ ¼
��

E −
Ze2

r

�
2

− μ2
�
ψ ; ð4:40Þ

whose potential involves both awKG
1 =r ¼ −2EZe2=r poten-

tial and a wKG
2 =r2 ¼ þðZe2Þ2=r2 one.

Transcribing the results of Ref. [62] in terms of our
scattering equation (4.15) yields explicit forms for the
various Born-iterated contributions. We introduce the
notation

δ1 ¼
i
2

w1

ℏ̂2k
ln
q2

λ̂2
¼ i

2

w1

ℏ̂p∞
ln
q2

λ̂2
; ð4:41Þ

for the IR-divergent Coulomb phase (λ̂ being an IR cutoff
introduced by the replacement Ze2=r → Ze2e−λ̂r=r in the
Klein-Gordon equation (4.40)). [Note the fact that δ1
contains a factor 1=ℏ. This crucial property of the Born
expansion will be discussed at length in the following
subsection, starting with Eq. (4.54).]

ℏ̂2f
w2
1

eob ¼ δ1
w1

q2
; ð4:42Þ

ℏ̂2f
w3
1

eob ¼
1

2
δ21

w1

q2
; ð4:43Þ

ℏ̂2fw1w2

eob ¼ δ1
π

2

w2

q
þ w1w2

ℏ̂2q2
xB29ðxÞ: ð4:44Þ

Here the variable x denotes

x≡ sin
θ

2
¼ q

2k
; ð4:45Þ

and the function B29ðxÞ denotes (see the last bracket in
Eq. (29) of [62])

B29ðxÞ ¼ iπ ln
4

ð1þ xÞ þ ln x ln
1 − x
1þ x

þ L2ðxÞ − L2ð−xÞ;

ð4:46Þ

where

L2ðxÞ ¼ xþ x2

22
þ x3

32
þ x4

42
þ � � � ð4:47Þ

is the dilogarithm function. All the above iterated contri-
butions are clearly IR divergent because they all contain a
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term proportional to the IR-divergent Coulomblike
phase δ1.
Adding all those iterated Born contributions to the first-

Born approximation ℏ̂2fweob, Eq. (4.38), yields the complete
3PM-accurate EOB amplitude

ℏ̂2feob ¼
�
1þ δ1 þ

1

2
δ21

�
w1

q2
þ ð1þ δ1Þ

π

2

w2

q

þ w1w2

ℏ̂2q2
xB29ðxÞ − w3 ln

q

Λ̂
: ð4:48Þ

Let us note in passing that the 3PM-expanded amplitude
(4.48) is compatible with the fact (proven by Weinberg
[63]) that the (gravitational) IR-divergent Coulomb phase
δ1 exponentiates, i.e., that one can factorize feob as

ℏ̂2feob ¼ eδ1
�
w1

q2
þπ

2

w2

q
þw1w2

ℏ̂2q2
xB29ðxÞ−w3 ln

q

Λ̂

�
þOðG4Þ

ð4:49Þ

where the terms within the square brackets are IR-finite.
As already explained, the methodology used in [24,25]

consists of setting aside the various IR-divergent (Born-
iterated) contributions (4.42), (4.43), (4.44), in (4.48),
thereby retaining only the linear-in-w ones. This means
in particular that Refs. [24,25] set aside not only the IR-
divergent term proportional to δ1w2, but also its Born-
iterated partner ∝ w1w2 (recall that δ1 ∝ w1). They then
considered as only IR-finite OðG3Þ contribution the last
term (proportional to ln q) in Eq. (4.48), namely

−w3 ln
q

Λ̂
: ð4:50Þ

As we shall discuss next, a different IR-finite result would
have been obtained if one had (following Weinberg) first
factored eδ1 , and then taken the small-q limit.
Let us, indeed, discuss the small-angle limit, q → 0, and

therefore x → 0, of the complete 3PM EOB amplitude
(4.48). We have the expansion

xB29ðxÞ ¼ iπðx ln 4 − x2 þOðx3ÞÞ
þ ln xð−2x2 þOðx4ÞÞ þ 2x2 þOðx4Þ: ð4:51Þ

Here, the leading term OðxÞ in the imaginary part modifies
the Coulomb phase factor ð1þ δ1Þ in front of the w2=q ∝
w2=x term. The termsOðx2Þ (both in the imaginary part and
in the real part) yield (after division by the q2 prefactor)
contributions ∝ q0, which are the Fourier transforms of
contact terms.
Of most interest for our discussion of the nonanalytic-in-

q contributions in the q → 0 limit, is the fact that the
Oðx2 ln xÞ term in the small-x expansion of the function
xB29ðxÞ yields the following additional contribution to the
amplitude

ℏ̂2fw1w2

eob ¼ −
1

2

w1w2

p2
∞

ln
q
2k

: ð4:52Þ

This contribution has the same ln q structure as the linear-
in-w contribution coming from w3=r3.
Summarizing: the real part of the 3PM, OðG3Þ, ampli-

tude contains the following contributions (where we recall
that k ¼ p∞=ℏ̂)

ℏ̂2Re½f3PMeob � ¼ −
1

2

w3
1

ℏ̂2p2
∞

1

q2

�
ln
q

λ̂

�
2

−
1

2

w1w2

p2
∞

ln
q
2k

− w3 ln
q

Λ̂
: ð4:53Þ

C. General concern about the link between a quantum
scattering amplitude and classical dynamics

Several recent works have discussed the issue of the
relation betweenM and classical dynamics, see Refs. [13–
20,22,24,25,34,35,55]. In particular, some one-way maps
between (EOB or EFT) Hamiltonians describing the
classical dynamics and the scattering amplitude have been
defined, and implemented at both the 2PM [20,22] and
3PM levels [24,25]. However, we wish here to express a
general concern (which has been already raised in [54])
about the program of transferring information between a
quantum scattering amplitude and classical dynamics. As
far as we know, this concern has not been explicitly
addressed in the recent literature.
The basic idea of extracting classical information from

an amplitude is simply that a same theory (namely GR) is
underlying both the classical and the quantum dynamics, so
that there should exist some “classical limit” under which it
should be possible to extract the classical dynamics from a
quantum scattering amplitude. [This idea was already the
one of Refs. [6–11].] It seems that many recent papers
simply assumed the existence of a “precise demarcation
between classical and quantum contributions to the scatter-
ing amplitude” (as formulated in the Introduction of [25]).
Wewish to stress that the existence of such a demarcation is
a priori unclear to us for a variety of related issues.
First, let us recall the basic fact that the domain of

validity of the standard quantum scattering perturbation
expansion (Born-Feynman expansion) does not overlap
with the domain of validity of the standard classical
scattering perturbation expansion when considering a
Coulomblike potential V ¼ Z1Z2e2=rþOð1=r2Þ, or V ¼
−GE1E2=rþOð1=r2Þ in the gravitational case. Here, E1

and E2 denote, say, the c.m. energies of two colliding
particles (we set c ¼ 1). This fact was eloquently expressed
in the classic 1948 paper of Niels Bohr on the penetration of
charged quantum particles in matter [57], and is also
stressed in the treatise of Landau and Lifshitz [12,60].
The basic point is that the quantum expansion is a priori
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valid when the dimensionless ratios (v denoting the relative
velocity)

Z1Z2e2

ℏv
≪ 1 or

GE1E2

ℏv
≪ 1 ðquantumÞ; ð4:54Þ

while the domain of validity for a quasiclassical description
of the scattering is just the opposite, namely

Z1Z2e2

ℏv
≫ 1 or

GE1E2

ℏv
≫ 1 ðclassicalÞ: ð4:55Þ

When a precise definition of the relative velocity v is
needed, we shall define it as

v∞ ≡
ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

γ2

s
such that γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2∞
p : ð4:56Þ

At the formal level of considering limits for ℏ, the classical
domain of validity (4.55) does correspond to the expected
limit ℏ → 0, while the quantum domain of validity (4.54)
corresponds to the less usually considered formal limit
ℏ → ∞.
The necessity of the inequalities (4.55) and (4.54) can be

seen in various ways. At the conceptual level, Bohr points
out (see subsection 1.3 of Ref. [57]) that the condition
(4.55) is necessary and sufficient for being able “to
construct wave packets which, to a high degree of approxi-
mation, follow the classical orbits” during the entire
scattering process. Bohr only discusses nonrelativistic
Coulomb-like scattering. Let us show how it works in
the relativistic case, and in the c.m. frame. Each particle is
described by an incoming relativistic wave packet having a
relatively small transversal size d, e.g., realized (says Bohr)
by a hole of radius d in a screen. The quantum diffraction
angle ϕ caused by the hole is of order ϕ ∼ λ=d where λ ¼
ℏ=Pc:m: is the (reduced) de Broglie wavelength of each
particle. In other words, ϕ ∼ ℏ=ðdPc:m:Þ measures the
angular spreading of the quantum wave packets. To be
able to measure the classical scattering angle χ in spite of
the quantum spread, one must have the inequality ϕ ≪ jχj.
In addition, the transverse size must be small compared to
the impact parameter: d ≪ b. The leading-order (half)
scattering angle is of the form

1

2
χ ¼ as

b
; ð4:57Þ

where the length as depends on the spin of the (massless)
exchanged particle (scalar, vector or tensor). More pre-
cisely, one has

as ¼ Gs
Q1Q2

μ

hðγ; νÞ
p2
∞

fsðu1 · u2Þ; ð4:58Þ

where Gs is a coupling constant, Qa a (scalar, electric or
gravitational) charge, and where the factor fsðu1 · u2Þ
comes from the current-current interaction between the
two worldlines, so that, for the scalar, electromagnetic and
gravitational cases, respectively, one has

f0¼ 1; f1¼ u1 ·u2; f2¼ 2ðu1 ·u2Þ2−1: ð4:59Þ

Combining the inequalities ϕ ≪ jχj and d ≪ b then leads
to the inequality

jasjPc:m:

ℏ
≫ 1; ð4:60Þ

where

asPc:m:

ℏ
¼ GsQ1Q2

ℏ
fsðγÞffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p : ð4:61Þ

For instance, in the gravitational case, we have G2 ¼ G,
Qa ¼ ma, so that the necessary inequality for quasiclassi-
cality reads

Gm1m2

ℏ
2γ2 − 1ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p ¼ G
ℏ

2ðp1 · p2Þ2 − p2
1p

2
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðp1 · p2Þ2 − p2
1p

2
2

p ≫ 1: ð4:62Þ

This is easily seen to be (approximately) equivalent to the
second condition (4.55), for all values of the relative
velocity.
An important point for our discussion is that this

inequality must be satisfied even when considering very
large impact parameters, corresponding to a priori quasi-
classical very large angular momenta (and very small
scattering angles).
Another way of seeing the necessity of the inequality

(4.62) comes from considering the LO contribution to the
phase shift δl, namely

δLOl ¼ Gm1m2

ℏ
2γ2 − 1ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p ln

�
j0
j

�

¼ G
ℏ

2ðp1 · p2Þ2 −m2
1m

2
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðp1 · p2Þ2 −m2
1m

2
2

p ln

�
j0
j

�
: ð4:63Þ

This directly confirms that the classicality condition,
Eqs. (4.55), (4.62), corresponds to large phase shifts
δl ≫ 1, which is one of the standard conditions for the
validity of the classical limit [60].
In addition, let us recall the basic structure of the

perturbative expansion of the quantum scattering amplitude
M. The LO (OðG=ℏÞ) contribution to M coming from a
one-graviton exchange in the t-channel (discarding the u-
and s-channel contributions), reads (see, e.g., Refs. [21,64])
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MðGℏÞðs; tÞ ¼ 16π
G
ℏ
2ðp1 · p2Þ2 − p2

1p
2
2 þ ðp1 · p2ÞQ2

Q2
;

ð4:64Þ

whereQ ¼ p0
1 − p1 ¼ −ðp0

2 − p2Þ, so thatQ2 ¼ −t. When
considering, for orientation, a generic relativistic collision,
with large velocities v ∼ 1, and significant momentum
transfers, Q2 ¼ −t ∼ s, the order of magnitude of the
LO contribution (4.64) is

MðGℏÞ ∼
Gs
ℏ

∼ αg: ð4:65Þ

Here, we introduced the gravitational analog of the quan-
tum electrodynamics coupling constant α ¼ e2=ℏ (or, more
generally, Z1Z2e2=ℏ), say

αg ≡GE1E2

ℏ
: ð4:66Þ

Dimensional analysis (in the simple one-scale regime
where s ∼ −t≳m2

1 ∼m2
2) then shows that the Born-

Feynman expansion (or loop-expansion) of M has the
rough structure

M ∼
Gs
ℏ

þ
�
Gs
ℏ

�
2

þ
�
Gs
ℏ

�
3

þ…

∼ αg þ α2g þ α3g þ… ð4:67Þ

This exhibits the a priori necessity of the quantum
condition (4.54) (which implies αg ≪ 1) for a reliable
use of the Born-Feynman expansion of M. [Let us note in
passing that the systematic use of the small-velocity limit
v → 0 in Refs. [17,22,24,25] might exacerbate the
classical-quantum conflict by making the usual, nonrela-
tivistic Coulomb coupling constant GE1E2

ℏv parametrically
larger than the natural dimensionless quantum coupling
constant αg ¼ GE1E2

ℏ entering the loop expansion of M.]
How can one hope to bridge the gap between the

classical domain (4.55), and the quantum one (4.54) ? If
we could control the exact dependence of the function
Mðs; t; αgÞ for all values of αg (both small and large), it
would be straightforward to read off the classical dynamics
[say via the use of the quasiclassical phase shifts (4.8)].
However, we often have only knowledge of the first few
terms in the Born-Feynmann (small αg) expansion of
Mðs; t; αgÞ. Several suggestions have been made in the
recent literature for extracting classical information
from M.
On the one hand, Refs. [17–19,22,24,25] have empha-

sized that a crucial tool for retrieving classical information
from M is to focus, at each order in the formal Born-
Feynman expansion in powers of αg ¼ GE1E2

ℏ on a secon-
dary expansion in Qc:m:. As the corresponding small

dimensionless parameter is Qc:m:=Pc:m: ¼ 2 sin θ
2
, this cor-

responds to a small-scattering-angle expansion. The idea is
here related to the fact that the classical PM expansion is a
large-impact-parameter limit, corresponding to a small-
scattering-angle limit. This intuitive idea is certainly
appealing, but the point, recalled above, made by Bohr
[57] that sufficiently slowly spreading wave packets can
only be constructed when the classicality condition (4.55)
(which implies αg ≫ 1) is satisfied makes it unclear (at
least to the author) that focusing on a secondary expansion
in Qc:m: is sufficient for correctly extracting, at all orders,
the classical dynamical information. It would be interesting
to examine in detail whether this conflicts with the
approach pursued in Refs. [34,35] for extracting classical
results from M. Indeed, it seems that the latter approach
assumes the existence of wave packets staying well-
localized during the entire scattering process, but also uses
the Born-Feynman perturbative expansion of M in powers

of Z1Z2e2

ℏ or GE1E2

ℏ .
On the other hand, Refs. [21,23,26,27,65–69] have

emphasized the usefulness of focusing on the so-called
eikonal approximation, under which one can hopefully
prove that part of the perturbative expansion of M can be
resummed by exponentiating a suitably defined “eikonal
phase.” The idea here is that perturbative theory can
correctly compute some of the first few diagrams, and
therefore their associated exponentiated version. However,
this program can reliably give the (large) quasi-classical
exponentiated phase [as in Eq. (4.8)] only if one proves
which perturbative diagrams do exponentiate and which do
not. This is a nontrivial task, as shown, for instance, at the
one-loop level in Ref. [68]. [The first and second versions
of Ref. [68] differed in their conclusion of which pertur-
bative contributions do exponentiate.] For further discus-
sion of the subtleties of the eikonal approach and of the
exponentiating contributions, see Refs. [27,69,70].
Let us just mention a specific example suggesting (with-

out, however, proving) that, evenwhen focusing on the small
Qc:m: limit, it is delicate to try to unambiguously extract from
the perturbative expansion of the amplitude the correspond-
ing classical PM-expanded information. At the one-loop
level (second order in αg), there appears, when considering
the t=s ≪ 1 limit (or q → 0), a nonanalytic lnq term [13–
16,23]. This term corresponds to a quantum modification of
the LO gravitational potential −Gm1m2ð2γ2 − 1Þ=R (in
physical units) by an additional term of the type
(L2

P ≡ ℏG denoting the squared Planck length)

−
Gm1m2ð2γ2 − 1Þ

R

�
1þ Aðγ; νÞL

2
P

R2

�
; ð4:68Þ

which corresponds, in the rescaled EOBunits, to a correction
of the potential wðrÞ ¼ w1=rþ � � � of the type
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δwðrÞ ¼ νℏ̂Aðγ; νÞw1

r3
; ð4:69Þ

i.e., a modification of the 3PM coefficient w3 of the type

δw3 ¼ νℏ̂Aðγ; νÞw1: ð4:70Þ

Here the dimensionless coefficientAðγ; νÞ has a finite limit at
low velocities (γ → 1) [13–16], but was recently found [23]
to grow logarithmically at high energies (γ → ∞). More
precisely, Ref. [23] (see Eq. (2.25) there) found that the
logarithmically growing part of Aðγ; νÞ comes from a factor
proportional to the same arcsinh function entering the result
ofRef. [24], denoted asðγÞ above.Wenote that, in the domain
of validity of the perturbative regime αg → 0, i.e., ℏ̂ → ∞,
the one-loop contribution (4.70) to w3 is parametrically
larger than the (3PM-level) value wB

3 derived from the two-
loop amplitude of Ref. [24]. Thismakes it unclear to us that a
formal analytic continuation (in αg) of the perturbative two-
loop computation to the classically-relevant domain where
αg ≫ 1, i.e., ℏ̂ ≪ 1 can unambiguously read off the needed
classical contribution to w3. We hope that our remarks will
prompt some clarification of these subtle issues.

V. SELF-FORCE (SF) THEORY
AND PM DYNAMICS

Before explaining in detail why the result of Ref. [53]
seems to be in conflict with the logarithmic growth (3.78),
derived from Refs. [24,25], let us point out a potentially
interesting new use of SF theory for deriving exact PM
dynamical results.

A. On the use of self-force (SF) theory
to derive exact PM dynamics

Let us start by recalling that the discussion in Sec. II
above allowed one to give a stringent upper bound on the
number of unknown functions of γ entering each PM order.
In particular, we found that, both at the 3PM and the 4PM
levels, there was only one a priori unknown function of γ.
Namely, in the parametrization of Eqs. (2.48) and (2.49),

the function χ̂ð2Þ3 ðγÞ at the 3PM level, and the function

χ̂ð3Þ4 ðγÞ at the 4PM level. We wish to point out here the
rather remarkable fact that SF theory (which, in the
framework of EOB theory means expanding the EOB
dynamics to linear order in ν), can, in principle, be used
to derive in an exact manner the 3PM and 4PM dynamics.
The main point is that the first-order SF (1SF) expansions
of the 3PM and 4PM scattering functions χ3ðγ; νÞ and
χ4ðγ; νÞ, i.e their expansions in powers of ν, keeping only
the term linear in ν, contain enough information to compute
the exact functions χ3ðγ; νÞ and χ4ðγ; νÞ. Indeed, using the
fact that

hðγ;νÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2νðγ−1Þ

p
¼ 1þνðγ−1ÞþOðν2Þ; ð5:1Þ

and considering first the 3PM level, the 1SF expansion of
χ3ðγ; νÞ reads, from Eq. (2.48),

χ3ðγ; νÞ ¼ χSchw3 ðγÞ − 2νðγ − 1Þχ̂ð2Þ3 ðγÞ þOðν2Þ: ð5:2Þ

Therefore the linear-in-ν, or 1SF contribution, to χ3ðγ; νÞ is
proportional to the function ðγ − 1Þχ̂ð2Þ3 ðγÞ, so that an
analytical knowledge of χ1SF3 yields enough knowledge

to compute χ̂ð2Þ3 ðγÞ, and thereby the exact, non-SF-
expanded value Eq. (2.48) of χ3ðγ; νÞ.
The same result holds at the 4PM level. Namely, starting

from Eq. (2.49), the 1SF expansion of χ4ðγ; νÞ reads

χ4ðγ;νÞ¼ð1−νðγ−1ÞÞχSchw4 ðγÞ−2νðγ−1Þχ̂ð3Þ4 ðγÞþOðν2Þ:
ð5:3Þ

Using the exact value of χSchw4 ðγÞ, Eqs. (2.41), we see that
an analytical knowledge of χ1SF4 yields enough information

to compute χ̂ð3Þ4 ðγÞ, and thereby the exact, non-SF-
expanded value Eq. (2.49) of χ4ðγ; νÞ.
One does not have today general enough 1SF results

allowing one to extract χ̂ð2Þ3 ðγÞ, χ̂ð3Þ4 ðγÞ, and their higher-
order analogs. Actually, the SF theory of scattering motions
is still in its developing stages. Some years ago Ref. [71]
had pointed out the interest of extending the SF approach
(which is usually applied only to circular, or near-circular,
states) to scattering states, and showed what information it
could give. Due to technical issues, it is only very recently
[72] that a numerical implementation of one of the
scattering-type SF computations proposed in Ref. [71]
has been accomplished. Here, we are suggesting to develop
an analytical, PM-expanded SF framework, e.g., based on
theG−expansion of the Mano-Suzuki-Takasugi formalism,
for computing the G-expansion of the scattering angle in
large-mass-ratio binary systems. When a second-order SF
formalism becomes available, the same idea will allow one
to compute the exact 5PM and 6PM (conservative) dynam-
ics. Indeed, a look at Eqs. (2.47) shows that, after using the
test-mass knowledge (χSchw5 ; χSchw6 ), one has two unknown
functions of γ at 5PM and at 6PM, so that it is enough to
know the 1SF (OðνÞ) and the 2SF [Oðν2Þ] contributions to
the SF expansions of χ5ðγ; νÞ and χ6ðγ; νÞ to reconstruct
their exact expressions for any mass ratio.
In Appendix C we discuss the high-energy limit of SF

scattering theory, and the information it could bring on the
structure of the PM expansion.
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B. Tension between the 3PM dynamics of Refs. [24,25]
and the HE behavior of the SF Hamiltonian of an

extreme mass-ratio two-body system

Let us show in what technical sense the (numerical)
circular-orbit SF computation of Ref. [53] provides a direct
handle on the high-energy (HE) limit of the 1SF-expanded4

two-body dynamics. To be concrete, and explicitly display
how the 3PM-level result of [24,25] seems to conflict, in
the HE limit, with the 1SF HE result of [53], let us consider
the 1SF expansion of the 3PM-accurate EOB Hamiltonian
derived in [51] from the results of [24,25]. We recall that
the two-body Hamiltonian is expressed by the general
formula (3.1) in terms of the effective Hamiltonian
Eeff ¼ HeffðR;PÞ. In turn, the effective Hamiltonian is
obtained by solving the EOB mass-shell condition (3.5) for
Eeff . In the H-type energy gauge this yields a squared
effective Hamiltonian of the form (in rescaled variables)

Ĥ2
effðr;pÞ ¼ Ĥ2

S þ ð1 − 2uÞQ̂Hðu; ĤSÞ; ð5:4Þ

where

Ĥ2
Sðr;pÞ ¼ ð1 − 2uÞð1þ ð1 − 2uÞp2

r þ u2p2
φÞ; ð5:5Þ

and

Q̂Hðu; γ; νÞ ¼ u2q2ðγ; νÞ þ u3q3ðγ; νÞ þOðG4Þ: ð5:6Þ

The 2PM coefficient q2ðγ; νÞ is given by [20]

q2ðγ; νÞ ¼
3

2
ð5γ2 − 1Þ

�
1 −

1

hðγ; νÞ
�
; ð5:7Þ

while the 3PM coefficient derived in [51] by combining the
results of [20,24,25] reads

qB3 ðγ; νÞ ¼ BðγÞ
�

1

hðγ; νÞ − 1

�
þ CBðγÞ

�
1

h2ðγ; νÞ − 1

�

¼ BðγÞ
�

1

hðγ; νÞ − 1

�
þ 2ν

C̄BðγÞ
h2ðγ; νÞ ; ð5:8Þ

where

BðγÞ≡ 3

2

ð2γ2 − 1Þð5γ2 − 1Þ
γ2 − 1

; ð5:9Þ

and where

CBðγÞ ¼ −
C̄BðγÞ
γ − 1

; ð5:10Þ

with the explicit value of C̄BðγÞ written in Eq. (3.70) above.
A crucial point is that theHE limit γ → ∞ and the SF limit

ν → 0 do not commute because of the denominators involv-
ing powers of hðγ; νÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2νðγ − 1Þp
. When discussing

SF results we are interested in performing first a linear
expansion in ν, and in then taking the HE limit of this linear
expansion. Let us denote, for simplicity, by F1SF the
coefficient of ν in the linear-in-ν, or 1SF, expansion of
any EOB function, F, considered as a function of the EOB
phase-space variables r, p, and of ν: Fðr;p; νÞ ¼
Fðr;p; 0Þ þ νF1SFðr;pÞ þOðν2Þ.
Applied to q2ðγ; νÞ this yields first

q1SF2 ¼ 3

2
ðγ − 1Þð5γ2 − 1Þ; ð5:11Þ

which becomes in the HE limit γ → ∞

q1SF2 ¼HE 15
2
γ3: ð5:12Þ

Applying the same (noncommuting) successive limits to
qB3 ðγ; νÞ yields

qB 1 SF
3 ¼HE 11

3
γ3 þ 16γ3 lnð2γÞ: ð5:13Þ

Let us consider

Q̂1SF ¼ ½Ĥ2
eff �1SF

1 − 2u
: ð5:14Þ

We have

Q̂1SF
B ¼ u2q1SF2 þ u3qB 1SF

3 þOðu4Þ: ð5:15Þ

Its HE limit reads

Q̂1SF
B ¼HE 15

2
γ3u2 þ 11

3
γ3u3 þ 16γ3 lnð2γÞu3 þOðu4Þ:

ð5:16Þ

The crucial point to note here is that the lnð2γÞ contribution
coming from the arcsinh term implies that the ratio Q̂1SF

B =γ3

does not have a finite HE limit, when considered at the 3PM
level, namely

Q̂1SF
B

γ3
¼HE 15

2
u2 þ 11

3
u3 þ 16 lnð2γÞu3 þOðu4Þ: ð5:17Þ

In other words, if we truncate the PM expansion at the 3PM
level included, and use

4We recall that “1SF” means “first order in the symmetric
mass-ratio ν”.
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Q̂≤3PM
B ¼ u2q2ðγ; νÞ þ qB3 ðγ; νÞu3; ð5:18Þ

to define some exact dynamics, the latter dynamics implies
a logarithmic growth of the ratio Q̂1SF=γ3 in the HE limit.
Such a logarithmic growth is in conflict with a result of

Akcay et al. [53]. Indeed, Ref. [53] has (numerically)
computed a 1SF-accurate gauge-invariant function which
can be directly related to Q̂1SF. More precisely, Ref. [53]
considered the sequence of circular orbits of a small black
hole (of mass m1) around a large black hole (of mass m2)
and computed a function a1SFE ðuÞ which (using results from
Refs. [73–75]) can be related to Q̂1SF in the following
(gauge-invariant) way (see [53] for details)

a1SFE ðuÞ
ð1 − 2uÞ2 ¼

�
Q̂1SF

Ĥ3
S

�circ
: ð5:19Þ

The superscript circ on the right-hand side means that the
arguments of the EOB function Q̂1SF=Ĥ3

S must be evaluated
along the sequence of circular orbits around a Schwarzschild
black hole of mass M, i.e., that we have the relation

γcirc ¼ Ĥcirc
S ¼ 1 − 2uffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 3u
p : ð5:20Þ

Rigorously speaking, only the part of the sequence of circular
orbits describing the unstable orbits below R ¼ 4GM, i.e.,
1
4
< u < 1

3
, leads to a value of γcirc > 1 that can be directly

inserted in the formulas above. However, one can formally
consider the analytic continuation of the formulas above for
smaller values of u. In particular, we could satisfactorily
check that, in the PN limit u → 0, ½Q̂1SF=Ĥ3

S�circ ¼ 2u3þ
Oðu4Þ, which agrees with the LO PN term in
a1SFE ðuÞ=ð1 − 2uÞ2.
The tension with the result above then comes when

focusing on the limit u → ð1
3
Þ−. This limit, which physically

corresponds to considering HE circular orbits near the light
ring of the large-mass black hole, realizes the above-
considered HE limit γ → ∞. The crucial point is that
Ref. [53] could numerically study with high accuracy
the behavior of the a1SFE ðuÞ in this limit, and found that
it admitted a finite limit yielding

lim
γ→∞

�
Q̂1SF

Ĥ3
S

�circ
¼ 27

4
ζ; ð5:21Þ

where ζ is a finite number equal to 1 to good accuracy. In
particular, the study of the behavior of a1SFE ðuÞ in the close
vicinity of u ¼ 1

3
definitely excluded the presence of a LO

logarithmic singularity ∝ lnð1 − 3uÞ, i.e., ∝ ln γ. On the
other hand, the numerical results of [53] were compatible
with the additional presence of a subleading logarithmic
singularity, i.e., a behavior of Q̂1SF=γ3 − 27ζ=4 of the form
∝ ð1 − 3uÞ lnð1 − 3uÞ, i.e., ∝ γ−2 ln γ.

How can we reconcile the (apparently) conflicting HE
behaviors (5.17) and (5.21) ? Barring some hidden numeri-
cal flaw in the work of [53], several possibilities come to
mind. We wish here to propose two different possibilities
for relieving the tension between (5.17) and (5.21).
The first possibility was suggested to the author by a

statement made in the second sentence below Eq. (9.5) of
[25] to the effect that their general ansatz for their OðG3Þ,
3PM amplitude M3 was uniquely fixed only by the
knowledge of the PN expansion of M3 at the 6PN-level
included. However, as we recalled above, at the time of
writing of (the preprint version of) this paper (November
2019), there existed no classical computation having
confirmed the 3PM dynamics of [25] at the 6PN level.
The highest PN level which had been independently
checked was the 5PN level, as obtained in Ref. [52].
This then suggested exploring the conjecture that some
error might have crept at the 6PN level in the computations
of Ref. [25] (which rely in great part on working with the
PN-expansion of the two-loop integrand), and in looking
for a modified version of the 3PM dynamics exhibiting a
softer, logarithmicfree HE behavior. This possibility is
briefly discussed in the following section.
A second possibility relies on the fact that there might

exist correlations between the various PM contributions to
Q̂ðu; γ; νÞ,

Q̂Eðu; γ; νÞ ¼ u2q2ðγ; νÞ þ u3q3ðγ; νÞ þ u4q4ðγ; νÞ þ…:

ð5:22Þ

leading to a cancellation5 of the problematic logarithmic
term in Eq. (5.17). This second possibility relies on making
another type of conjecture on the structure of the EOB
potential Q̂ðu; γ; νÞ. It is also explored in the following
section.

VI. DIFFERENT CONJECTURES ON THE HE
BEHAVIOR OF PM GRAVITY AND THEIR

CONSEQUENCES

A. Conjecture on the HE behavior of PM gravity

A striking feature of 2PM-level gravity, which is espe-
cially clear in its EOB formulation [20], is that it has a
remarkably simpleHE limit. Specifically, the (energy-gauge)
EOB mass-shell condition (3.2) (which, for general energies
and momenta, is a complicated, nonlinear function of
energies and momenta) drastically simplifies in the
HE limit and becomes quadratic in Pμ. Moreover, in this
limit the dependence on the mass ratio ν completely
disappears. Indeed, when γ → ∞, the OðG2Þ Q term
Q̂2PMðu; γ; νÞ ¼ u2q2ðγ; νÞ, where

5This possibility was briefly alluded to in the preprint version
of this work, but not pursued there because of its apparently fine-
tuned nature.
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q2ðγ; νÞ ¼
3

2
ð5γ2 − 1Þ

�
1 −

1

hðγ; νÞ
�
; ð6:1Þ

reduces to

Q̂2PMðu; γ; νÞ¼HE 15
2
u2γ2; ð6:2Þ

where we recall that γ ≡ −P0=μ≡ Eeff=μ, so that the mass-
shell condition (3.2) simplifies to the following quadratic
constraint

0 ¼ gμνSchwPμPν þ
15

2
u2P2

0; ð6:3Þ

or, explicitly,

0 ¼ −
E2
eff

AHE 2PM
þ P2

R

BHE 2PM
þ P2

φ

CHE 2PM
; ð6:4Þ

where 1
AHE 2PM

¼ 1
ASchw

− 15
2
u2, i.e., inserting the values of the

Schwarzschild-metric coefficients (with u≡GM=R),

AHE 2PMðuÞ ¼
ASchwðuÞ

1 − 15
2
u2ASchwðuÞ

¼ 1 − 2u

1 − 15
2
u2ð1 − 2uÞ ;

BHE 2PMðuÞ ¼ BSchwðuÞ ¼
1

1 − 2u
;

CHE 2PMðuÞ ¼ CSchw ¼ R2: ð6:5Þ

In other words, at the 2PM-level, and in the HE limit γ → ∞
(which is equivalent to taking the massless limit m1 → 0,
m2 → 0), the c.m. scattering angle of a two-body system
becomes blind to the values of the masses and can be
obtained from the null geodesic motion in the effective
HE metric

gHE 2PM
μν dxμdxν ¼ −AHE 2PMðRÞdT2 þ BHE 2PMðRÞdR2

þ CHE 2PMðRÞðdθ2 þ sin2θdφ2Þ: ð6:6Þ

Such a simple conclusion (equivalent6 to the discussion in
Sec. VII of [20]), seems to be physically quite satisfactory.
Indeed, as (classical and quantum) gravity couples to energy,
rather than to rest-mass, onewould a priori expect that a limit
where the twomassesm1,m2 tend toward zero,while keeping
fixed the energies E1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ p2
1

p
, E2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ p2
2

p
,

should exist, and be describable by the interaction of two
(classical or quantum) massless particles. We sketch in
Appendix B how a classical PM scattering computation
might prove that such a limit exists.
Reference [20] assumed that such a HE limit exists not

only at the 2PM level, but also at any higher PM order. Let

us recall at this point that, contrary to the PN expansion
which can (and does) involve logarithms of 1

c, there seems
to be no way in which the PM expansion (when considered
at finite γ) can involve logarithms of the gravitational
coupling constantG. Indeed, as was indicated in Sec. II, the
PM expansion of the classical scattering angle (equivalent
to the knowledge of Q̂) must, at each PM order, be a
polynomial in the masses, and therefore in Gm1=b and
Gm2=b. Therefore, when considering the generic case of
finite masses and arbitrary (but finite) values of γ, we must
have an expansion in powers of u ¼ GM=R of the type

Q̂ ¼
X
n≥2

qnðpλ; νÞun: ð6:7Þ

Reference [20] then assumed that the HE limit of each PM
coefficient qnðpλ; νÞ would become a ν-independent quad-
ratic form in pλ. [This is equivalent to saying that the
corresponding coefficient in the unrescaled Q becomes
a ν-independent quadratic form in Pλ.]
The precise expression for the limiting behavior of

qnðpλ; νÞ depends on the gauge chosen to write it. In the
first form (3.7) of the energy gauge (where qnðpλ; νÞ is only
a function of p0 ¼ −Eeff=μ ¼ Êeff ), one would have

lim
Êeff→∞

qEn ðÊeff ; νÞ ≈ cðqEÞn Ê2
eff : ð6:8Þ

This is what we used in our 2PM-level discussion above. In
the second (Hamiltonian) form (3.8) of the energy gauge
one would have

lim
ĤSchw→∞

qnðĤSchw; νÞ ≈ cðqHÞ
n Ĥ2

Schw: ð6:9Þ

One can easily see that the two conditions are equivalent to
each other, with some transformation between the coef-
ficients corresponding to rewriting the higher-PM version
of AHE 2PMðuÞ either as

AHEðuÞ ¼ ð1 − 2uÞð1 − cðqEÞ2 u2 −… − cðqEÞn un −…Þ−1;
ð6:10Þ

or as

AHEðuÞ ¼ ð1 − 2uÞð1þ cðqHÞ
2 u2 þ…þ cðqHÞ

n un þ…Þ:
ð6:11Þ

B. Uniqueness of a conjectured 3PM dynamics
compatible with the simple HE behavior (6.8)

The 3PM-level EOB Q potential derived from the 3PM
result of [24,25] is given by Eq. (5.8). We discussed above
why its 1SF expansion is in tension with the SF result

6Modulo a different parametrization leading there to
AHE 2PMðuÞ ¼ ð1 − 2uÞð1þ fðuÞÞ.
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(5.21). In addition, its HE limit (without doing any SF
expansion) does not respect the expected HE behavior
(6.8). Indeed, we have

Q̂≤3PMBðu; γ; νÞ
γ2

¼HE 15
2
u2 þ

�
8 lnð2γÞ − 17

3

�
u3; ð6:12Þ

where the logarithmically growing term 8u3 lnð2γÞ comes
from the term 16γ4asðγÞ=

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
in the function

C̄BðγÞ, Eq. (3.70).
In the present subsection we propose a conjectured

modification of the function C̄BðγÞ that has the property
of being compatible at once with four different constraints:
(i) the same restricted analytic structure as C̄BðγÞ; (ii) the
SF result (5.21); (iii) the independently confirmed 5PN-
level expansion of the 3PM dynamics; and (iv) the simple
HE behavior (6.8). Moreover, these properties uniquely
determine our conjectured modified function C̄ðγÞ.
The general ansatz7 made (and motivated by several

arguments) in Ref. [25] is [when transcribed in terms of
C̄ðγÞ] that

C̄cðγÞ ¼ c1γ þ c3γ3 þ ðd0 þ d2γ2 þ d4γ4Þ
arcsinh

ffiffiffiffiffiffi
γ−1
2

q
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p ;

ð6:13Þ

with some numerical coefficients c1, c3, d0, d2, d4. This
general structure corresponds to the structure of the
coefficients τ1 and τ3 in Eq. (9.5) of [25], as determined
by the requirement indicated just below Eq. (9.5) there that
(after completing it by the overall factor m3

1m
3
2) C̄ðγÞ must

be a polynomial in8 m2
1, m

2
2 and ðp1 · p2Þ.

When redoing the computation of the HE limit of the

quantity Q̂1SF

γ3
considered in Eq. (5.17) above for the general

ansatz (6.13), one finds that this ratio now takes the general
form

Q̂1SF

γ3
¼HE15

2
u2þðc3−15Þu3þd4

2
lnð2γÞu3þOðu4Þ: ð6:14Þ

Barring the possibility (separately explored below) that the
Oðu4Þ 4PM remainder term in this result cancels the
Oðlnð2γÞu3Þ term, the compatibility with the SF result
(5.21), together with the general requirement (6.8), then
determines that the coefficient d4 in Eq. (6.13) should
vanish:

d4 ¼ 0: ð6:15Þ

We note in passing that the term proportional to d2 in
Eq. (6.13) will generate a subleading logarithmic term in
the SF quantity computed in [53] that is compatible with the
best fits obtained there.
This leaves only four unknown parameters in the so-

restricted ansatz (6.13), namely c1, c3, d0, d2. If we now use
the independently derived (by using purely classical meth-
ods) 5PN-level value of C̄ðγÞ [52], as written in Eq. (3.69)
above, we have in hands four equations for the four
unknowns c1, c3, d0, d2. By solving these four equations,
we have found that they uniquely determine c1, c3, d0, d2,
thereby uniquely determining a 3PM dynamics with softer
HE behavior from the sole use of 5PN-level information.9

The resulting unique value of C̄ðγÞ is found to be

C̄cðγÞ ¼ γð35þ 26γ2Þ − ð18þ 96γ2Þ asðγÞffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p : ð6:16Þ

Let us briefly contrast the predictions following from the
conjectured 3PM dynamics defined by Eq. (6.16) to those
following from the result (3.70) of Refs. [24,25]. First, the
corresponding 3PM-level contribution to the scattering
angle, namely

χc3ðγ; νÞ ¼ χSchw3 ðγÞ − p∞
C̄cðγÞ
γ − 1

�
1 −

1

h2ðγ; νÞ
�
; ð6:17Þ

has a HE limit (equivalent to the massless limit at
fixed momenta) equal to10

χ3ðγ; νÞ¼HE −
14

3
γ3: ð6:18Þ

Using the notation (following Ref. [20])

α≡ γ

j
≡GMEeff

J
¼ G

2

s −m2
1 −m2

2

J
; ð6:19Þ

and adding the HE limits of the 1PM and 2PM scattering
angles, we get as conjectured 3PM-accurate prediction for
the HE-limit of the scattering angle the following finite
result

1

2
χc¼HE2α −

14

3
α3: ð6:20Þ

7If we knew sufficiently many terms in the PN expansion of
C̄ðγÞ the method of Ref. [76] would allow us to derive its exact
form without assuming such a restricted form.

8I thank Mikhail Solon for clarifying the precise meaning of
the statement written below Eq. (9.5) of [25].

9This result is compatible with the statement made in the
second sentence below Eq. (9.5) of [25] to the effect that their
more general ansatz (involving an extra term d4γ4 in the
coefficient of the arcsinh) is uniquely fixed by the 6PN-level
OðG3Þ amplitude.

10The negative coefficient − 14
3

comes from combining the
positive Schwarzschild contribution þ 64

3
with the contribution

−c3 ¼ −26 from the first term in C̄cðγÞ.
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By contrast, if one formally computes the HE limit of the
scattering angle derived from the 3PM dynamics
of Refs. [24,25] one gets a logarithmically divergent
3PM-level contribution, namely (at the leading-logarithm
accuracy),

1

2
χB¼HE2α − 8 lnð2γÞα3: ð6:21Þ

We note in passing that the sign of the logarithmically
divergent coefficient−8 lnð2γÞ of α3 is negative. This agrees
with the sign of the corresponding (finite) term in Eq. (6.20).
By contrast, the eikonal-approximation two-loop result of
Amati, Ciafaloni and Veneziano [26] (which has been
recently checked to hold also in several supergravity theories
[27,28], and confirmed in the puregravity case [28]) gives the
result (after using a correction suggested by Ciafaloni and
Colferai [77] and confirmed in [28])

1

2
χeikonal¼HE2αþ 16

3
α3; ð6:22Þ

where the sign of α3 is positive. Independently of the
consideration of the HE-softer conjecture Eq. (6.16), we
note that the HE limit of the result of Refs. [24,25] disagrees
with the HE eikonal result of Refs. [26–28,77].
As a second type of predictions from Eq. (6.16), let us

note that it leads to a specific 3PM-accurate EOB Q
potential of the form

Q̂3PMcðu; γ; νÞ ¼ u2q2ðγ; νÞ þ u3qc3ðγ; νÞ; ð6:23Þ

where qc3ðγ; νÞ is obtained by replacing in Eq. (3.62) the
functionCcðγÞ given in Eq. (6.16) [using also Eqs. (3.60) and
(3.59)]. Let us now consider the 1SF-accurate value of
Q̂c 3PMðu; γ; νÞ, i.e., the coefficient of ν in the ν-expansion
of the full function Q̂c 3PMðu; γ; νÞ. A straightforward cal-
culationyields for theHEbehavior of Q̂c 3PM 1SFðu; γÞ, i.e., its
asymptotic behavior as γ → ∞, the value

Q̂c 3PM 1SF

γ3
¼HE 15

2
u2 þ 37u3 þOðu4Þ: ð6:24Þ

Contrary to the corresponding result following from [25] that
led to the logarithmically divergent result Eq. (5.16), we now
get a finite limit when inserting the value u ¼ 1

3
correspond-

ing to the light ring, namely

lim
γ→∞

�
Q̂c 3PM 1SF

γ3

�lightring
¼ 5

6
þ 37

27

¼ 119

54
≈ 2.2037: ð6:25Þ

The corresponding numerical result of [53], Eq. (5.21), was
≈ 27

4
¼ 6.75. We should not expect a close numerical

agreement because we have used in our analytical estimate
only the first two terms (2PM and 3PM) in the (visibly badly
convergent) infinite PMexpansion of this ratio. However, the
3PM conjectural expression Eq. (6.16) is (contrary to the
3PMresult ofBern et al.) qualitatively compatible in sign and
in order of magnitude (and in its finiteness!) with the
numerical SF result of [53].
On the other hand, the conjectured, HE-softer, 3PM

dynamics starts differing from the result of Refs. [24,25] at
the 6PN level. Indeed, the 6PN-accurate expansion of
(3.70) reads

C̄B6PNðpeobÞ ¼ 4þ 18p2
∞ þ 91

10
p4
∞ −

69

140
p6
∞

−
1447

10080
p8
∞ þOðp10

∞Þ; ð6:26Þ

while that of (6.16) reads

C̄c6PNðpeobÞ ¼ 4þ 18p2
∞ þ 91

10
p4
∞ −

69

140
p6
∞

−
233

672
p8
∞ þOðp10

∞Þ: ð6:27Þ

Several independent groups have very recently performed
6PN-accurate OðG3Þ computations [78–80]. All those
calculations agree among themselves and have directly
confirmed the 6PN-accurate expansion (6.26), thereby
disproving the (HE-softer) conjectured 3PM dynamics
(6.16), leading to Eq. (6.27).
We must therefore discard the possibility, explored

above, of relieving the tension between the high-energy
behavior (3.78) derived from Eq. (3.70) and the high-
energy behavior found in Ref. [53] by softening the HE
behavior of the 3PM dynamics in the simple-minded way11

(6.15). Let us, however, emphasize again that our search for
some type of resolution of the tension between the result of
Refs. [24,25] and the HE result of Ref. [53] should
continue. In addition, we have emphasized the presence
of another tension between the HE limit of the result of
Refs. [24,25] and the (now confirmed) HE eikonal result of
ACV. Before continuing our effort toward understanding
how to reconcile these contrasting results, let us put
forward what we consider to be minimal requirements
concerning the HE behavior of PM gravity.

11We shall not explore here the more farfetched possibility that
the 3PM dynamics involve nonperturbative factors, say
∝ 1 − expð− 1

p∞
Þ, that would not be detectable at any finite PN

approximation, but that would soften the HE behavior of the
arcsinh term.
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C. Minimal requirement on the HE behavior
of PM gravity

We recalled above the arguments suggesting that the HE
(or massless) limit of the EOB mass-shell constraint (3.2)
should yield a (mass-independent) massless quadratic
constraint of the type

0 ¼ gμνHEPμPν: ð6:28Þ

This constraint is equivalent to requiring that the HE limit
of the exact unrescaled Qðu; PμÞ term be quadratic in the
unrescaled effective momentum Pμ, or that the exact
rescaled Q̂ðu; pμÞ≡Q=μ2 term be quadratic in the rescaled
effective momentum pλ ≡ Pλ=μ:

Q̂ðu; pμÞ¼HEqμνHEðuÞpμpν; ð6:29Þ

with a mass-independent tensor qμνðuÞ. In the energy
gauge, this requirement reads

Q̂ðu; γ; νÞ¼HEqHEðuÞγ2: ð6:30Þ

Above, we implicitly assumed that the limiting HE behav-
ior of Eqs. (6.29), (6.30) separately applies at each PM
order. In other words, we assumed that the two limits
G → 0 and γ → ∞ commuted. However, another possibil-
ity is that these two limits do not commute, and that though
individual PM contributions qnðγ; νÞun in Eq. (6.7) do not
separately exhibit the expected HE quadratic behavior, the
sum of all the PM contributions does lead to a nice
quadratic mass-shell condition (6.29), (6.30) in the HE
limit. A structure allowing such a mechanism is presented
in the next subsections.

D. Transmutation of post-Minkowskian order
in the radiative corrections to the dynamics

We shall present below a mechanism able to reconcile
the 3PM dynamics derived in [24,25], with the 1SF, HE
behavior found in [53]. The basic idea of this mechanism is
a particular type of noncommutativity of the two limits
G → 0 and γ → ∞ by which the HE (or massless) limit of
the OðG≥4Þ dynamics trickles down to the OðG3 lnGÞ
level. Before presenting a specific conjecture exhibiting
such an effect and thereby reconciling Refs. [24,25,53], let
us show that such effects are indeed present in PM gravity,
when considering the conservative part of classical radia-
tive corrections.
We recall that it was pointed out long ago [81] that

classical radiative effects start having a nonpurely dissipa-
tive dynamical effect at the 4PN level, via the so-called
hereditary tail. At the 4PN level, a part of the near-zone
gravitational field becomes a nonlocal functional of the two
worldlines that cannot be simply obtained by a usual,
small-retardation PN expansion. The conservative part of

the corresponding nonlocal-in-time dynamics can be
described by a nonlocal action, either of the Schwinger-
Keldysh type [82], or of the Fokker type [83]. The latter
conservative radiative correction is the source of the first
logarithm entering the PN expansion of the two-body
dynamics. This logarithm12 arises at the OðG4Þ (and
4PN) level [71,84]. This might suggest that delicate
physical effects linked to time-nonlocality start occurring
at the OðG4Þ level, and have no effect on the OðG3Þ level.
This is likely to be true when considering nonzero masses
and a finite value of γ. However, the following argument
shows that this is not true when considering the HE limit
where γ → ∞ (with the masses mi → 0, keeping fixed the
c.m. energy E).
Let us start from a simple formula obtained13 in Ref. [59]

for the value of the scattering angle associated with the
conservative effect of the radiative correction, namely

χrads ðE; JÞ ¼ ∂
∂JW

rad
s ðE; JÞ; ð6:31Þ

where

Wrad
s ¼ 2GH

Z
dω

dEgw

dω
ln ð2eγE jωjsÞ: ð6:32Þ

Here, E ¼ H is the total c.m. energy of the binary system,
dEgw

dω is the spectrum of the energy that would be emitted in
gravitational waves if one would use a retarded Green’s
function (rather than a time-symmetric one), and s is a
length scale to be chosen (after differentiation) of order of
the size of the system. [The results of Ref. [59] show, for
scattering motions, that taking s ¼ b allows one to capture
all the relevant nonlocal effects.]
The crucial point is that Wrad

b ≡Wrad
s¼b, and the corre-

sponding χrads¼b, is of orderG
4 in the case of the scattering of

massive particles at finite γ (see [59]), but becomes of order
G3 lnð1=GÞ in the case of the classical scattering of
massless particles. Indeed, following the results of
Gruzinov and Veneziano [88] on the gravitational radiation
from classical massless particle collisions,14 we see that,
while in the finite-γ (and finite masses) scattering case dEgw

dω
(which is OðG3Þ) starts decaying exponentially above a
frequency of order v=b [59], in the massless case dEgw

dω
decays only very slowly (∝ lnð1=ðGEωÞ) above 1=b. Using
the approximate expression of dEgw

dω [when 1=b≲ ω≲
1=ðGEÞ] derived in Ref. [88], and neglecting the

12As shown in Ref. [59] the 4PN, OðG4Þ, logarithmic con-
tribution to the scattering angle involves the logarithm of a
dimensionless velocity lnp∞, but does not involve the logarithm
of G (e.g., through the form ln j, with j ¼ J=ðGm1m2Þ).

13It was written down there at the leading PN order, but, in
view of Refs. [81,82,85–87] it clearly has a general validity.

14The results of Ref. [88] have been confirmed by a quantum-
amplitude derivation [89].

THIBAULT DAMOUR PHYS. REV. D 102, 024060 (2020)

024060-28



contribution15 from ω≳ 1=ðGEÞ, yields, for Wrad
b , an

integral proportional to

Z
1=GE

1=b
dω lnðωbÞ ln

�
1

GEω

�
≈

1

GE
ln

�
b
GE

�
: ð6:33Þ

The crucial point to note is that this integral generates a
factor 1

GE due to the slow decay of the HE gravitational-
wave spectrum between 1=b and 1=GE ≫ 1=b. [We are
considering the small scattering angle case, GE=b ≪ 1.]
Adding the factor corresponding to the zero-frequency
limit of dEgw

dω [63], and the characteristic tail prefactor
2GH ¼ 2GE, leads to the following estimate

Wrad γ→∞
b ∼þG3E4

b2
ln

�
b
GE

�
: ð6:34Þ

Differentiating with respect to J ≈ Eb=2, finally leads to a
scattering angle for massless particles of order

χrad γ→∞
b ∼ −

�
GE
b

�
3

ln

�
b
GE

�
∼ −χ3 ln

1

χ
; ð6:35Þ

where χ ∼ GE=b, on the rhs, denotes the leading-order
scattering angle. By contrast, the radiative contribution to χ
in the finite-masses, finite-γ case is

χrad γ finiteb ∼
�
GE
b

�
4

∼ χ4 ¼ OðG4Þ: ð6:36Þ

As announced, we have here a conservative dynamical
effect, the radiative contribution to the scattering angle of
two classical particles, which is OðG4Þ when γ is finite, but
becomes OðG3 ln 1=GÞ in the γ → ∞ limit. Note that our
estimates only concern the nonlocal (tail-transported [81])
contribution to the conservative dynamics. However, this is
a clear proof that the 4PM-level (OðG4Þ) conservative
dynamics undergoes a transmutation of PM order (down to
the OðG3 ln 1=GÞ level) in the γ → ∞ limit.
We also note that our reasoning indicates that, at the

leading-log approximation, the sign of χrad γ→∞
b is negative.

Indeed, both lnðωbÞ and dEgw

dω are positive in the relevant
interval; and the differentiation with respect to J, i.e., b,
changes the sign. We will come back below to this point.

E. Second conjecture to reconcile the 3PM result of
Refs. [24,25], with the 1SF, HE behavior of Ref. [53]

Let us recap the conundrum we are trying to solve. The
two-loop result of Refs. [24,25] leads to the following
3PM-accurate EOB Q potential

Q̂≤3PMBðu; γ; νÞ ¼ q2ðγ; νÞu2 þ qB3 ðγ; νÞu3; ð6:37Þ

where the 3PM-level coefficient qB3 ðγ; νÞ reads

qB3 ðγ; νÞ ¼ BðγÞ
�

1

hðγ; νÞ − 1

�
þ 2ν

C̄BðγÞ
h2ðγ; νÞ ; ð6:38Þ

with

BðγÞ≡ 3

2

ð2γ2 − 1Þð5γ2 − 1Þ
γ2 − 1

; ð6:39Þ

and

C̄BðγÞ ¼ 2

3
γð14γ2 þ 25Þ

þ 4ð4γ4 − 12γ2 − 3Þ asðγÞffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p : ð6:40Þ

The crucial contribution in C̄BðγÞ is the term16

16γ4asðγÞ=
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
, where we recall that the arcsinh

function can be written as

asðγÞ ¼ 1

2
ln ðγ þ p∞Þ ¼ −

1

2
ln ðγ − p∞Þ

¼ 1

4
ln
γ þ p∞

γ − p∞
¼ 1

4
ln
1þ v∞
1 − v∞

; ð6:41Þ

where v∞ ≡ p∞
γ ≡

ffiffiffiffiffiffiffiffiffiffiffi
1 − 1

γ2

q
.

Indeed, this contributes to qB3 ðγ; νÞ the term

qlog3 ðγ; νÞ ¼ 16νγ4

h2ðγ; νÞp∞
ln ðγ þ p∞Þ: ð6:42Þ

The latter term is the source of the various logarithmic
divergences entailed by the result of Refs. [24,25]. First, it
causes the HE (γ → ∞) behavior of qB3 ðγ; νÞ to contain a
ln γ enhancement of the ∼γ2 behavior ensuring a well-
defined massless limit (see Eq. (6.30) above), indeed

Q̂≤3PMBðu;γ;νÞ¼HE15
2
u2γ2þ

�
8 lnð2γÞ−17

3

�
u3γ2: ð6:43Þ

Second, it is the source of the tension with the result of
Ref. [53]. Indeed, it generates a logarithmically divergent
contribution to the 1SF quantity Q̂1SF

B =γ3:

15The ∼1=ω decay of the latter contribution might generate an
additional logarithmic factor.

16As it is the large γ behavior that is of concern here, we could
rephrase our discussion below by replacing everywhere the factor
16γ4 by its gravitational-coupling origin w2

1 ¼ 4ð2γ2 − 1Þ2, as per
the penultimate equation (9.2) of Ref. [25].
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Q̂1SF
B

γ3
¼HE 15

2
u2 þ 11

3
u3 þ 16 lnð2γÞu3; ð6:44Þ

while Q̂1SF=γ3 was found in Ref. [53] to have a finite
HE limit [see Eq. (5.21)]. And third, it also leads
to a logarithmic divergence when considering the HE limit
γ → ∞ (letting the masses mi → 0, and keeping fixed the
c.m. energy E) of the two-particle scattering angle, namely
(at the leading-logarithm accuracy),

1

2
χB¼HE2α − 8 lnð2γÞα3; ð6:45Þ

with α¼HEGE2=ð2JÞ, as defined in Eq. (6.19). The latter
result is in tension with the eikonal computations of
the gravitational scattering angle of (quantum) massless
particles [26,28].
These tensions have motivated us to propose above a

modification (having a softer HE behavior) of the 3PM
dynamics of Refs. [24,25]. However, the recently per-
formed 6PN-accurate OðG3Þ computations [78–80] have
disproved our softer-HE conjecture Eq. (6.16).
We wish now to present an alternative conjectural

mechanism for canceling the three related logarithmic
divergences, Eqs. (6.43), (6.44), and (6.45). We have seen
in the previous subsection, that the γ → ∞ limit of the
radiative contribution entering the 4PM-level (OðG4Þ)
scattering angle χ had the remarkable property of descend-
ing from theOðG4Þ level to theOðG3 lnGÞ one. In a similar
manner, our proposed mechanism invokes the presence of a
structure in (part of) the 4PM-level contribution to the EOB
Q potential whose HE limit trickles down to the 3PM level
and tames the three problematic 3PM-level logarithmic
growths linked to the presence of the arcsinh function in
Eq. (3.70). To motivate the possibility of this mechanism,
let us start by noticing that one way to understand the
technical origin of these various logarithmic growths is to
view them (when considering the various rewritings of the
arcsinh function exhibited in Eq. (6.41)) as due to the
vanishing of the quantity γ − p∞, or, equivalently, of
1 − v∞, as γ → ∞. [In the HE limit, γ → ∞, γ − p∞ ¼
ðγ þ p∞Þ−1 tends to zero like Oð1γÞ, while 1 − v∞ tends to

zero like Oð 1
γ2
Þ.] Both these quantities make use (in their

construction) of the flat Minkowski metric, ημν. E.g., 1 −
v∞ ¼ ð1 − v2∞Þ=ð1þ v∞Þ crucially involves 1 − v2∞ ¼
−ημνdxμdxν=ðdx0Þ2. Now, the crucial contribution (6.40)
comes from theOðG3Þ “H-diagram” 7 in Fig. 14 ofRef. [25].
At the next PM levels, OðG≥4Þ, there will appear (among
other diagrams) modifications of the H-diagram comprising
extra graviton exchanges between one of the external
massive particle lines and, either the other massive particle,
or one of the internal graviton lines. From the classical
point of view, such modifications are related to some extra
coupling to themetric fieldhμν ¼ OðGÞ, and can therefore be

viewed as modifying some of the occurrences of the flat
metric ημν within the OðG3Þ diagrams. This intuitive argu-
ment suggests the possibility of an effective blurring
of the light-cone-related quantity 1 − v2∞ ¼ −ημνdxμdxν=
ðdx0Þ2 that is at the root of the logarithmic blow-up of the
OðG3ÞH-diagram. In otherwords, it is conceivable that some
OðG≥4Þ correctionswill soften the γ → ∞ logarithmic blow-
up contained in the OðG3Þ arcsinh function. Such a pos-
sibility is connectedwith the known fact (discussed next) that
the classical PM expansion is not valid for all Lorentz factors
γ, but makes sense only if γ is smaller than some
G−dependent upper limit.
The issue of the domain of physical validity of the PM

expansion has been discussed in the literature on relativistic
gravitational bremsstrahlung [90–93], though with unclear
or conflicting answers. Peters [90] concludes (in the small
mass-ratio case, ν → 0), that the PM expansion is valid
only if

γ2
GM
b

≪ 1; ð6:46Þ

while D’Eath (see p. 1016 in [91]), cited by Kovács and
Thorne [93], concludes that, for comparable masses
[ν ¼ Oð1Þ], the PM expansion is valid only if

h2
GM
b

∼ γ
GM
b

≪ 1: ð6:47Þ

To illustrate one of the technical origins of the limit (6.46),
let us consider the scalar h2 μνu

μ
1u

ν
1, where (see, e.g., [48])

h2 μνðxÞ ¼ 2
Gm2

R2

ð2u2μu2ν þ ημνÞ; ð6:48Þ

is the value, along the worldline of the first particle m1, of
the harmonic-gauge linearized gravitational field generated
by the second particle m2. During a small-angle hyperbolic
encounter, the scalar (6.48) reaches the maximum value
ðh2 μνu

μ
1u

ν
1Þmax ¼ 2 Gm2

b ð2γ2 − 1Þ ¼ w1
Gm2

b . It seems then
natural to require for the validity of the PM expansion that
w1

Gm2

b ∼ γ2 GM
b ≪ 1 (in agreement with Eq. (6.46)).

If we reexpress the various possible limits of validity of
the PM expansion, Eqs. (6.46) or (6.47), in terms of the
scattering angle

1

2
χ ¼ GMhðγ; νÞ

b
2γ2 − 1

p2
∞

þOðG2Þ; ð6:49Þ

we get limits of validity of the general type

χγn ≪ 1; ð6:50Þ

with some (strictly) positive n (n ¼ 3
2
according to Peters,

and our argument, and n ¼ 1
2
according to D’Eath).
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Independently of the differences17 between these various
validity constraints, the general requirement (6.50) (with
any positive exponent n) is saying that one cannot trust
taking the HE limit γ → ∞ independently of the χ → 0 (or
of the G → 0) limit. This points out toward a possible
noncommutativity of the two limits γ → ∞ and G → 0.
We are interested in transcribing the validity limit (6.50)

in terms of the EOB gravitational potential u ¼ GM=R,
which enters the Q potential. When considering a small-
angle scattering, the maximum value of u is defined by
inserting pr ¼ 0 in the free-motion (G → 0) EOB mass-
shell condition, Ê2

eff ¼ 1þ p2
r þ j2u2, so that

umax ¼
p∞

j
¼ GMhðγ; νÞ

b
: ð6:51Þ

We thereby see that in the HE limit umax ∼ χ. Therefore the
general limit (6.50) is equivalent to

γnumax ≪ 1 with n > 0

�
and probably

1

2
≤ n ≤

3

2

�
:

ð6:52Þ

Combining this information about the limit of validity
of the PM expansion, both with the reasoning above
concerning OðG≥4Þ corrections to the crucial OðG3Þ H-
diagram, and with the proof given in the previous sub-
section of a OðG4Þ ↦ OðG3 lnGÞ transmutation of PM
order in the radiative part of the scattering angle, leads us to
conjecture that the higher-PM contribution to the 3PM-
accurate EOB Q potential will contain a term ΔQ̂ðγ; u; νÞ
which is of order u4 ¼ OðG4Þ when γnu ≪ 1, but which
becomes of order u3 lnðγnuÞ when γnu ≫ 1, and which
cancels the HE logarithmic blow-up, Eq. (6.43), of the 3PM
potential Q̂≤3PMBðu; γ; νÞ, Eq. (6.37).
Such a general requirement about the nature of the

noncommutativity of the two limits G → 0 and γ → ∞
might be realized in many different ways. Let us illustrate
the possibility of such a mechanism by a specific example
of a OðG≥4Þ term ΔQ̂ðγ; u; νÞ. We are not claiming here
that our example must be exactly the one that will enter the
OðG≥4Þ dynamics, but we propose it as an existence proof
of a OðG≥4Þ modification of the 3PM dynamics having
interesting HE properties, and, in particular, reconciling the
current 3PM dynamics, Eqs. (6.37), (6.38), with the SF
result, Eq. (5.21).
Our proposed example consists in modifying the 3PM-

accurate Q potential, Eqs. (6.37), (6.38), by an extra
OðG≥4Þ contribution of the form

ΔQ̂ðγ; u; νÞ ¼ −
16νγ3

h2ðγ; νÞ u
3
lnð1þ γnuÞ

n
; ð6:53Þ

where n > 0 refers to the exponent entering the general
limit of validity, Eq. (6.52), of the PM expansion. [For
simplicity, we did not include in the illustrative model
(6.53) various possible modifications, such as a prefactor
containing lower powers of γ (e.g., w2

1=γ in lieu of 16γ3),
and a numerical coefficient in front of γnu in the argument
of the logarithm.] The only crucial elements (for our
discussion below) entering this illustrative definition of
ΔQ̂ðγ; u; νÞ are the following: (i) the factor 16 in front of γ3;
(ii) the fact that the mass ratio ν only enters via the overall
factor ν=h2ðγ; νÞ; and (iii) the fact that the function
u3 lnð1þ γnuÞ=n is of order Oðu4Þ as u → 0, and
≈u3ðln γ þ 1

n ln uÞ as γ → ∞. [Evidently, many other func-
tions could realize such requirements, or suitable variants
of them.]
The dynamics defined by the modified Q potential

Q̂modðu; γ; νÞ≡ Q̂≤3PMBðu; γ; νÞ þ ΔQ̂ðu; γ; νÞ; ð6:54Þ

has the following properties.
First, it relieves the tension between Refs. [24,25] and

Ref. [53]. Let us take the 1SF (linear in ν) contribution to
the modified EOB Q potential (6.54), and then consider its
HE limit. As our modification enters the EOB Hamiltonian
multiplied by the overall factor 2ν=h2ðγ; νÞ, the 1SF piece
in the new EOB Q potential (6.54) is given by:

Q̂mod1SF

γ3
¼HE15

2
u2þ

�
11

3
þ16 lnð2Þ−16

n
lnðuÞ

�
u3: ð6:55Þ

The major difference with the previous result, Eq. (5.17), is
that the divergent logarithm þ lnðγÞ has been now replaced
by − 1

n lnðuÞ. When evaluated at the light ring u ¼ 1
3
, we

thereby get a finite contribution involving − 1
n lnð13Þ instead

of the divergent lnðγÞ, in qualitative agreement with the
finite result found in [53].
Second, let us consider the HE limit, γ → ∞, of the

modified EOB Q potential (6.54). Contrary to the HE limit
of Q̂≤3PMBðu; γ; νÞ, displayed in Eq. (6.43) above, which
did not define a good, quadratic-in-γ HE limit, the γ → ∞
limit of Q̂mod now leads to a well-defined quadratic-in-γ HE
limit, namely

Q̂modðγ; ν; uÞ¼HEqHEnewðuÞγ2; ð6:56Þ
where

qHEnewðuÞ¼HE15
2
u2þ

�
−
17

3
þ8 lnð2Þ− 8

n
lnðuÞ

�
u3: ð6:57Þ

As announced, the latter HE limit has featured a phenome-
non of transmutation of PM order. The HE limit of the

17These differences could due to a gauge dependence, and
could also refer to the domains of validity of different
observables.
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Oðu4Þ ¼ OðG4Þ additional contribution ΔQ̂ has been
transmuted into a contribution of order u3 ln u ¼
OðG3 lnGÞ. This property is intimately linked with the
fact that the additional contribution ΔQ̂ was devised so as
to cancel the γ2 ln γ contribution present in the HE limit
of Q̂≤3PMBðu; γ; νÞ.
Third, if we consider a fixed, finite value of γ, and take

the PM expansion ofΔQ̂, i.e., its expansion in powers ofG,
we find that its 4PM-level,Oðu4Þ ¼ OðG4Þ, structure reads

ΔQ̂PM−expanded ¼ −
16νγ4

nh2ðγ; νÞ γ
n−1u4 þOðu5Þ: ð6:58Þ

Taking the HE limit of this PM-expanded contribution
yields

ΔQ̂PM−expanded¼HE − 8

n
γ2þnu4 þOðu5Þ: ð6:59Þ

As we had assumed n > 0 (and probably n ≥ 1
2
), we see that

this contribution violates (in a power-law fashion) the
expected quadratic-in-γ HE behavior. This violation at the
level of the Hamiltonian entails a corresponding power-law
violation of the naively expected behavior of scattering
observables (at the 4PM level). Namely, instead of having a
4PM-level contribution χ4ðγ; νÞ behaving, when γ → ∞,
∝ γ4 (like the test-particle one), the term (6.59) would yield
a contribution ∝ γ4þn. This apparent fast growth as γ → ∞
would, however, be an effect of having PM-expanded the
factor lnð1þ γnuÞ and is absent in the exact, non-PM-
expanded scattering angle χðγ; j; νÞ.
Indeed, the real value of the HE scattering angle

predicted by Eq. (6.54) is obtained from the HE limit of
the modified Q potential, i.e., from the HE quadratic mass-
shell constraint Eq. (6.56), with Eq. (6.57). Similarly to
what happened for the 1SF-level contribution Q̂1SF new, one
finds that this now predicts a finite 3PM-level massless
scattering angle which differs from the previous logarithmi-
cally divergent one, Eq. (6.21), by the replacement of lnðγÞ
by − 1

n lnðαÞ. Namely, at the leading-logarithm accuracy
(i.e., modulo some ∝ α3 contribution), one finds

1

2
χmod¼HE2α −

8

n
ln

�
1

α

�
α3: ð6:60Þ

We have written it here in terms of lnð1αÞ to emphasize that
the sign of the finite logarithmic contribution is the same
(namely negative) as the sign of the previously divergent
contribution −8 lnð2γÞα3. On the one hand, this sign differs
from the corresponding positive 3PM contribution ∼þ α3

found by ACV, and recently confirmed in Ref. [28]. On the
other hand, we note that the estimate (6.60) agrees in
magnitude and sign with the contribution Oðα3 ln 1=αÞ in

Eq. (6.35) derived above from considering the radiative
correction to the classical scattering angle.
Let us finally note that the structure we used in our

illustrative model (6.54) is not, by itself, leading to a
scattering angle satisfying the general mass-ratio-
dependence properties discussed in Sec. II. There are,
however, ways to design a modified version of ΔQ̂ðγ; u; νÞ
that would incorporate the latter expected mass-ratio-
dependence. We found that such better (but more compli-
cated) models predict the same general features we just
discussed. For simplicity, and in the absence of precise
guidelines for choosing among such models, we do not feel
it is useful to complicate our discussion by indicating the
construction of such models.
In conclusion: our second (illustrative) ansatz (6.54)

relieves the tension between Refs. [24,25] and Ref. [53],
and leads to some generic predictions for the HE behavior
of, both, the full dynamics, and its 4PM-truncated version.
There remains [as was the case with the first conjecture,
Eq. (6.16)] a tension between the massless limit of the
classical scattering, and the quantum, eikonal-based mass-
less scattering angle of Refs. [26,28]. As we already pointed
out, the root of the latter discrepancy might reside in
subtleties of the quantum-to-classical transition (with a
possible noncommutativity of the two limits γ → ∞, and
ℏ → 0), or in the use of the quantum-eikonal-approximation.

VII. SUMMARY

This paper has derived new general properties of post-
Minkowskian (PM) gravity, notably in its effective one
body (EOB) formulation. Our first result has been to prove
general expressions for the dependence of the momentum
transfer (during the classical scattering of two masses) on
the two masses, and thereby on the symmetric mass ratio ν
[see Eqs. (2.15), (2.24)]. This implies specific constraints
on the ν dependence of the scattering angle considered
as a function of the reduced angular momentum j≡
J=ðGm1m2Þ [see Eqs. (2.45), (2.46), (2.48)]. A useful
consequence of these results is that the full knowledge of
the 3PM dynamics is encoded in a single function of the
single variable γ ¼ −ðp1 · p2Þ=ðm1m2Þ. Moreover the
same property holds also at the 4PM level. We pointed
out that these properties allow first-order self-force (linear
in mass ratio) computation of scattering to give access to
the exact 3PM and 4PM dynamics.
We then generalized our previous work [20] by deriving,

up to the 4PM level included, the explicit links between the
scattering angle and the two types of potentials entering the
Hamiltonian description of PM dynamics within EOB
theory. The first type of potential is theQ potential entering
the mass-shell condition of EOB dynamics

0 ¼ gμνSchwarzPμPν þ μ2 þQðX;PÞ; ð7:1Þ
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while the second one is an ordinary, energy-dependent
radial potential WðE; R̄Þ entering a nonrelativistic-like
quadratic constraint on the EOB momentum,

P2 ¼ P2
∞ þWðū; P∞Þ: ð7:2Þ

The first formulation is usually expressed in terms of a
Schwarzschild-like radial coordinate R (with u ¼ GM=R),
while the second one uses an isotropiclike radial coordinate
R̄ (with ū ¼ GM=R̄). The links between the PM expansion
coefficients of both types of formulations, as well as their
links with the PM expansion coefficients of the scattering
function, were given in Sec. III. (See Appendix A for the
link of the EOB potential with the potential used in
Refs. [24,25].) At the end of Sec. III, we summarized
the current knowledge of the PM-expanded dynamics and
emphasized the apparent incompatibility between the
recent classical 3PM-level dynamics derived by Bern
et al. [24,25] and the self-force computation of
Ref. [53]. We then suggested two different types of
resolution of this tension. The first resolution conjectures
that the 3PM dynamics has a softer high-energy (HE)
behavior than the one derived in Refs. [24,25]. Namely, we
conjectured that the function C̄ðγÞ entering the 3PM
dynamics might have a softer HE behavior than
Eq. (3.70) (see Eq. (6.16). However, several recent 6PN-
accurate OðG3Þ computations [78–80] have disproved the
(HE-softer) conjectured 3PM dynamics (6.16).
In subsection IV C we recalled a classic argument of

Niels Bohr showing the lack of overlap between the
domains of validity of classical and quantum scattering
theory. This fact might entail subtleties in the quantum-to-
classical maps used in several recent works.
We also presented a second type of possible resolution of

the tension between Refs. [24,25] and Ref. [53]. This
second resolution does not call for a modification of the
3PM dynamics of Refs. [24,25] when it is considered at a
finite value of the Lorentz factor γ (denoted σ in
Refs. [24,25]), but assumes a particular type of non-
commutativity of the two limits γ → ∞, and G → 0. We
emphasized that the PM expansion is expected to lose its
validity when γ becomes larger than some inverse power of
GM=b (or GM=r), see Eqs. (6.50), (6.52). We gave an
illustrative model of higher PM (OðG≥4Þ) contributions to
the currently knownOðG≤3Þ dynamics able to reconcile the
results of Refs. [24,25] and Ref. [53]; see Eq. (6.54). This
model makes some generic predictions (explained in the
previous section) and exhibits an interesting phenomenon
of HE transmutation of post-Minkowskian order. Namely
the HE limit of a OðG≥4Þ term becomes of order
OðG3 lnGÞ when γnu ≫ 1, for some positive exponent
n. Independently of the motivation for our conjecture, we
showed (in Sec. VI D) that such a HE transmutation of PM
order [from (OðG4Þ down toOðG3 lnGÞ] does take place in

the radiative contribution to the scattering angle of classical
massless particles.
Section IV presented the 3PM generalization of a result

of Ref. [20], namely the computation of the scattering
amplitude derived from quantizing the 3PM EOB potential.
Our computation explicitly takes into account the IR-
divergent contributions coming from the Born iterations
of the EOB radial potential. The usual potential-scattering
amplitude feob in the EOB radial potential is linked to a
corresponding Lorentz-invariant amplitude M via the
simple rescaling

Meob ¼
8πGs
ℏ

feob: ð7:3Þ

Section VI (as well as Appendices B and C) discusses
various features of the high-energy (or massless) limit of
the PM dynamics.
Note finally that a general theme of the present work has

been to highlight some of the subtleties involved when
considering several a priori noncommuting limits: ℏ → 0
versus ℏ → ∞; G → 0; γ → ∞; and ν → 0. The existing
tension between: (i) the (logarithmically divergent) high-
energy limit, Eq. (6.45), of the scattering angle of
Refs. [24,25]; (ii) the quantum-eikonal-based computation
[26,28] of the scattering angle of quantum massless
particles, Eq. (6.22); and, (iii) the type of (finite) scattering
angle of classical massless particles predicted by both our
HE-softer conjectures (see notably Eq. (6.60)), needs
further clarification.
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APPENDIX A: MAP BETWEEN THE EOB
POTENTIAL AND THE POTENTIAL OF
CHEUNG, ROTHSTEIN, AND SOLON

Cheung, Rothstein and Solon (CRS) [22] have proposed
to describe the classical dynamics of a two-body system by
the same type of Hamiltonian that was considered long ago
by Corinaldesi and Iwasaki, namely

Hðx1;x2;p1;p2Þ ¼ c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ
p2
1

c2

s
þ c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ
p2
2

c2

s

þ Vðx1 − x2;p1;p2Þ; ðA1Þ

except that they did not limit themselves to working
with the PN-expanded form of such an Hamiltonian
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(à la Eq. (1.2)). In addition, when working in the c.m.
frame (with the c.m. Hamiltonian reduction p1 ¼ −p2 ¼
P), they required a specific isotropiclike gauge-fixing of the
c.m. potential Vðx1 − x2;p1;p2Þc:m: ¼ VðX;PÞ such that
VðX;PÞ depends only on P2 and R≡ jXj:

VðP;XÞ¼G
c1ðP2Þ
jXj þG2

c2ðP2Þ
jXj2 þG3

c3ðP2Þ
jXj3 þ�� � ðA2Þ

Reference [22] derived a 2PM-accurate potential (from the
quasi-classical one-loop amplitude of Refs. [19,21]) with-
out connecting this potential to the previously derived
(simpler) 2PM-accurate EOB potential of Ref. [20]. To
complete our study, let us sketch how the two types of
potentials are related by using the tools we have introduced
above. We will be brief because results essentially equiv-
alent (and sometimes to higher-orders) to the results below
(though formulated differently) have already been dis-
played in Refs. [25,55,56].
The gauge-invariant characterisation of the successive

coefficients wn entering the energy-dependent version of
the EOB potential obtained in Sec. III C gives a simple
algorithmic procedure for extracting the gauge-invariant
information from the PM expansion (A2) of the CRS
potential VðX;PÞ. Let us sketch how this can be done.
Starting from

HðP;XÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ P2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ P2

q
þ VðR;P2Þ; ðA3Þ

with

VðR;P2Þ¼G
c1ðP2Þ

R
þG2

c2ðP2Þ
R2

þG3
c3ðP2Þ
R3

þ��� ðA4Þ

and denoting as P∞ the (common) magnitude of the c.m.
incoming (and outgoing) momenta, such that the total
(conserved) energy Ereal ¼

ffiffiffi
s

p
of the two-body system

reads

ErealðP2
∞Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ P2
∞

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ P2
∞

q
; ðA5Þ

we can perturbatively solve the energy conservation law
Ereal ¼ HðP;XÞ for P2. Beware that, in this Appendix, we
will use the notation P∞ (without extra label) to denote
the magnitude of the asymptotic physical c.m. three-
momentum. This quantity differs from the corresponding
EOB incoming momentum, which was also denoted
P∞ ¼ μp∞ in the main text. Here, we will denote the latter
EOB incoming momentum as PEOB

∞ ¼ μpeob
∞ . The relation

between P∞ ≡ Pcm
∞ and PEOB

∞ will be recalled below.
We look for a PM expansion of the type

P2 ¼ P2
∞ þW1ðP∞Þ

R
þW2ðP∞Þ

R2
þW3ðP∞Þ

R3
þ � � � ðA6Þ

where Wn ∝ Gn, such that the insertion of the expansion
(A6) in Eq. (A3), with the PM-expanded potential (A4)
solves the constraint Ereal ¼ HðP;XÞ. At first order in G,
this yields the constraint

dErealðP2
∞Þ

dP2
∞

W1ðP∞Þ
R

þ G
c1ðP2

∞Þ
R

¼ 0; ðA7Þ

which uniquely determines W1ðP∞Þ in terms of c1ðP2
∞Þ,

namely

W1ðP∞Þ ¼ −
�
dErealðP2

∞Þ
dP2

∞

�−1
Gc1ðP2

∞Þ: ðA8Þ

At second order inG, we similarly get an equation uniquely
determining W2ðP∞Þ in terms of c2ðP2

∞Þ, of the P2
∞

derivative of c1ðP2
∞Þ, and of the previously determined

W1ðP2
∞Þ, namely

W2ðP∞Þ ¼ −
�
dEreal

dP2
∞

�
−1
ðG2c2ðP2

∞Þ

þ G
dc1ðP2

∞Þ
dP2

∞
W1 þ

1

2

d2Ereal

ðdP2
∞Þ2

W2
1Þ: ðA9Þ

This algorithmic procedure successively determines the
coefficients WnðP∞Þ entering the PM expansion (A6) in
terms of the sequence of functions cnðP2Þ. The results of
this procedure agree with the corresponding results in
section 11.3.1 of Ref. [25], but we will use them here to
relate the EOB Q potential to the CRS V potential.
The next step is to transform the coefficients WnðP∞Þ

into their corresponding gauge-invariant avatars W̃nðP∞Þ,
defined in the same way as in Eq. (3.46) above, namely

W̃1ðP∞Þ ¼
W1ðP∞Þ

P∞
;

W̃2ðP∞Þ ¼ W2ðP∞Þ;
W̃3ðP∞Þ ¼ P∞W3ðP∞Þ;
W̃4ðP∞Þ ¼ P2

∞W4ðP∞Þ: ðA10Þ

Then, applying the reasoning made around Eq. (3.46)
above, we conclude that the W̃nðP∞Þ’s extracted from
the sequence of functions cnðP2Þ’s must be numerically
identical to the w̃nðp∞Þ’s entering the EOB potential. One
must simply take care of the presence of a factor ðGm1m2Þn
due to the rescaling factors, P ¼ μp, E ¼ Mh, J ¼ GMμj,
used above, and of the (crucial) fact that the CRS and EOB
quantities are expressed as functions of different variables,
namely P∞ ≡ Pcm

∞ versus PEOB
∞ ¼ μpeob. At this stage, we

need to recall that, according to, e.g., Eq. (10.27) of
Ref. [20], the (rescaled) EOB incoming momentum peob ¼
peob
∞ is related to the real, c.m. incoming momentum P∞ by
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ErealPreal
∞ ¼ m1m2

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

q
≡m1m2peob

∞ : ðA11Þ

Finally, we have the simple relations

W̃1ðP∞Þ ¼ Gm1m2w̃eob
1 ðγÞ;

W̃2ðP∞Þ ¼ ðGm1m2Þ2w̃eob
2 ðγÞ;

W̃3ðP∞Þ ¼ ðGm1m2Þ3w̃eob
3 ðγÞ;

W̃4ðP∞Þ ¼ ðGm1m2Þ4w̃eob
4 ðγÞ: ðA12Þ

The first two EOB PM levels have been computed in
Ref. [20] and yielded the results

w̃eob
1 ðγÞ ¼ 2ð2γ2 − 1Þffiffiffiffiffiffiffiffiffiffiffiffi

γ2 − 1
p ;

w̃eob
2 ðγÞ ¼ 3

2

ð5γ2 − 1Þ
hðγ; νÞ : ðA13Þ

We have checked that by inserting the latter simple
expressions in the relations written above gave the (much
more intricate) expressions of c1 and c2 derived in [22].
Note, in particular, that the asymptotic value ξ∞ of the
symmetric energy ratio defined in [22], namely

ξðP2Þ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ P2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
2 þ P2

p
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ P2
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ P2
p

Þ2 ; ðA14Þ

which does not appear in the EOB results, enters in c1 via
the derivative

dErealðP2
∞Þ

dP2
∞

¼ 1

2ξ∞ErealðP2
∞Þ

: ðA15Þ

When working at the 3PM-level one can similarly relate the
coefficients c3, W̃3ðP∞Þ, w̃eob

3 ðγÞ and q3ðγÞ, and explicitly
check that the value of c3 given in the last Eq. (10.10) of
[25] is equivalent to the (much simpler) expression of q3
obtained in the main text (and also derived in Ref. [51] by
using the formulas of [20]). Let us finally note that
Refs. [55,56] derived all-order expressions for the links
between the quantities cn and wn (without considering,
however, the more basic EOB coefficients qn).

APPENDIX B: ON THE STRUCTURE OF THE HE
LIMIT OF PM GRAVITY

To complete our discussion of PM gravity, let us briefly
discuss some of the structures that might arise in the HE
limit of the classical momentum transfer Q, considered as a
function of the impact parameter, Eq. (2.24). We have
discussed above two different possibilities for reconciling
the current quantum-based computation of 3PM dynamics,
and older HE SF results. The first possibility assumes that

the HE limit of classical scattering is as tame at the third
(and higher) PM order(s) than it is at the first and second
PM orders. The second possibility allows for violations of
the latter tame HE behavior. We shall contrast the structures
corresponding to these two possibilities.
To discuss the HE behavior, let us reformulate the

classical time-symmetric Lorentz-invariant, PM perturba-
tion-theory computation of the momentum change
Δp1μ ¼ −Δp2μ. Above we wrote this PM perturbation
theory in terms of two worldlines parametrized by their
proper times sa, so that uμa ¼ dxμa=dsa were two unit
vectors, because wewanted to keep track of the dependence
on the two rest massesma, entering the stress-energy tensor
as multiplicative factors. But we could have, instead, as was
actually done in [20,46], use worldline parameters σa ¼
sa=ma such that dxμa=dσa ¼ mau

μ
a ¼ pμ

a. In this paramet-
rization the stress-energy tensor does not involve the
masses, but only the momenta, and reads

TμνðxÞ ¼
X
a¼1;2

Z
dσap

μ
apν

a
δ4ðx − xaðσaÞÞffiffiffi

g
p

¼
X
a¼1;2

Z
pμ
adxνa

δ4ðx − xaÞffiffiffi
g

p : ðB1Þ

One then checks that the masses will never explicitly occur
in this reformulation of PM perturbation theory. This
reformulation is useful for treating the limiting case where
ma → 0, uμa → ∞, keeping fixed the values of the momenta
pμ
a ¼ mau

μ
a. In this limit the two momenta, and the two

worldlines, become lightlike: p2
a ¼ −m2

a → 0. The expres-
sions written down in Refs. [20,46] then define a formal
PM perturbation theory that applies when one or two of the
particles are massless. Let us consider the case where both
particles are massless. A difference with the massive case is
that the convolution of the time-symmetric propagator ∝
δ½ðx − yÞ2� with a TμνðyÞ localized along a null geodesic
(which is straight at LO) selects a single (advanced or
retarded) source point xa on each worldline. [Indeed, the
LO equation to be solved in σa, for a given field point x,
namely ðx − x0a − p0

aσaÞ2 ¼ 0, is linear, rather than quad-
ratic, in σa because ðp0

aÞ2 ¼ 0.] The corresponding linear-
ized approximation for the metric (in harmonic gauge)
reads

hma¼0
μν ðxÞ ¼

X
a

4G
paμpaν

jðx − xaÞ · paj
þOðG2Þ: ðB2Þ

In the presently considered case where the pa’s are null,
the expression (B2) represents a sum of Aichelburg-Sexl
metrics [94] associated with each worldline. Each
Aichelburg-Sexl metric is flat (zero curvature) outside of
the null hyperplanes ðx − xaÞ:pa ¼ 0, but has nonzero
curvature concentrated (in a Dirac-delta manner) on these
hyperplanes. Correspondingly, the decay at large distances
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of hma¼0
μν ðxÞ (in harmonic gauge) is nonuniform, and

weaker in some directions than for its finite-mass analog.
This raises delicate issues about the convergence of the
integrals appearing at each order of the PM expansion.
Some of these issues have been discussed by D’Eath [91]
(who works with large but finite γ), and by Gruzinov and
Veneziano [88] (who argue that the massless limit, γ → ∞,
does exist). This issue might be alleviated by choosing a
suitable (nonharmonic) gauge for representing the physical
content of the metric (B2).
We shall assume here that the formal PM perturbation

theory for the scattering of two massless particles leads to
well-defined integral expressions for the vectorial momen-
tum transfer Δpμ ≡ Δp1μ ¼ p0

1μ − p1μ ¼ −Δp2μ.
The (incoming) vectorial impact parameter bμ [such that

b · p1ð−∞Þ ¼ 0 ¼ b · p2ð−∞Þ] is easily seen to be
uniquely defined by the geometrical configuration made
by the two incoming (null) worldlines. One can then write
Δpμ as a Poincaré-covariant function of bμ and of the two
incoming momenta. As before the corresponding scalar

Qðp1; p2; bÞ≡
ffiffiffiffiffi
−t

p ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ημνΔp1μΔp1ν

p
; ðB3Þ

must be a Lorentz scalar covariantly constructed from the
vectors bμ, and paμ (the latter denoting the incoming values
of the momenta). As bμ is (by definition) orthogonal to the
two momenta, and as the momenta have vanishing Lorentz
norms, the only nonzero scalar product [besides
b2 ≡ ðb · bÞ] that can be extracted from the geometrical
configuration p1; p2; b is the scalar product jðp1 · p2Þj ¼
−ðp1 · p2Þ. [We assume that p1 and p2 are both future-
oriented so that ðp1 · p2Þ < 0.] This technical fact can be
geometrically understood as follows. After fixing the
vectorial impact parameter bμ, the geometrical configura-
tion defined by the two incoming null worldlines admits as
symmetry group the subgroup of the Lorentz group made
of boosts acting in the two-plane spanned by the two null
vectors p1 and p2. If we consider a null frame with two null
vectors lμ, nμ, respectively parallel to p1 and p2, but
normalized so that l · n ¼ −1, these boosts are parame-
trized by a scalar k (equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − vÞ=ð1þ vÞp
in terms of

the usual boost velocity v) acting on the null frame l; n as
l → kl, n → k−1n. These boosts change the components
of p1 and p2 along the null basis vectors l; n (say pμ

1 ¼
p1llμ and pμ

2 ¼ p2nnμ) by factors k−1 and k, respectively.
The Lorentz scalar Qðp1; p2; bÞ must be invariant under
these Lorentz frame transformations. [One could gauge-fix
this residual Lorentz symmetry by going to the c.m. frame
where the spatial components of p1 and p2 are opposite, but
the idea here is, on the contrary, to use this symmetry to
constrain the expression of Qðp1; p2; bÞ.]
Summarizing: The (classical) scalar momentum transfer

Qðp1; p2; bÞ can only be a function of the two scalars jðp1 ·
p2Þj ¼ −ðp1 · p2Þ and b.

The first term in the PM expansion of Qðp1; p2; bÞ is
obtained by taking the massless limit ma → 0, p2

a → 0
(equivalent to considering the HE limit) of the beginning of
the finite-mass expression of Qðp1; p2; b;m1; m2Þ:

1

2
Qðp1;p2;b;m1;m2Þ

¼G
b
2ðp1:p2Þ2−p2

1p
2
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðp1:p2Þ2−p2
1p

2
2

p

þ3π

8

G2

b2
ðm1þm2Þð5ðp1:p2Þ2−p2

1p
2
2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðp1:p2Þ2−p2
1p

2
2

p þOðG3Þ: ðB4Þ

This yields

1

2
Qðp1; p2; b; 0; 0Þ ¼

2Gjðp1:p2Þj
b

þO

�
G3

b3

�
: ðB5Þ

The structure of PM perturbation theory formally gener-
ates, at each PM order GN, an expression for Qðp1; p2; bÞ
that is a homogeneous polynomial of order N þ 1 in p1l

and p2n, and that is proportional to 1=bN . Using now
dimensional analysis, and looking at the dimension of

Qðp1; p2; bÞ ∼ Gjðp1:p2Þj
b , it is easy to see that N þ 1 must be

an even integer, and that the OðGNÞ contribution to
Qðp1; p2; bÞ must be a polynomial (of order ðN þ 1Þ=2)
in the product of components p1lp2n, i.e., in the scalar
product jðp1 · p2Þj ¼ −ðp1 · p2Þ. This leads to a PM
expansion for Qðp1; p2; bÞ of the form

1

2
Qmasslessðp1; p2; bÞ ¼ 2

Gjðp1 · p2Þj
b

þQ3

G3jðp1 · p2Þj2
b3

þQ5

G5jðp1 · p2Þj3
b5

þ � � � ðB6Þ

with some dimensionless odd-order coefficients Q3, Q5,
etc. The corresponding structure for the scattering angle,
considered as a function of

α≡ Gjðp1 · p2Þj
J

¼HE γ
j
; ðB7Þ

is

χ

2
¼HE2αþ cχ3α

3 þ cχ5α
5 þ cχ7α

7 þ � � � ðB8Þ

with some corresponding dimensionless coefficients cχ3,
cχ5, etc.
We have thereby recovered, at the classical level, the

structure that was deduced, in the case of the HE quantum
scattering, by Amati, Ciafaloni and Veneziano [26] from
analyticity requirements in s. We see that it follows from
the classical symmetry discussed above.
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Let us first emphasize that there are two possibilities
concerning the dimensionless coefficients Q3, Q5;…, or
cχ3, c

χ
5;…, which can be thought of corresponding to the

two possible conjectures made in the text. The most
conservative scenario is that the latter dimensionless
coefficients are pure numbers. This would naturally cor-
respond to our first conjecture (of a soft HE behavior).
Indeed, the conjectured (HE-soft) 3PM dynamics (6.16)
leads to a nonzeroOðG3=b3Þ contribution in the HE limit of
the formQ3G3jðp1 · p2Þj2=b3 ¼ Q3G3ðm1m2Þ2γ2=b3, with
a finite numerical coefficient Q3. Let us note that this term
is the only term to survive, at OðG3Þ, in the HE limit of the
general finite-mass expression (2.15) because the corre-
sponding coefficient Q3PM

12 ðγÞ grows like γ2 when γ → ∞,
i.e., faster than Q3PM

11 ðγÞ ¼ Q3PM
22 ðγÞ ∼ γ. [One can check

that, at any PM order, all the coefficients Q11…1, or Q22…2

of the terms involving only one of the two masses, grow
like γ when γ → ∞.] A similar HE dominance ∼γnþ1 of the
coefficient of ðm1m2Þn at (2nþ 1)-PM (e.g.,Q5PM

1122ðγÞ ∼ γ3)
would ensure that the HE limit of Eq. (2.15) yields the form
(B6).18 Moreover, in that case, the vanishing of the even
coefficients cχ2n implies a specific HE behavior for the
corresponding coefficients qE2nðγ; νÞ in the PM expansion of
the energy-gauge EOB Q potential19;

Q̂Eðu; γ; νÞ ¼ u2q2ðγ; νÞ þ u3q3ðγ; νÞ
þ u4qE4 ðγ; νÞ þOðG5Þ: ðB9Þ

Under our present soft-HE-behavior assumption, we would
have a quadratic HE behavior for qEn ðγ; νÞ, namely rela-
tions of the type (6.8) or (6.9), with ν-independent
numerical coefficients cqEn or cqHn . Then the vanishing of
the even asymptotic coefficients cχ2n leads to the following
links

cqE2 ¼ cqH2 ¼ 15

2
; ðB10Þ

which we already knew, and the new links

cqE3 ¼ cqH3 ¼ −cχ3 þ
64

3
− 2cqE2 ¼ −cχ3 þ

19

3
; ðB11Þ

and

cqE4 ¼ −3cqE3 þ 705

16
¼ 3cχ3 þ

401

16
: ðB12Þ

For instance, the first conjectured 3PM result (6.16) implies
cχ3 ¼ − 14

3
, which would, in turn, imply the following results

cqE3 ¼ þ11; and cqE4 ¼ 177

16
: ðB13Þ

In other words, the corresponding HE mass-shell condition
would read

−Ê2
eff

�
1

1 − 2u
− f̄ðuÞ

�
þ ð1 − 2uÞp2

r þ j2u2 ¼ 0; ðB14Þ

with f̄ðuÞ≡ 15
2
u2 þ 11u3 þ 177

16
u4 þOðu5Þ. Though the

specific soft-HE conjecture (6.16) is now disproved, we
mention these facts here to emphasize that, under the
present (soft HE) assumption, one can derive 4PM-level
information from a 3PM-level one (similarly to Eq. (7.14)
of [20] which used the ACV result as input information).
Let us now discuss the impact of our alternative con-

jecture, exemplified above by the additional piece (6.53). In
such a scenario, the result (6.60) shows that the dimension-
less coefficient Q3 is no longer a pure number but involves
the logarithm of the dimensionless quantity

δ ¼ GEc:m:

b
¼ G

ffiffiffi
s

p
b

¼HEG
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jðp1:p2Þj

p
b

: ðB15Þ

As we indicated in Sec. VI E above, the corresponding
(∝ G3 lnG) ln δ contribution to Q3 has descended from a
OðG4Þ contribution in the usual finite-mass PM expansion.
We can similarly expect that the higher odd-order coef-
ficientsQ2nþ1 will also involve the logarithm of δ. Note that
we are talking here about logarithmic contributions that
might occur in the scattering angle of classical massless
particles. The analytic structure of the scattering angle of
quantum massless particle might be different, notably if
analyticity requirements forbid the presence of ln s (and
therefore ln α) in χ.

APPENDIX C: ON THE INTERPLAY BETWEEN
THE SF EXPANSION, THE HE BEHAVIOR,

AND THE PM EXPANSION

Let us show how SF theory gives us access to some
structural information about the HE limit of the scattering
angle. We can use a reasoning which generalizes the one
used in Ref. [53] to understand the HE behavior found there
when considering 1SF expanded quantities near the
light ring.
Let us imagine analytically computing the SF expansion

for the total change of momentum of a small-mass particle
(say of mass m1) scattering (at some given impact param-
eter, or with some given angular momentum) on a large-
mass black hole (say of mass m2 ≫ m1). It can be formally
obtained by replacing on the right-hand side of

Δu1μ ¼
1

2

Z þ∞

−∞
∂μgαβðxaÞuαadxβa; ðC1Þ

18I thank Gabriele Veneziano for a useful question concerning
this issue.

19Beware of not confusing the EOB Q potential with the
momentum transfer Q.
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gαβ by gð0Þαβ ðm2Þ þ hαβ (and correlated OðνÞ changes in uαa
and the worldline). Here, the perturbation hαβ of the metric
must be determined by solving the linearized perturbed

Einstein equations [around gð0Þαβ ðm2Þ], say

δGμν

δgαβ
½hαβ� ¼ 8πGm1

Z
uμ1dx

ν
1

δ4ðx − x1ðs1ÞÞffiffiffi
g

p : ðC2Þ

If we consider an ultrarelativistic motion (uμ1 ≫ 1, keeping
the product m1u

μ
1 small) of the small particle, the pertur-

bation hαβ of the metric (which is sourced by m1u
μ
1) will be

proportional to, say, the conserved energy E1 ¼ −m1u
μ
1ξμ

[where ξμ is the time-translation Killing vector of the

background gð0Þαβ ðm2Þ]. A direct consequence of this simple
remark is that the fractional 1SF change in the scattering
angle will be of order OðE1=m2Þ, rather than the naive
estimate Oðm1=m2Þ that holds for particles with velocities
small or comparable to the velocity of light. In the EOB
formalism, the 1SF effects are described by the linear-in-ν
piece in the mass-shell term Q. The previous reasoning
shows that, when considering the small back-reaction ultra-
relativistic double limit where −uμ1ξμ → ∞, m1 → 0 with
E1 ¼ −m1u

μ
1ξμ fixed but much smaller than m2, i.e., a limit

where one first expands to linear order in ν, and then formally
considers the limit where γ ¼ −ðp1 · p2Þ=ðm1m2Þ≈
E1=m1 → ∞, one will have fractional corrections to χ of
order νγ. In other words, if we define the 1SF contribution to
the scattering function χðγ; j; νÞ by writing

χðγ; j; νÞ ¼ χSchwðγ; jÞ þ νχ1SFðγ; jÞ þOðν2Þ; ðC3Þ

we expect the ratio χ1SFðγ; jÞ=γ to have a finite limit as
γ → ∞, when keeping fixed the impact parameter, and
therefore the ratio α≡ γ

j, say

lim
γ→∞

χ1SFðγ; γ=αÞ
2γ

¼ FðαÞ: ðC4Þ

The leading order (LO) contribution to the so-defined
function FðαÞ isOðα2Þ and comes from the 2PM-level term
χ2ðγÞ=ðhðγ; νÞj2Þ in the PM expansion of 1

2
χðγ; j; νÞ,

1

2
χðγ; j; νÞ ¼ χSchw1 ðγÞ

j
þ χSchw2 ðγÞ
hðγ; νÞj2 þ… ðC5Þ

when expanding 1=hðγ; νÞ ¼ 1 − νðγ − 1Þ þOðν2Þ.
The limiting behavior (C4) would directly follow from

the first conjecture made above, namely a tame HE
behavior. Indeed, we have proven above that the PM
expansion coefficients χnðγ; νÞ and qnðγ; νÞ had a restricted
dependence on the symmetric mass ratio ν described
through the interplay of some γ-dependent building blocks

χ̂ðpÞn ðγÞ and q̂ðpÞn ðγÞ with some powers of the function
hðγ; νÞ. More precisely, we obtained formulas of the
following form

χnðγ; νÞ ¼
χ̂ðn−1Þn ðγÞ
hn−1ðγ; νÞ þ

χ̂ðn−3Þn ðγÞ
hn−3ðγ; νÞ þ � � � ðC6Þ

or

χnðγ; νÞ − χSchwn ðγÞ ¼ χ̂ðn−1Þn ðγÞ
�

1

hn−1ðγ; νÞ − 1

�

þ χ̂ðn−3Þn ðγÞ
�

1

hn−3ðγ; νÞ − 1

�
þ � � �

ðC7Þ

and

q2ðγ; νÞ ¼ q̂ð1Þ2 ðγÞ
�
1 −

1

hðγ; νÞ
�
;

q3ðγ; νÞ ¼ q̂ð1Þ3 ðγÞ
�
1 −

1

hðγ; νÞ
�
þ q̂ð2Þ3 ðγÞ

�
1 −

1

h2ðγ; νÞ
�
;

q4ðγ; νÞ ¼ q̂ð1Þ4 ðγÞ
�
1 −

1

hðγ; νÞ
�
þ q̂ð2Þ4 ðγÞ

�
1 −

1

h2ðγ; νÞ
�

þ q̂ð3Þ4 ðγÞ
�
1 −

1

h3ðγ; νÞ
�
: ðC8Þ

The conjecture of a tame HE behavior would be related to

assuming that the building blocks q̂ðpÞn ðγÞ of the EOB
potentials have a uniform HE behavior of the type

q̂ðpÞn ðγÞ∼HEγ2: ðC9Þ

This behavior holds for the building blocks q̂ð1Þ2 ðγÞ, q̂ð1Þ3 ðγÞ
entering the first two PM contributions, namely

q̂ð1Þ2 ðγÞ ¼ 3

2
ð5γ2 − 1Þ; ðC10Þ

q̂ð1Þ3 ðγÞ ¼ −
2γ2 − 1

γ2 − 1
q̂ð1Þ2 ðγÞ ¼ −

3

2

ð2γ2 − 1Þð5γ2 − 1Þ
γ2 − 1

:

ðC11Þ

In addition, our first conjecture, Eq. (6.16), for modifying
the 3PM dynamics by softening its HE behavior, would
imply that the same behavior holds for the other 3PM-level

function q̂ð2Þ3 ðγÞ (which is essentially a different notation for
the function denoted CðγÞ in Eq. (3.62)).
When transcribed in terms of the related building blocks

χ̂ðpÞn ðγÞ, one finds that the general conjectural HE behavior
(C9) would imply the following uniform HE behavior
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χ̂ðpÞn ðγÞ∼HEγn: ðC12Þ

In turn, when inserting the HE behavior (C12) in the
SF expansion of Eq. (C7) (with 1=hpðγ; νÞ ¼ 1−
pνðγ − 1Þ þOðν2Þ), we find that the 1SF contribution to
each coefficient χnðγ; νÞ, defined as,

χnðγ; νÞ ¼ χSchwn ðγÞ þ νχ1SFn ðγÞ þOðν2Þ; ðC13Þ

would then behave as

χ1SFn ðγÞ ∼ γnþ1 as γ → ∞: ðC14Þ

Finally, the latter HE behavior would be consistent with the
existence of the limiting function FðαÞ, (C4), if we assume
(as holds within our presently assumed soft HE behavior)
that the HE limit (γ → ∞) commutes with the PM
expansion (i.e., the expansion in powers of 1=j defining
the various coefficients χnðγ; νÞ). Furthermore the HE
behavior (C14) is directly related to (C9), which predicts
that the 1SF expansion of the mass-shell potential Q would

be compatible, at each separate PM order, with the HE
behavior found in Ref. [53], namely the existence of a finite

limit for the ratio Q̂nPM 1SF

γ3
when γ → ∞.

Summarizing: the conjectural scalings, Eqs. (C9),
(C12), (C14), (based on the assumption of a tame HE
behavior at each PM order) have been presented here as a
simple way to transcribe within PM gravity the (independ-
ently derived) SF results, Eqs. (C3), (C4). However, the
recent disproof [78–80] of our (first conjectured) HE-soft
3PM dynamics, Eq. (6.16), shows that our search for a
unified understanding of the interplay between the SF
expansion, the HE behavior and the PM expansion must be
done within a wider framework. We have exemplified
above, in Eq. (6.54), that another type of conjecture might
reconcile the SF result of Ref. [53] with the logarithmically
untameHE behavior of the 3PMdynamics of Refs. [24,25].
We leave to future work a discussion of how the interplay
between the various noncommuting limits ν → 0, γ → ∞,
and G → 0 might work when using similar structures at
higher PM orders.
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