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Using the new methodology introduced in a recent paper [D. Bini, T. Damour, and A. Geralico, Phys.
Rev. Lett. 123, 231104 (2019)], we present the details of the computation of the conservative dynamics of
gravitationally interacting binary systems at the fifth post-Newtonian (SPN) level, together with its
extension at the fifth-and-a-half post-Newtonian level. We present also the sixth post-Newtonian (6PN)
contribution to the third-post-Minkowskian (3PM) dynamics. Our strategy combines several theoretical
formalisms: post-Newtonian, post-Minkowskian, multipolar-post-Minkowskian, gravitational self-force,
effective one-body, and Delaunay averaging. We determine the full functional structure of the 5PN
Hamiltonian (which involves 95 nonzero numerical coefficients), except for two undetermined coefficients
proportional to the cube of the symmetric mass ratio, and to the fifth and sixth power of the gravitational
constant, G. We present not only the 5SPN-accurate, 3PM contribution to the scattering angle but also its
6PN-accurate generalization. Both results agree with the corresponding truncations of the recent 3PM result
of Bern et al. [Z. Bern, C. Cheung, R. Roiban, C. H. Shen, M. P. Solon, and M. Zeng, Phys. Rev. Lett. 122,
201603 (2019)]. We also compute the SPN-accurate, fourth-post-Minkowskian (4PM) contribution to the
scattering angle, including its nonlocal contribution, thereby offering checks for future 4PM calculations.
We point out a remarkable hidden simplicity of the gauge-invariant functional relation between the radial

action and the effective-one-body energy and angular momentum.
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I. INTRODUCTION

The main tool used up to now for the theoretical
description of the general relativistic dynamics of a two-
body system is the post-Newtonian (PN) formalism [1,2]. It
encodes the corrections to the Newtonian Hamiltonian due
to the weak-field, slow-motion, and small-retardation
interaction between the bodies, expressed as a power series
in inverse powers of the speed of light c. The PN knowl-
edge of the conservative dynamics must then be completed
by an analytical description of the gravitational wave
emission and backreaction. The main analytical technique
currently used for the latter task is the (PN-matched [3-7])
multipolar-post-Minkowskian (MPM) formalism [8].

The present status of PN knowledge is the 4PN accuracy,
corresponding to O(1/c®) fractional corrections to the
Newtonian Hamiltonian. A conceptually (and technically)
important new feature of the 4PN Hamiltonian is the
presence of a nonlocal-in-time interaction due to tail-
transported large-time-separation correlations [3]. The
current direct perturbative computations of the 4PN-level
reduced action [9-16] have succeeded in tackling this time-
nonlocality issue in various ways. However, this variety of
approaches, which included discrepant intermediate results
[11] before complete agreement was reached, shows that
straightforward perturbative PN computations have reached
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their limit of easily verifiable reliability. This clearly
implies that any nPN computation, with n > 5, is signifi-
cantly more challenging than lower-order ones. Let us note
in this respect that the recent SPN-level works [17,18]
based on using the standard PN expansion have computed
only the small, and non-gauge-invariant, subset of “static”
contributions to the SPN Hamiltonian.

The present status of complete MPM knowledge of the
gravitational wave emission is the 3.5PN level (see,
however, Ref. [19] for recent significant progress at the
4PN level). The MPM formalism led to the discovery of
(tail-transported) nonlocal dynamical correlations at the
4PN level [3] (later discussed within a different perspective
in Refs. [20-22]). When projected on the conservative
(time-symmetric) dynamics, the 4PN tail effects lead to a
nonlocal action [9-15]. Here, we shall make use of the
S5PN-accurate generalization of the latter tail-related action,
first obtained by using results of the MPM formalism in
Sec. IXA of Ref. [23] and recently discussed within a
different perspective in Ref. [24] (see also Ref. [25]). Note
that the MPM formalism is used here both to discuss tail-
transported correlations and to control the needed PN-
corrected multipole moments.

In view of this situation, we have recently introduced
[26] a new strategy for computing the conservative
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two-body dynamics to higher PN orders. This strategy
combines information from different formalisms besides
the PN and MPM ones, namely, gravitational self-force
(SF) theory (see, e.g., Ref. [27] for a recent review), post-
Minkowskian (PM) theory (see, e.g., Ref. [28-31] for latest
achievements), effective one-body (EOB) theory [32,33],
and Delaunay averaging [34]. The SF formalism has
previously allowed the computation of several gauge-
invariant quantities (redshift factor, gyroscope precession
angle, etc.) at very high PN orders, but its validity is limited
to small values of the mass ratio between the bodies (and to
the first order up to now). SF computations do not
distinguish local from nonlocal parts of the various quan-
tities and give results that include both parts. The PM
formalism is a weak-field expansion in powers of the
gravitational constant G, which does not make any slow-
motion assumption. An explicit spacetime metric associ-
ated with a two-body system was computed at the 2PM
approximation in the 1980s [35]. The corresponding 2PM-
accurate equations of motion (and scattering angle) were
computed at the time [35-37]. A corresponding 2PM-
accurate Hamiltonian was computed recently [28] (see also
Ref. [38]). A recent breakthrough work of Bern ef al
[29,31] has deduced a 3PM-accurate [O(G?)] scattering
angle (and Hamiltonian) from a two-loop quantum scatter-
ing amplitude computation. No other complete 3PM
calculation exists at present. As we explain below, one
consequence of our new strategy is to allow for a 3PM-
complete computation of the scattering angle at the PN
accuracy at which we implement our method. We give here
the details of our SPN-accurate implementation, include its
5.5PN generalization, and we will also mention the result of
a recent 6PN extension of our method [39]. Our results
provide a 6PN-level confirmation of the O(G?) scattering
angle of Refs. [29,31]. A similar confirmation was inde-
pendently recently obtained, within a different approach,
in Ref. [40].

Combining PN, SF, and PM information is efficiently
done within the EOB formalism, which condenses any
available analytical information (including nonlocal infor-
mation) into a few gauge-fixed potentials. See, for example,
the EOB formulation of the full (nonlocal) 4PN dynamics
in Ref. [23]. We shall use below the EOB formalism as a
convenient common language for extracting and comparing
the gauge-invariant information contained in various other
formalisms.

Here, we detail the application of our new strategy to the
5PN level. Essentially, we complete the SPN-accurate (tail-
related) nonlocal part of the action by constructing a
complementary SPN-accurate local Hamiltonian. The latter
local Hamiltonian is obtained, modulo two undetermined
coefficients, by combining the result of a new SF compu-
tation to sixth order in eccentricity with a general result
within EOB-PM theory concerning the mass-ratio depend-
ence of the scattering angle [41]. The transcription of the

SF result into dynamical information is obtained by
combining the first law of binary dynamics [42—44] with
the EOB formalism.

In principle, our method can be extended to higher PN
orders. We have recently been able to extend it to the next
two PN levels, namely, the 5.5PN and 6PN levels. We
present below our computation of the 5.5PN Hamiltonian.
Our results extend previous studies of 5.5PN effects
[45-47] and do not rely on SF computations but on the
5.5PN conservative action obtained in Ref. [23]. We also
cite below the O(G?) consequences of the recent extension
of our strategy to the 6PN level [39].

Note that, at each PN order, our strategy leaves unde-
termined a relatively small number of coefficients multi-
plying the cube of the symmetric mass ratio v [defined in
Eq. (1.1) below]. (On the other hand, we can determine
many other coefficients entering the Hamiltonian multi-
plied by higher powers of v.) Computing these missing
coefficients presents a challenge that must be tackled by a
complementary method. However, we wish to stress that
our present SPN-accurate results (as well as their 5.5PN and
6PN extensions) are complete at the 3PM and 4PM levels.
In other words, all the terms O(G?) and O(G*) in the
Hamiltonian are fully derived by our method at the PN
accuracy of its implementation. It is this property which
allows us to probe the recent 3PM result of Refs. [29,31] at
the 6PN level and to make predictions about the 4PM
dynamics.

We denote the masses of the two bodies as m; and m,.
We then define the reduced mass of the system up=
mym,/(my + m,), the total mass M = m; + m,, and the
symmetric mass ratio

Ko iy
M (my+my)?

(1.1)

V=

We use a mostly plus signature. Depending on the context,
we shall sometimes keep all G’s and ¢’s and sometimes set
them (especially ¢) to 1. Beware also that it is often
convenient to work with dimensionless rescaled quantities,
such as radial distance, momenta, Hamiltonian, orbital
frequency, etc.

To help the reader to follow the logic of our strategy, let
us sketch the plan of our paper. Working in harmonic
coordinates, we first compute the SPN-accurate nonlocal
part of the action.! We then consider an ellipticlike bound-
state motion and take the (Delaunay) time average of the
associated nonlocal, harmonic-coordinates (labeled by
an &) Hamiltonian

1
(SHPNASPNRY 7{ SHYPNESPND (g (1.2)

nonloc f dlh nonloc

"It will be convenient to introduce some additional flexibility
in the definition of the nonlocal action. For simplicity, we do not
mention this technical detail here.
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In this way, we get a gauge-invariant function of two orbital
parameters. When computing (SH**NPND) "Eq (1.2), it is

nonloc
convenient to use as orbital parameters some harmonic-
coordinates semimajor axis a” and eccentricity el
However, these are known functions (given below) of
the energy and angular momentum.

Let us note from the start that, when working with some
specific spacetime coordinates, we will indicate this coor-
dinate choice by adding an extra label to all the quantities
describing the corresponding two-body (relative) motion. For
example, (¢,r",6", ¢") denote the harmonic spherical-
coordinate system, whereas (¢, ¢, ¢, ¢¢) denote the effec-
tive-one-body spherical-coordinate system. Correspondingly,
the quasi-Keplerian parametric representation of the motion is
expressed, in each coordinate system, in terms of some
(coordinate-dependent) parameters, such as eccentricity,
semimajor axis, etc. We then add on such quantities an extra
label specifying the chosen coordinate system; e.g., a! and e
are harmonic coordinate—based semimajor axis and eccen-
tricity, and a¢ and e¢ are effective one body coordinate—based
semimajor axis and eccentricity. However, when working
within a section devoted to a particular coordinate choice, we
will sometimes skip the coordinate-label notation when the
context makes it clear what is the underlying coordinate
choice. Anyway, let us emphasize that all our final results are
coordinate invariant and that we provide the necessary
relations to express them in terms of the (center-of-mass)
energy and angular momentum of the binary system.

Next, parametrizing with unknown coefficients the non-
local part of the Hamiltonian expressed in EOB coordinates
(labeled with “e,” instead of “h”), we compute the corre-
sponding Delaunay average

<5H4PN+5PN5>: 1 j{H4PN+5PNe(t) (1.3)

eob,nonloc f dte eob,nonloc

Identifying the two Delaunay averages (when using the
1PN-accurate relation between the harmonic-coordinates
orbital parameters a’,e and the corresponding EOB
parameters a¢, e¢) then determines the unknown coeffi-
cients used to parametrize the SPN nonlocal part of the
EOB Hamiltonian.

Having in hand the latter SPN-accurate nonlocal part of
the EOB Hamiltonian, we then determine the complemen-
tary SPN-accurate local part of the EOB Hamiltonian. This is
done by using SF information about small-eccentricity
ellipticlike motions. Namely, we first compute the averaged
redshift factor [48] to the sixth order in eccentricity. We had
to generalize to the sixth order previous results that extended
only to the fourth order in eccentricity [49,50]. To relieve the
tedium, we relegated some of our derivations and results to
Appendixes. We notably list in Appendix A the result of our
SF computation of the (averaged) redshift factor along
eccentric orbits in the Schwarzschild spacetime (accurate

to the 9.5PN level) and its conversion into the EOB potential
qe through the first law of eccentric binaries [44].

This determines the sum of the local and the non-
local EOB Hamiltonian, but only at the second order
in the symmetric mass ratio v. [Here, we are talking about
the unrescaled Hamiltonian, such that the test-particle
Hamiltonian is O(v).] Subtracting the above-determined
nonlocal EOB Hamiltonian determines the local part of the
EOB Hamiltonian up to O(¢?) included [corresponding to
an O(v) knowledge of the potentials entering the effective
EOB Hamiltonian].

Reference [41] has recently uncovered a simple property
of the v-dependence of the scattering angle for hyperbolic
encounters. This property plays a crucial role in allowing us
to complete the previously discussed O(rv?) SF-based
knowledge of the Hamiltonian and to determine most of
the O(v">3) contributions to the Hamiltonian. To use the
result of Ref. [41] (which concerns the structure of the total
scattering angle y'° = y10¢ 4 ynonloc) two separate steps are
needed. On the one hand, we need to compute the nonlocal
contribution y"°"°¢ to the scattering angle by generalizing
the technique used at 4PN in Ref. [51]. On the other hand, it
is convenient, in order to separately compute the local
contribution y'°° to the scattering angle, to convert the local
EOB Hamiltonian, so far obtained in the standard p, gauge
[33], into the so-called energy gauge [28]. Indeed, the latter
gauge is more convenient for discussing hyperboliclike
scattering motions. The computation of the total scattering
angle y'° = y10¢ 4 ynonloc “tooether with the knowledge of
the exact 2PM EOB Hamiltonian, then allows us to fix most
of the parametrizing coefficients of the EOB potentials

[actually, all coefficients with two exceptions only: c_z'g2 and

a2, i.e., the O(1?) coefficients of the local potentials D and
A at 5PN]J.

Besides the results just summarized (which constitute the
core of the present work), let us highlight other new results
obtained below as byproducts of our computations:

(1) We have evaluated the averaged value of the 5.5PN
Hamiltonian. It is entirely given by the (scale-
independent) second-order-in-tail nonlocal Hamil-
tonian H 2, from which we have computed the
half-PN-order coefficients Ags, Dss, q445. 9635
and gg,s. The last one, gg,s, is new and a
prediction for future SF calculations (see Sec. VI).

(2) We have shown how to use an (inverse) Abel
transform to compute in closed form the standard
p,-gauge version of the 2PM energy-gauge EOB
potential g,gg (see Appendix B).

(3) We have explicitly computed the local contribution
to the SPN radial action, as well as the corresponding
local Delaunay Hamiltonian (i.e., the local Hamil-
tonian expressed in terms of action variables). We
find that the radial action has a remarkably simple
structure. See Sec. XIII.
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I1. SPN-ACCURATE NONLOCAL ACTION AND ITS
ASSOCIATED HAMILTONIAN

The complete, reduced two-body conservative action
(Siot) can be decomposed, at any given PN accuracy, by
using the PN-matched [3-7] MPM formalism [8], in two
separate pieces: a nonlocal-in-time part (S,,q10.) and a local-
in-time part (S),.),

S<nPN

<nPN <nPN
tot S + S

loc.f nonloc,f*

(2.1)

Here, each action piece is a time-symmetric functional of
the worldlines of the two bodies, say, x;(s;) and x,(s,).
The original total action S[x(s;),x,(s,)] (before
approximating it at some PN accuracy) is defined as a
PM-expanded Fokker action [52]. The PN-truncated non-
local action Sfo’iﬁyc,f (which starts at the 4PN level [3,9]) is
defined by using the MPM formalism. Its SPN-accurate
value was first obtained in Sec. IXA of Ref. [23] (based on
the effective action used in Ref. [53]). It was recently
derived in a different (though related) way in Ref. [24]. (See
also Refs. [42,54] for the related SPN logarithmic terms and
Ref. [25] for higher-order tail-related logarithms.) From
Eq. (9.12) of Ref. [23], it reads

oM / diPf,
1
dl spht /
| ‘- 1PN )

Here, M denotes the total Arnowitt-Deser-Misner
(ADM) conserved mass energy of the binary system, while

Sﬁ:)rrfllgyf[xl (81),x2(52)]

(2.2)

FU(t, 1) is the time-split version of the fractionally 1PN-
accurate gravitational wave energy flux emitted by the
system, namely,

spli G (1 ;3 3 1 4 4
R0 =5 (G010 + 1o )

16
+—J<3)<r>fi3;<r'>),

5 (2.3)

where the superscript in parentheses denotes repeated time

derivatives. The specific choice of the timescale 21, (¢)/c
entering the partie finie (Pf) operation used in the defi-
nition of the nonlocal action, Eq. (2.2) (whose integral
over ¢’ is logarithmically divergent when ¢ — ¢), will be
discussed below.

The quantities 7, 14, and J,;, entering Eq. (2.3) are the
MPM-derived Blanchet-Damour-Iyer mass and spin multi-
pole moments defined by suitable integrals over the stress-
energy tensor of the source [4,5]. Their (center-of-mass,
harmonic coordinates) expressions for a binary system read’
(see Egs. (3.32) and (3.33) of Ref. [55])

’In the present work, the 1PN fractional accuracy is only
needed for /;;.

29 (5-8) GM
L = uriy |14+ -2 (1= 30)02 — “7
ij = M) +42 5 ( )v 72 ,
-3y ,
s P12V )+ ).
Iijk =puvl-— 4l/r(ijk)’
= puV 1 —dvey v, (2:4)
with Mv/1 —4v = m, — m; and
3
Flijk) = Tijk =57 28(ijT k-
€xil v = (rx v)(l.rj), (2.5)
where the standard notations AY%- = ATAJAX ... for tenso-

= % (S + S/ for the symmetric part of a
tensor, and S for the symmetric and trace-free part of a
tensor have been used.

As stated above, Eq. (2.2) defines (for any choice of r’: 5)
an explicit functional of the two worldlines. Subtracting it
from the (in principle PM-computable) total action S
defines the corresponding local-in-time contribution SfoscptN
to the two-body dynamics. There is some flexibility in the

choice of the timescale 21“’;2 /c entering the Pf operation
used in Eq. (2.2). Let us first point out that the meaning here
of S}, (and its corresponding H,,.) differs from the one in
Refs. [23,51], where the timescale entering the partie finie
defining S, ,n0c Was taken to be a fixed scale 2s/c. The
explicit results of Ref. [23] show that, with such a choice,
the 4PN-accurate local Hamiltonian H,,. then includes
several terms proportional to the logarithm In(r,/s).
Choosing as length scale s the radial distance r|, between
the two bodies has therefore the technical advantage of
simplifying the local part of the Hamiltonian by removing
all logarithms from it. At the 4PN level, a Newtonian-
accurate definition of the radial distance ry, is adequate.
However, as we are now working at a higher PN accuracy,

we need to define the timescale 2}“’:2 /c with at least 1PN
fractional accuracy. Let us emphasize that the choice of any

rial products, (/)

precise definition of r{z is purely conventional, and will
affect in no way the end results of our methodology. Indeed,

<nPN

the total action St + ng‘rﬁoNc,f will always be defined so

as to be independent of the flexibility in the definition of
r{ »- Only the separation between Sy, ¢ and S;p0c.r depends
on this flexibility. Though it would be perfectly acceptable
(and would lead, when consistently used, to the same final
results) to use everywhere the harmonic-coordinate radial
distance 7, as the length scale, we shall show here that
there are some technical advantages to employing a more
general scale of the general form

= f(Ori (1), (2.6)

r(z(t)
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where f(t) =14 O(<%) is a combination of dynamical
variables of the type

. 2 2 GM
f(l):1+Cl(p—> +Cz(£> +C3—2+
HC HC rc

A convenient criterion for choosing the (SPN-level) flex-
ibility parameter f(z) will be discussed below. It will imply,
in particular, the fact that the dimensionless coefficients
C1, €, €3, ... entering the definition of f(#) are proportional
to the symmetric mass ratio v.

: : o 45PN
It is convenient to rewrite S~

(2.7)

as

suay = - [aoHgING 8
and to rewrite SHy MY (1) as
SHogmoor (1) = OHpoioon + ATMH (1), (2.9)
where
G’H dr i
SHLIN0 = =T Py [ A+ e)
G*H i (1
- 27f?;};§(t, £)In <”2T()> (2.10)
and
G’H i
AH() = 2 SR A (W). @1)

Here, Fou (1, 1) = FSW.(1) is the instantaneous gravita-
tional wave energy flux so that the flexibility term
APH(#) is a purely local additional contribution to
OH oniocn- In the following, we will keep indicating by a
label f or i nonlocal (or local) contributions that depend on

choosing as partie finie scale 2r1,/c or 2t /c.

We now compute the time average of SHy i ()
along an ellipticlike bound-state motion, using its well-
known (harmonic coordinates) 1PN-accurate quasi-

Keplerian parametrization [56], i.e.,

(SHATSPN ) — ! f&HmPN (t)ydt.  (2.12)

nonloc,h/ — j;dl nonloc,h

The quasi-Keplerian parametrization of the orbit (needed at
the 1PN level of accuracy for the purposes of the present
paper) is summarized in Table I. The functional relations
shown there are also valid at 1PN in ADM coordinates
[which start differing only at 2PN level from harmonic
coordinates] and in EOB coordinates (with different
numerical values of the orbital elements a, and ¢,). See
Ref. [57] for the 2PN generalization of the quasi-Keplerian
parametrization.

TABLE 1. Quasi-Keplerian representation of the 1PN motion
(valid both in harmonic and EOB coordinates with e, = ¢5°°™,
etc). Here, n = 2z/P (with P the radial period) and K = ®/2x
(periastron advance) are gauge invariant, while the various
eccentricity parameters, e;, e,, and €y and the semimajor axis,
a,, are coordinate dependent; u denotes here the eccentric
anomaly (not to be confused with the inverse radial variable
used below in various EOB potentials). We employ here mass-

rescaled radial variables: r = " /(GM), a, = a®™*/(GM).

n(t—ty) =¢=u—e;sinu
r=a,(1—e.,cosu)

.. __ nae.sinu

r= l—e, cosu

¢ — ¢y = 2K arctan [(t:j)l/z tan4]
(}5 =nK V1

(1—e, cosu)(1—ey cos u)

I—e b -

J/— ¢ Q — =0

tany = 4 [y, tan 7, o=

sinu = RVARALL] cos u = 0+
u= l+eycosh ° u= [y

The temporal average is conveniently transformed as an
integral over the azimuthal angle, namely,

n 2z/n
SHM) = — SH"dt
oty = [

n 22K SH" N

i)y B
K [ 5H" _

R d@h,  (2.13)
2 Jo ¢ l@-gp—xi

where ¢ = (¢" — ¢lt)/K (see the caption of Table I for the
definition of the various orbital parameters). The result of
the average is a gauge-invariant function (say, F) of a set of
independent orbital parameters. The latter are chosen here
to be the (harmonic-coordinates) semimajor axis a/ and
eccentricity ef, so that

(6H") = (6Hpoioe ) = F''(al,ef),  (2.14)
with
2
14
P at.ef) = s A el) + BN (el Ina]
2
+ 2 [ASN(eh) 4 BN (eh) Inah). (2.15)

(a7)°

The expansion in powers of e of the coefficients para-
metrizing F"*(al', e}') are listed in Table II up to the order
O((eM)'%) included. (We use here G =1 = ¢.)

Let us also mention that the average of the f-related
contribution [with the parametrization (2.7)], Eq. (2.11), to

the nonlocal Hamiltonian starts at the SPN order and reads
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TABLE II.

Coefficients of the averaged nonlocal Hamiltonian (with scale 2r%,/c) in harmonic coordinates.

Coefficient

Expression

AN (h) BIn(2) + &y + (1338

(299661 (2) 2681

236, 176 4 1V1n(3) +
'3851 In(3) + 242}/)(6,)

+391n(2))(et)

+ 9531251n( )+1526 +4196611n(3) 9(1)(§(1)7 1167221 ( ))(e;z)ﬁ

4608

G5
( 605 __ 83984375 In
(=

4697998651 ln( ) 138733913079 ]n(3) + 678223072849 In (7)

320

30262;48”53 + 53?;301 111(2) + 263;2309 111( ))(8?)8
18541327

54000

+++

442368
B4PN(efl) 32 _ 628 ( )

5715
AN (eh)

+ 47

105 105

(16502161
945

+++

T 24192

S8 112y,
11900524 57284 o ( 94041 27702 10672 _ 1364
( 15 l/)ln( )+( 70 )]n(3)+( 35 3 IJ)}/
( 599911 +3476231 )ln(z) +( 303993
14003 22411/)}, + 39756 59756
7'4238195299 )]n( ) + ( 709859624'5 + 23153769) 1n(3)
434140625 + 162109;75 )ln(s) + ( 20027 v+ 17797) + 47?253 v—

6409]79 )1H(2)+(

2048000 18432000 9600

18736%28125111(5)+114807y)( hy10
121(ef)* =78 (e)° = 32 (ef)® -

2?3;64_912 )111(2) +( 4%61/_'_243) ln(3) +3521J 96

111468(;)7 (e?)lo

5441 4 4072 4672 ](6‘?)2

7896 62161826071 v)In(3) +

1160639}(et )

9765625 9765655
o2 ”+ “oees) In(5)

M] (eh)é
2520 t
18879921207 4+ 237686858217 u) ln(3)

10080
843248046875

o

25425078125) 111(5)

163840 286720
(96889010407 __ 96889010407 l/) 111(7)

1548288
356481

+

61285 l/)
(189246461867

6193152
168508293 | 2591779 h\8
+ =g ()

990620463289 I/) ln(2) + (2103914638719 _

884736 221184

8960 144
95555936957967 l/) In (3)

126000

108000

14336000 28672000

1032192

+ + +

__ 4794867

[
[
(55
[
(=
[( 604746629+4]6
(=
(55
[
(

68322265625 | 2431021484375 455281459902493
+ = easa~v) In(5) + (

_ 11520188079967) 1[1(7)

110592000 18432000

(2035 869

BSPN (eiz) 5180554 _|_

+(61§85 3522181)(6

255777929
80 o0 L)Y +

v+ (682 + 5336)( ) + ( 14003
)8 + (4794867

s~ ety
241 )( )4

o 20?2869) ( h ) 10

(20027 1717097 (e?)é

2

1 V- |64
= §(02+C3)

fdthf hH(1)dt

14
+ —5(134C1 + 1341C3 + 2137C2)€t6

23

S0 (208¢; +2961c + 1729¢3)el”

The functional dependence on the orbital parameters a’

and e" could be replaced by a dependence on the gauge-
invariant energy and angular momentum (see Table III).
Using the known transformation between harmonic and
EOB coordinates [32,33], the relations between the har-
monic-coordinates orbital parameters (af, ') and the cor-

responding EOB-coordinate orbital parameters (a¢,e?)

read (with n =1/c)
v
ef = ef(l +E1’]2>.

The invariant function F" can then be reexpressed in terms
of the corresponding EOB parameters

al = a¢ —n?, (2.17)

Fh(af‘l7et> Fh(ar’et) (218)

8
=+ 6(2296'3 + 126’1 + 3016‘2)6,2

2
+ 5 (1183c5 + 1761c, + 97¢y)ef

7
+ 1(1529c3 + 171c¢; + 2543¢,)ed

+0(e?). (2.16)

|

We list the relations between the various harmonic-
coordinate orbital parameters and the corresponding
EOB-coordinates ones as functions of (rescaled) energy [E=
(H - Mc )/u) and angular momentum (j = J/(Gmm,)]in
Table 111.*

Let us now use the (Delaunay-averaged) 4 + 5PN
information about the nonlocal action contained in
Eq. (2.18) to compute a corresponding (squared, rescaled)
effective nonlocal 4 + 5PN-accurate EOB Hamiltonian,
say,

SIEPNISPN 12 s5fy2

eff,nonloc,h

(2.19)

Throughout the paper, we use several energy-related varia-
bles, E, E, E., etc., which are defined in the sections where they
appear.

024062-6



BINARY DYNAMICS AT THE FIFTH AND FIFTH-AND-A-HALF ...

PHYS. REV. D 102, 024062 (2020)

TABLE IIIl. 1PN quasi-Keplerian orbital parameters (see Table I) as functions of E= (H —M)/u and
j=J/(GM p). We also include the (IPN-truncated) inverse relations, (E, j) vs (a,, e,), because they are often
useful.
Orbital parameter, X Harmonic, X" EOB, X¢
a, e o (1 -52Er)
n (_2E)3/2[1 + IS—DEnZ] (_2E)3/2( + 15—uE )
e {14+ 2BP[1 + (F = J0)En? + S P]} 12 {1+ 2E/[1 ( SLE + S}
e, {1+2Ej [1+( 15+ I/)En +—6+1/ 2]}1/2 {1+2Ej [ (77 _12) 2]}1/2
ey {14+ 2E/2[1 + (-8 +3v)En* - 17}}‘/2 {1+2EP[1+ (5BE-2)r]}?
5, = Z—: (3v-18) _172 —6?12
8y = J 1 (2v — 8)En? —8En?
K L4237 1+ 507

3 3
]f a,(1-¢?) a,(1-e7)
E — =g (i — 3~ 2z (=3 TP
2 44+2(v-3)e Se; =3
j a,(1—e})(1 + 4200 2 a,(1=e})(1 = i)

We recall the (universal) EOB link between the usual
Hamiltonian and the effective one:

Hepy = Mc*\/1 4+ 20(H oy — 1). (2.20)

This is achieved (as at the 4PN level [23]) by para-
metrizing a general squared effective EOB Hamiltonian
(in standard p, gauge [33]) in terms of PN-expanded
EOB potentials A(u), D(u), and Q(u, p,) (where u=

hys .
GM/(*rYs) = n?/r, p, = np?™*/u and p, = j/n):

= (1+2p2+ péuz)éA(u)
+ (1 = 4u)p?sD(u)
=+ (l - 2”)5Q(u’ pr)'

51:1%5(“’ Pr P¢)

(2.21)

Here, the notation 6 refers to the looked-for additional 4 +
5PN nonlocal contribution, and we have written the right-
hand side at the needed 1PN fractional accuracy. The
general parametrization of 5A(u), 6D(u), and 5Q(u, p,)
reads

SA = qionocyS 4 gnonlocy6,

8D = guomocyt - gnonloey,S,

8Q = pH(gigmiocyd + gnonloey )
+ pS( qnonloc 2 4 gnonlocy3)

nonloc

+pr(q8] nonloc 2)+

u+ g3 (2.22)

Here, alonloc = agl‘c + agl‘ln In(u), etc., are a priori
unknown (logarithmically varying) coefficients parametriz-
ing the 4 + 5PN nonlocal EOB Hamiltonian. Here, we have

not indicated any additional label f or &, because the form
of Egs. (2.22) is valid for both cases. It is only when
computing specific values of the greater than or equal to
5PN EOB parameters qionioc, gonloc gnonloc " = that we
will need to specify whether they correspond to the
unflexed & case or to some specified flexed case f.
[0120“loc belongs to the 4PN approximation and does not
depend on the choice of f =1+ O(1/c?).]

When doing explicit computations, one needs to truncate
the p, expansion of 5Q to a finite order. The nth order in p?2
in 5Q corresponds to the nth order in e? when correspond-
ingly computing the redshift 0z;, as we shall do below.

Converting 6H%; into the usual Hamiltonian 6H., is
straightforward,

uM

5H4+5PN
2HeobHeff

eob

SH, (2.23)

as is taking the Delaunay time average over the orbital
motion. As before, the latter average is conveniently done
in terms of an integral over the EOB azimuthal angle by
using Hamilton’s equations to express dt¢ in terms of d¢¢
along the orbit, i.e.,

H.,H
dre = %j@ffd(pe, (2.24)
so that
<5H:;%5PN> /"M nkK Heob.lieff 6Heff d¢e
2HeobHeff 2r J Au
M*nK [ SH>
Y 47[’; / f dge, (2.25)
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where ¢¢ = (¢¢ — ¢¢)/K and the 1PN-accurate expression
for K is given in Table IIL

Let us now focus on the %, version of the nonlocal
action (considered in both harmonic and EOB coordinates).
Correspondingly to what we have done before in harmonic
coordinates, the time average of the above parametrized
EOB nonlocal Hamiltonian provides a function of the EOB
orbital parameters, say,

nonloc,h

445PN
F* . ag yaen).

eob nonloc,h

(at, ef; alomioc (2.26)
This invariant function must coincide with the above-
computed function F"(a¢,e¢), Eq. (2.18), which came
from the original (r,-defined) nonlocal Hamiltonian,
Eq. (2.10). Comparison order by order (in both 1/a¢
and in ef) fixes all the unknown coefficients at 5PN,
besides checking all the (already known [23]) 4PN ones.
The results are of the type

TABLE 1IV. Coefficients of the nonlocal (r#,-scaled) 4 + 5PN
part of the EOB potentials, Eq. (2.22). We suppress the label & for
brevity.

Coefficient Expression
ap'* (27 + 20 (2))
a;ll,ln 65_4 v
—ml,
dy* (—%2 + U8y —&201n(2) + ZLIn(3))y
agl,ln 51952 v
ngc (_ 5608 + 496256 1[1(2) _ 33(5)48 111(3))1/
q35" 0
q2§° (_% _ 235285912111(2) + 139596&37 In(3)
390625 1y 5) )
11
der 0
(13 iy () + 23
+(% -8y +981In(2) - 2ZIn(3))r?
agl.ln _ % U— 14514 1/2
—nl,
< (< Tl — 280, 1 120638 1) _ 19683y (3))
+(6ZS§6 _ %y _ 322?56 In(2) + 58320 In(3))s2
—ml,In _ w _ w 2
ds 5
1, 1007633 10856 40979464
e (35 + 105 7 — a5 In(2)
+ 1422083059% In(3) + 2765625 9765625 In(5))v
_’_(74134536 _ s, %%619035536 In(2) — 639766189 In(3)
_ 97?2225 In(5)) 2
L1 5428 592 2
Qaq Tos V=5V
q213 ¢ (1300084 + 6875745536 In(2) - 23113725628 In(3)
101687500 ln( ))U
160124 _ 4998308864 45409167
+(5%5 1575 In(2) = *=55% In(3)
+ 20171875 | (5) )12
11
o3 0

(2.27)

128 256
= (s

ln(2)> v,

where we decomposed a2 = a2 + 42" In u. They are

listed in Table IV. Note that the nonlocal 4PN coefficients
listed here slightly differ from the corresponding 4PN
coefficients, a"C ..., listed in Ref. [23], because the latter
reference had used a fixed partie finie scale s/c and had
thereby incorporated the effects linked to averaging

I
Fiex(t.0) Inry(1)

in the “local” parts of the (real and EOB) Hamiltonians.

II1. USING SELF-FORCE THEORY TO COMPUTE
THE LOCAL-PLUS-NONLOCAL EOB
HAMILTONIAN, IN STANDARD GAUGE,

AT FIRST ORDER IN v

In this section, we shall use SF theory to compute the
full, local-plus-nonlocal (rescaled effective) EOB
Hamiltonian, at first order in v. [The rescaled effective
EOB Hamiltonian H.y = H ./ being divided by u = vM,
the O(v) contributions to H,g correspond to O(1?) con-
tributions to H, = Mc? + ---.] It is convenient to para-
metrize the full, local-plus-nonlocal dynamics in terms of
the various potentials entering the general form of ﬁ]gff in
standard p, gauge, namely,

He = A(u)(1+ pju® + A(u)D(u)p? + Q(u.p,).  (3.1)

The full knowledge of H.; means the knowledge of the
various potentials: A(u), D(u), and Q(u,p,)=ptq.(u)+
PPas(u)+pigs(u)+p, qio(u)+---. These potentials all
have, at any given PN level, a polynomial structure in
v, and they can be written in the forms

Au) = 1 =2u +va” (u) + v*a” (u) + va” (u) +

(u)

(u) =1 +vd” (u) + 12d” (u) + 2d" (u) +
qs(u) = vy (u) +12q% (u) + ¢4 (u) + ...

(u) = vy (u) + g5 (u) + g5 (u) + ...

(u) = vgy (u) +02q5 (u) +07g5 (u) + ..,

etc. SF theory is an efficient tool for analytically comput-
ing (in principle, at any given PN order) the linear-in-v
pieces of the above EOB potentials, i.c., a* (u) = 2u’+
agut +---, d'(u), ¢4 (u), etc. Indeed, the self-force
computation of the redshift invariant (5z;) [48,58] of a
particle moving along eccentric equatorial orbits in a
perturbed Schwarzschild background, combined with the
first law [42—44], has already allowed one to compute the
linear-in-v pieces of most of the EOB potentials. More
"(u) is known from the redshift of a particle

D(u

qe\U

qg(u) = (3.2)

precisely, a”

024062-8



BINARY DYNAMICS AT THE FIFTH AND FIFTH-AND-A-HALF ...

PHYS. REV. D 102, 024062 (2020)

TABLE V. Coefficients of the 4 + 5PN terms in the linear-in-v
(i.e., 1SF) parts of the EOB potentials, Eq. (3.2). Here, y denotes
Euler’s constant.

Coefficient Expression

T B )+ By
+65—41n(u))u5+(— 1066621+246367 2

31736 4008, 70041 "
17 1 7
— e In(2) =55y — In(u)

105
+21n(3))u’]
VL + B 0) - S In) - 3
34 B2in(u))u 4 (~ 20y — 81n(3)
+ 122248 111(2) _ 63707 .2 + 294464

i 512 175
— X (u))w’]

y[(492§56 In(2) 33(5)48 In(3) — %)us

10856 ,, _ 40979464 14203593
+(os 7 315 In(2) + 25571n(3)
93031 12 4 1295219

9765625
+55=1In(5) — 5536 350

+3Gs In(u))u?]

I/[(— 2358912 111(2) + 1399437 1n(3) + 390625 ln(S)

25 50 18
—%)Lﬁ + (_ 101?2;500 1[1(5) 4 6872;4212536 ln(Z)
+ 26110350083 _ 23113725628 111(3))1/{3}

1
v
Va,pNyspN

=1
v
vdipn i spN

1
v
V44 4pN+5PN

1
2
V46 4pN+5PN

moving along a circular orbit, whereas @* (u), ¢4 (u),
qgl (u), etc., are known from the averaged redshift invari-
ant (5z;) of a particle moving along a (bound) eccentric
orbit at successive orders in an expansion in powers of the
eccentricity

(62)) = 8z’ + €26z + %625’ + %62 + O(e®).  (3.3)
d”' (u) follows from 6sz, ¢4 (u) follows from 5z‘f4, ¢4 (u)
follows from 5276, etc. The current self-force analytical
knowledge of (6z;) is limited at order O(e*). For the
purpose of the present work, it was necessary to extend
this knowledge to O(e®). We have used SF theory to
compute high-PN expressions for 52?6, and correspond-
ingly qgl (u). We present in Appendix A our newly derived
complete expression for 6zf6 up to 9.5PN as well as its
transcription into the EOB potential qgl (u). The known SF
|

expressions for the other potentials can be found in the
literature (see Refs. [45,49,50,59]). We list in Table V the

4 + 5PN contributions to a*' (u), @' (u), ¢4 (u), and g% (u).

IV. OBTAINING THE 5PN-ACCURATE LOCAL
EOB HAMILTONIAN AT LINEAR ORDER IN v

In the previous section, we used SF theory to derive the
linear-in-v local-plus-nonlocal EOB potentials. Subtracting
from the latter local-plus-nonlocal potentials, the nonlocal
part of the EOB potentials obtained in Sec. II above allows
us to write down the local part of the EOB potentials at the
first order in v (only). At this stage, the O(v >?2)
contributions to the local EOB potentials are known only
at 4PN, but not beyond. To clarify our knowledge so far, let
us parametrize the v dependence of a generic quantity X (v)
by the notation

X(v)=X"v+XW, (4.1)

where
X0 = X" + XV + XA (4.2)

For example, the local part of the a potential at 5PN (i.e.,
o u®) will be written in the form

1026301
1575

246367 .
+=3073 Uﬂ2+aév}>u6. (4.3)

As indicated here, as we shall always use a flexibility
parameter f(t) — 1 which is at least of order v, and as the
corresponding contribution to the (unrescaled) Hamiltonian
(2.11) involves an extra factor F*l(z, 1) = O(1?), the
effect of the flexibility factor f(¢) on (both) the local
and nonlocal EOB potentials will start at order v [corre-
sponding to O(2?) in the unrescaled Hamiltonian]. Our SF
computation thereby uniquely determines all the linear-in-v
contributions to the local EOB potentials.

Summarizing, the local EOB potentials at 4 + 5PN,
obtained from our (MPM + SF) results so far, have the
following form:

AspN loc,f = <—

2075 , 4237 41, 221\ L] . 1026301 246367 , )
e e N T I N L e L Ll L S T 3072 “7 T s )t
- 1679 23761 123 331054 63707 -(y
diypN+5PN.Joct = [(9 - 536 7r2>1/ + <—260 + 1671'2>l/2:| ut + ( 75 Y~ s vr® + dg}) w,
v 93031 1580641 v
q44PN+5PN,10C.f = (201/ + q4<13>)u3 + <_ 1536 Uﬂz =+ 3150 + q‘(M),f) M4,

(22 e (B3, Ve
q64PN+5PN loc.f = 3 ey |U 10 VT geyp U
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Here, we completed our previous O(v) SF-based results by
including the 4PN-level O(1?) terms previously derived in
Ref. [23].

Note the remarkable fact that the SPN-accurate local
EOB Hamiltonian is logarithm free. Not only have all the
In u terms disappeared (as expected because they have been
known for a long time to be linked to the time nonlocality),
but even the various numerical logarithms In2,In3, ...,
as well as Euler’s constant y have all disappeared.
Only rational numbers and 7>~ {(2) enter this local
Hamiltonian. The expressions above include still undeter-
mined nonlinear-in-v terms in the parametrized form

indicated above, a’}, A%}, ¢ . and g ;. (The 4PN-level

terms ¢\ and g%

written below.)
Note that at the SPN level there is the further term in the
Q potential

are already known and will be

48 5PN loc,f = (qlélzl/ + ‘15(;?)”2 = ggp(V)u?,  (4.5)

which is still undetermined from our SF computation
[because of its limitation to the order O(e®)]. On the other
hand, there is no contribution in the local Hamiltonian of
the type gy0spn.1oc = G10.1(¥)u, because Q' starts at order
G?. Such a term can only enter the nonlocal part of the
Hamiltonian, where it comes from the need to expand the
nonlocal Hamiltonian as a formally infinite series of powers
of p2 [23].

We are going to determine below most of the so far
unknown nonlinear-in-v coefficients by using information
concerning the scattering angle for hyperbolic encounters.
However, to do so, it will be convenient to change the
standard EOB p, gauge used above, into the so-called
energy gauge [28].

V. 5PN LOCAL EOB HAMILTONIAN: FROM THE
STANDARD p, GAUGE TO THE ENERGY GAUGE

In the previous section, we determined, at the linear-in-v
order, the 5PN local EOB Hamiltonian in the standard p,
gauge. We then incorporated the nonlinear-in-v contribu-
tions to the various EOB potentials A, D, and Q in a
parametrized form (still in the standard p, gauge). Let us
start from such a (local, p,-gauge) Hamiltonian, i.e.,

e = A%(1 4+ P2+ ASDp2 + 0, (5.1
with
Alc — [ — 2y + 5A1°C, Dloc — 1 + 5D10C, (52)

and

94 41

5A10C =2 3 —_——

vu’ + v < 3 30

8D = 6vu?® + (52v — 60%)u® + dypxy 5PN Jocs
Q"¢ = pH2(4 = 3v)vu® + q44pN+5PN I0c)

+ P46 4pN1 5PN I0c T P?(qglzy + qubz))uz’

2\, 4
z )M ~ A4PN 5PN loc

(5.3)

depending on the various unknown coefficients aé”), (_ig”),

qgl;), qé”z), qéé), and qé”z). Here, we did not put any explicit

label f or h because the discussion of the present section
applies to both cases.

Let us now show how to transform the above p,-gauge
(local) EOB Hamiltonian, Eq. (5.1), into its energy-gauge
form, i.e., into the post-Schwarzschild (squared) effective
Hamiltonian

Al = H} + (1 — 2u)Qp (1. Hy). (5.4)
where Hg denotes the (rescaled) Schwarzschild
Hamiltonian, i.e., the square root of

H2 = (1=2u)[1 + (1 =2u)p? + ju?].  (5.5)
and where the energy-gauge Q term reads
Or(u, Hg) = u?qopg(Hs) + 1 q3p6(Hg)
+ 1t qupc (Hs) + wqspc(Hs)
+ uﬁqﬁEG(HS) + (56)

Here, a term ¢,z (7)u", being proportional to G”, describes
the nPM approximation. When working within some PN-
approximation scheme, one can only determine a limited
number of terms in the PN expansion (corresponding to an
expansion in powers of p2 =y> —1) of each separate
energy-gauge coefficient ¢,gg(y). We will discuss below
which terms in the pZ expansion of the various q,gg(7)’s
correspond to the SPN level.

The PN expansions of all the energy-gauge coefficients
q.56(7) are determined from the corresponding p,-gauge

coefficients entering the Hamiltonian (notably, the SPN-

level ones aéb), ag”), qé((:‘), q(;z) and qg;)) by computing the
canonical transformation connecting the two gauges. The

structure of this canonical transformation is

024062-10



BINARY DYNAMICS AT THE FIFTH AND FIFTH-AND-A-HALF ...

PHYS. REV. D 102, 024062 (2020)

1 (3 g ]
g(r.p,) = (rp,) = [2" v+ ( + 22 + 3pr>
r r

2

hy  hyj hyj
+”8<r_21+i—‘{+h3 Pt +h5—

h6j2p% 10 n2]
+=a ) r3+ s

4 2 2 4

nyp, n n v NPy
+ 35’ + 4! + 5J3P 6P
T r r

n nei*p? nm
N 75 N 8./4pr+ oJ p’+nlopr>} (5.7)

r r

Here, we have factored out the term (rp,) that corresponds
to the identity transformation, and we have ordered g by
means of the PN-counting paramer 7 = % In addition, we
are using here rescaled coordinates, namely, r =
S /(GM), p, = pi™°/u, and j = p, = p§**/(GM p).
As a consequence, each factor ’;—': beyond the first factor
(rp,) in the canonical transformation (5.7) has to be seen as
containing a factor G”, and therefore to correspond to the
nPM approximation. (When doing this counting, one must
count each factor j = |r x p| as being ~rp « G7!, i.e., use
the equivalence {~ p ~ p,.) In particular, we see that, in

view of the overall prefactor 5 = (9X4)2, the whole canoni-
r r

cal transformation g, Eq. (5.7), starts at the 2PM (G?) level.

Previous work has determined the canonical transforma-
tion g, Eq. (5.7), up to the 4PN level, i.e., O(5®). The 2PN
Gn*v) and 3PN (n°g;) gauge parameters were derived in
Ref. [28], while the 4PN ones (3%h;) were derived in
Appendix A of Ref. [30]. We have extended this determi-
nation to the SPN level, by imposing that the two (effective,
squared) Hamiltonians (5.1) and (5.4) be equivalent (at
5PN accuracy), through this canonical transformation. The
explicit expressions of the SPN coefficients n; will be
displayed later, in their final form, after we determine,
using our strategy, all possible unknowns. However, as we
discuss in the next section, the linear-in-v results of the
previous section suffice, at this stage, to uniquely determine
the 3PM (G®) energy-gauge coefficient gspg(7;v), and
thereby to test the all-PN-orders 3PM result of
Refs. [29,31].

VI. DETERMINATION OF THE 3PM DYNAMICS
UP TO THE 5PN (AND 6PN) LEVELS

Let us show here how the linear-in-v results of Sec. IV
suffice to determine the 3PM (G?) energy-gauge coefficient
q3eG(7; V), and thereby the 3PM scattering angle. This fact
follows from three other facts. First, as explicitly shown in
Ref. [51], the nonlocal part of the Hamiltonian starts
contributing to the scattering angle only at the 4PM (G*)
level. Second, as emphasized in Ref. [41], thanks to the
special v dependence of the scattering angle, the knowledge

of the O(v'") contribution to the scattering angle suffices to
know its exact-in-v value. Third, the local PN-expanded
canonical transformation g, Eq. (5.7), being, at each PN
order, a polynomial in G, cannot decrease the PM order of
any contribution to the Hamiltonian. Putting these facts
together, we conclude that it suffices to determine the linear-
in-v and less than or equal to G* value of ¢ to compute the
exact-in-v value of the 3PM-level energy-gauge coefficient
q3e6(7; V), at the same PN accuracy at which we know the
local linear-in-v, p,-gauge Hamiltonian.

Before discussing the determination of the 3PM coef-
ficient gsgg(y;v), let us recall that the value of the 2PM
coefficient g,pg(y) has been determined to all PN orders,
i.e., as an exact function of y = Hyg, in Ref. [28]. (It was
then checked by other calculations [29,38].) It reads

s -0(1-505

t\.)lu.)

GG (7. v) =

). e

where

h(y;v) =[1 +2u(y — 1))/

We show in Appendix B how one can compute in closed
form the result of transforming the energy-gauge 2PM
Hamiltonian contribution Q&M (u, Hg) = u*@opg(Hy) into
its standard p,-gauge version Q*M(u, p,) = u’q,(p?).
This is achieved by using an Abel transform. Note that
the knowledge of the exact Q"™ will be crucial for the
computation of the SPN-level term gg, pSu?

Let us now come to the value of the 3PM coefficient
q3eG (7, V). The structure of the v-dependence of g3pg(7)
has been shown to depend on the knowledge of two
functions of y, Ay3(y), and B,3(y), namely [29,31,41],

Bys(r) Agp(y) +Bg(y)
h(y;v) R (yiv)

Among the two functions of y entering g3 (y;v), the B3
function is exactly known to be

3272 =157 -1)
2 (-1
Concerning the value of the other 3PM-level function

Ay3(y), PN-based work previous to Ref. [26] had deter-
mined its 4PN-accurate value, namely,

(6.2)

q3e6(r;v) = Ags(y) + (6.3)

Byp(r) = (6:4)

1 37 117
APN(y) = 242 (2= 1)

2 _ 1)2
+Aspn(P2 =1 +Aepen (P —1)* + ... |, (6.5)

where the coefficient —I—% corresponds to the 4PN level
and where the further coefficients Aspy and Agpy,
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respectively, parametrize the SPN and 6PN contributions
that we shall discuss next.

Only one line of work has so far been able to compute
the exact value of the function A3(y), and thereby of
the 3PM coefficient gs;gg(y;v). Namely, the quantum-
amplitude-based computation of Bern ef al. Refs. [29,31]
led to the (partly conjectural) exact expression for the
function A 5 (y)

ABem(y) = B () + S0 (6.6)

with B3 given in Eq. (6.4) and C? given by (see, e.g.,
Eq. (3.69) of Ref. [41])

) 2
CE(y) = 57(14% +25)

dy* — 122 -3

rr—1

+4 arcsinh (

%) (6.7)

The expansion in powers of y*> — 1 of APS™ (describing its
PN expansion) reads

1 37 117
ABern _ 2 = 2_1 -~ 2_1 2
() (yz_l)[Jrz(r )+ 1o =)

219 7079

- _13__ 2 _1\4

20" =1 " 15050

989 ., .

53307 =D +} (6.8)

Let us explain how the results presented in the previous
sections allows us to compute the value of the 5PN
coefficient Aspy and how the recent extension of our method
[39] has also allowed us to compute the 6PN coeffi-
cient Agp.

Comparing the effect of the canonical transformation g,
Eq. (5.7), on the linear-in-v local (p,-gauge) Hamiltonian
given in Sec. IV to the corresponding O(G?)-truncated
energy-gauge Hamiltonian (5.4), with

E(B;PM(%HS) = MZQZEG(HSJJ) + M3Q3EG(HS»V) + 0(G4)
(6.9)

yields enough equations to determine the linear-in-v values
of the 5PN-level coefficients parametrizing the < G* terms
in Eq. (5.7). In view of the overall factor - o G* in g, the
only less than or equal to G, 5PN coefficients are the n;’s
withi =4,5,6,7,8,9, 10. For instance, the value of n, is
determined to be

603
n, =
4= 1120”7

0(A). (6.10)

See below for the linear-in-v values of the remaining 3PM-
level (and 5PN level) gauge parameters n;; i = 4, 5, 6, 7, 8,
9, 10. In addition, this less than or equal to G? determi-
nation of the gauge transformation g also determines the
linear-in-v, 5PN contribution to the 3PM energy-gauge
coefficient g3gg(Hg,v). In turn, as explained above [see
Eq. (6.3)], the linear-in-v value of the 3PM coefficient
q3eg(Hg,v) uniquely determines a corresponding knowl-
edge of the (v-independent) function A 3(y). We thereby
deduced (as already announced in Ref. [26]) from the
results of Sec. IV the value of the SPN-level coefficient

in Aq3 (}’)

219
Aspy = — .
PN 140

(6.11)
in agreement with the result of Bern et al., Eq. (6.8).

Recently, we have been able to extend our computation
to the 6PN level by (i) pushing the computation of the
nonlocal action to the 6PN order and (ii) pushing the SF
redshift computation explained in Sec. III to the eighth
order in eccentricity. This has allowed us to extend the
knowledge of the local Hamiltonian to the 6PN order (see
below for the 5.5PN, purely nonlocal contribution). We
report our complete 6PN results somewhere else [39]. Let
us here only cite the crucial new term allowing us to
compute the 3PM-level, 6PN-accurate coefficient Agpy. It
is the following O(p3u?) contribution to the EOB Q
potential (in p, gauge):

6PN _ [ _
phw = ( 560 ©

Transforming the p,-gauge (3PM-6PN) knowledge of
Eq. (6.12) into its energy-gauge correspondent [by extend-
ing the canonical transformation (5.7) to the 6PN level]
then determines the 6PN-level, linear-in-v contribution to
the 3PM energy-gauge coefficient g3z (Hs, v). Expressing
the latter result in terms of the parametrization, Eq. (6.3)
finally leads to the value

+ 0(1/2)>p§u3. (6.12)

7079

= 1
6PN 10080° (6.13)

for the 6PN term in the function A3(y). This value agrees
with the result of Bern et al., Eq. (6.8).

While we were preparing our work for publication, an
effective-field-theory computation of Bliimlein e al. [40]
reported an independent (purely PN-based*) derivation of
the two coefficients (6.11), (6.13). Reference [41] had tried
to reconcile an apparent tension between the high-energy
limit of the result of Refs. [29,31] and the high-energy

4By contrast with our method which combines several different
approximation schemes.
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behavior of an older SF computation [60] by conjecturing
another value of the function A 3(y), which has a softer
high-energy behavior and which starts to differ from
Eq. (6.8) at the 6PN level. The latter conjecture is now
disproved by the result (6.13). (See, however, Ref. [41], for
other conjectural possibilities for reconciling the results of
Refs. [29,31] and Ref. [60].)

VII. NONLOCAL PART OF THE
SCATTERING ANGLE

Reference [41] has recently pointed out the existence of a
restricted functional dependence of the scattering angle
x(7,j;v) on the symmetric mass ratio v.> This generic
constraint applies to the total (local-plus-nonlocal) scatter-
ing angle. In the present section, we compute the nonlocal
contribution, y,onecr(7, Jj;v), to the scattering angle with
sufficient accuracy to be able to fully exploit the structure
pointed out in Ref. [41]. Let us consider the large-j
expansion of yyonocf (7, jsv), namely (see Ref. [51]),

Al (poo;l/)
Pool

(i)

(where we recall that p2, =y — 1). As we shall see below,
it is enough, for our present SPN accuracy, to compute the
coefficient Ay(p; V) entering the leading order in 1/;. The
difficulty, however, is to compute it at the 1PN fractional
accuracy:  Ag(peosv) = Ao + AP + 01 ps).  As

will become clear, the small expansion parameter ﬁ

4

. VP
Inonloc,f(y’.];y) = ]_4 |:A0(poo;y) +

AZ(poo; l/)
(Peoi)?

+ (7.1)

(which happens to be of Newtonian order, i.e., n°) used
in Eq. (7.1) is equivalent to the inverse of the Newtonian
eccentricity.

To compute the nonlocal contribution, y,gnecr, to the
scattering angle, we extend the strategy used at the leading
PN order in Ref. [51]. It was shown there that

1 10

Zznonlocf(y .] l/) 2 8 (72)

nonloc,f (77 j; V) s

where

Wnonloc,f(yvj;l/) = /dtéHnonloc.f' (73)
Inserting the expression, Eq. (2.9), of 6H o0 ¢ then leads
to expressing W niocr as a sum of three terms, say,

Wnonloc,f — Wsplit flux + Wﬂux + Wf_h, (74)

>Note that it is important here to use the effective EOB energy

y = Eur as an energy argument, besides j = J/(GMu) and
v=pu/M.

where

WSPlitHHX——Gj—SH / diPf,g, / Vfl—ilfj‘;}g(z, 7)., (7.5)
wiws — 4 26°H / diFP(1.1)] <r]1s(’)>, (7.6)

and

Wi +2—/dzf?;}§(t Nin(f(1). (1.7)
To this end, we need to evaluate the split flux, as given in
Eq. (2.3), along hyperbolic orbits at the fractional 1PN
order. We then need (as will be made clear below) to
compute the leading-order term of the expansion of
Woontoe £ (7, J3 ) in the large-j limit, corresponding to a
large-eccentricity limit for the considered hyperbolic orbit.
To evaluate such a large-eccentricity limit, we start from
the 1PN-accurate harmonic-coordinate quasi-Keplerian
parametrization [56] of the hyperbolic motion, namely,

r=a,(e,coshv—1),

¢ =n(t—ty) = e, sinhv—uv,

- - +1

b= ¢ K¢0 =V = 2arctanl ZZ — tanh%], (7.8)

where K = 1 —l— > n* and where the orbital parameters i, a,.,

e,, e;, and e, are the functions of E = (E — Mc?)/u and
Jj listed in Table VI.

As shown in Ref. [56], the hyperbolic representation
(7.8) is an analytic continuation of the corresponding
ellipticlike quasi-Keplerian parametrization.

It is then useful to change the integration variables 7 and ¢
entering the definition of W o into the variables 7' =
tanh v/2and 7" = tanh v'/2, where v and v’ are the variables
entering the quasi-Keplerian representation (7.8). This
operation maps the original integration domain (¢,¢) €
R x R onto the compactdomain (7, T") € [-1,1] x [-1, 1].
It also transforms the singular line t =¢ into 7T =T,
together with a transformation of the constant cutoff |¢' —
t| = 2s/c implied by the Pf operation into a corresponding
T-dependent cutoff (see below).

TABLE VI. Quasi-Keplerian representation [Eq. (7.8)] of the
hyperbolic 1PN motion, in terms of E = (E; — Mc?)/u and j.

il (2E)*?[1 +1(15 - v)En?]

a, =144 (7 —v)En?]

e? 1 +2E72 + E[-Ej2 (=17 + Tv) + 4(1 —v)|n?
e? 1 +2E72 + E[- SEJ( -v) +2(- 6+1/)]112
e 1 +2E/2 + E[-Ej(15—v) — 12]5?
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We succeeded in computing the large-eccentricity limit
of Welitflex = at the leading order in eccentricity but
including the fractional 1PN contribution. Both integrals
in 7" (with Pf) and in T can be performed exactly, within
this limit. Note that during the various computational steps
we take e, as fundamental eccentricity and expand in
powers of a—l’ ~ p2,. Some details follow.

The structure of Fag(T, T') is

2

spli v
Fn(T.T') = 54 [Foo +1°(Fao +vFa1)l,  (7.9)
where, for example,
32 (1=T%)>2(1-T77)?
FooT,T) = — 1,7, 7.10
OO( ) 15 (1 +T2)5(1 +T/2)5 7)00< ) ( )
with
Poo(T.T') = 3(1 = T2)(1 - T7)
X (T* — 4T +1)(T* - 4T> 4+ 1)
+ TT'{37(T"* + 1)(T* + 1)
= 52[TX(T™* + 1) + T*(T* + 1)]
+76T"T?}. (7.11)

Similarly, the expression for the integration measure
dMyy = dtdt' /|t — 1|, at 1PN, transformed in the vari-
ables T, T’ is

|

142
dM(T,T’) = 26,,6_13/2 |:1 —Tyﬂz}
(1+T172)(1+T%)dTdT’

(7.12)

1-12)(1=T)(1+TTT-T'|

at the leading order in a large-eccentricity expansion.
The (PN-expanded) transformed integrand dM g 71y X
F(T,T') is then written as

drdr’

dM . F(T.T') T-T|

=G(T,T')

(7.13)

The original integral was singular at ¢ = 7, i.e., along the
bisecting line of the #—# plane. This singularity line
becomes the bisecting line in the plane T — T”, but endowed
with a T-dependent slit [equivalent to a Pf scale 2f(T)s/c,
where f(T) is identified from the relation d7 = f(T')dt]. In
the large-eccentricity limit, one finds

(1-12)?

IT) = (7.14)

n
2e,
In other words, the integration interval of the split-flux
integral over 7" is divided into the two parts

1],

where ¢ is initially considered as being infinitesimal, before
replacing it by the finite value 2s/c at the end. This leads to
the partie finie integral

[~1.T = ef(T)] U [T + ef(T). (7.15)

1 T.T T.T"-G(T,T
20) = Py [ ar ST [ g 90T 9T
=TT | =T +T]
T—ef(T) dT’ 1 dar’
Lo T [ / + }
( ) -1 r-T1 T+ef(T) T-T e—>2s/c
q(T, T 1-T17?
dT' ————+G(T,T)In ( 55— , (7.16)
/ | - T/ T| €2f2(T) e—>2s/c
where we denoted the subtracted integrand as
q(T, T =gG(T, T") - G(T,T). (7.17)
Further integration in 7" then gives
T.7T') 25\ (! 1-717
J= / T)dT = / dT/ g 4T g~ 2hn ( ) / dTG(T.T) + / dTG(T, T)ln< - ) (7.18)
|=T"+T| ¢/ Ja -1 JA(T)
so that the first term in W™l ig given by
Wsplit flux _ _Hrealj' (719)

We find
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2

Note the presence of logarithmic terms.

' 2 v s 685 1017 3429 37 s 7>
split flux __
yysplit flux _ 1563513/2 real{100—|— 371n<4e a§/2> + [ ) l/+< 6 2 v) ln<4e a3/2>] ar}. (7.20)

The second contribution to W™°%f ' namely, Eq. (7.6), can be similarly computed, leading to

2 m? 85 s 9679 981 3429 37 s 7>
wio = = g 3P () 4 2 T (2 ) T\ (721
150340 rea‘{ 4 n(ze,a,> * [ 224 56 ”+< 56 2 ”) n(ze,a)] a,} (7.21)

Summarizing, and reexpressing e, and &, in terms of p, and j, we find for the h contribution to Wnenloet:
Wnonloc,h = Wsplit flux + Wﬂux
2 1Pp 315 2753 1071 1357 111 p

— +371n - ——v 1 = 7.22
~ 15 J3 [4 <2>+[224 8y+<56 2”)“(2)]”“’”] (7.22)

This result is accurate modulo two types of corrections: O(#*) and O(

y"omoeh at the fractional 1PN accuracy, namely,

) This suffices to compute the 1/j* contribution to

10 )(nonloc 1
—nonloch _ — Wnonloc h _A4 0 7.23
2 2v0j 7 + 7 ( )
where (indicating for clarity the greater than or equal to 4PN nature of ™M)
P
gaemoet — pd pd 7| agpn + Paspy + ln< > >(b4PN +1n bSPN):| (7.24)

with
63
ampn = ——
4PN 1
2753 L 1071
AN T020 T a0 O
37
bypny = ——,
4PN 5
1357 . 111
SN T80 10 ¢
The meaning of this result will be further discussed in the
next section.

(7.25)

VIII. USE AND DETERMINATION OF THE
FLEXIBILITY FACTOR f(t)

The general rule uncovered in Ref. [41] restricts, at each
PM order G", the v dependence of the energy-rescaled
scattering angle 7, = h"~'y,,, where we recall the definition,

v)=+1+4+2(y-1),

In the present case, we are interested in the O(G*)
contribution y, to the scattering angle. Let us then

y=+/1+pin*. (8.1)

reexpress the result (7.24) in terms of the quantity 7, = h’y,.
We find

h% nonloc h()/,l/)
63 37. [p
— 8 d - Inl&=
il =5 - T 22)
2753 1357, (p 63
pr - - ——In(=2 — . 2
+’7p°°[ 1120~ 280 <2>+20”” (8.2)

The general rule of Ref. [41] states, in this case, that the
product (7%y,)(y,v) should be (at most) linear in v. Taking
into account the overall factor v in )(“0“100 B we see that this is
true, at the fractional 1PN accuracy (i.e., at SPN) for the
logarithmic contributions to x5°°". On the other hand, the
last term, o $3 v, in the expression of /* ot corresponds
to a SPN-level contribution equal to

A4 =vm__1n

5v2 h3)(20nloc,h 5 63 10pgo‘ (8.3)
j 20

The latter contribution is quadratic in v. However, the
general rule of Ref. [41] applies to the fotal scattering angle
and therefore says that
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h3 tot h3 locf+h3 nonloc,f

_ h3 locf +h3 nonloc,h +h3 f—h (84)
should be linear in v. The presence of the O(1?) contribution
(8.3) in I3y s then telling us that there should be
compensating O(z?) contributions in the other terms
B3R! 4+ W3y, This can be arranged in many ways. On
the one hand, 1f we were to insist on defining the nonlocal
action by the h route, i.e., by systematically using 2r%,/c as
Pf scale, we just need to adapt the O(1?) structure of the local
(5PN-level) EOB potentials [so far only determined at the
O(v") level] so as to absorb the term (8.3). On the other hand,
it seems advantageous to use the natural flexibility in the
definition of the Pf scale (i.e., in using a flexed Pf scale
2rl,/c) to make h3yRomoct — piynonloch 4 g3 toh geng
rately linear in v. ThlS allows us to better separate the
determinations of the local and nonlocal parts of the
dynamics. We shall see below that this second route has
several nice properties.

If we choose the f route (as we shall do here), we need to
determine the coefficients c;, c¢,, c¢3 entering the 5PN-
relevant flexibility factor f(¢) = 1 +n>f1(t) + O(n*),
namely,

fi 201P%+02P2+C3%7 (8.5)
so that
W™ =2+ 0(n"?)
— 2208 Lo, (86)

20

Here, we used the facts that 4 = 1 + O(#*) and that we
require ¥ = O(n'°). Tt is not difficult to write the
constraint on the coefficients ¢y, ¢,, ¢z implied by the
equation (8.6). Indeed, we can write

1., 19
z - i
¥ Twai (8.7)
where [see Eq. (7.7)]
G2 split
wi- 2— dtF pn(t 1) In (14 (1))
- +2c—5 / ALFN (0 f1(1). (8.8)

Recalling that the leading-order GW flux reads (in terms
of scaled variables, and henceforth using G = ¢ = 1)

8 1
2 ——(12p* = 11p3),

‘/TIPN() v 5,

(8.9)

—

we have

16 dt

AW =
15

(12 2_ 11p,)<c1p3+c2p2+cr3).

(8.10)

This integral should be evaluated at Newtonian order.
Though, for our present purpose of compensating the term
8.6)), we only need to compute the integral (8.10) to
leading order in inverse eccentricity, let us give its exact
value, as computed along a Newtonian orbit of squared
effective energy y> = 1 + p2Z and angular momentum j,
with associated eccentricity e?> = 1 + p2, j? and associated
Newtonian-like energy E = 1 p2,

161/2E9/2 Al arctan e + 1 + A2
r - T N4 9
15 |(2-1)7 Ve—1"(&2=1)*

(8.11)

AW =

where

A, =4V2[(13¢, +T4c,)eb + (150c, 4 1242¢, 4 366¢5 ) e
+(96¢; +1544¢, +968¢3)e? +192(cy +c3)],

2V2
15
+(2356¢, +28758¢, + 14734c3) e?

+92¢;+7156¢, +6588¢;].

Ay ="LZ[(1437¢, 49866¢, + 1568¢5)e*

(8.12)

The beginning of the more immediately relevant large-j
expansion of AW reads

U2 6
AWf_h: 5< (13C1 +74C2)T§o

L6 P2
5(51C1 +343C2+49C3)1—4

+3ﬂ(63c1+488c2+IZZC3)p +) (8.13)
J

Let us now compare the result (8.13) to the additional
contribution to W = [ dtH, namely,

f—h,needed _ ,3 21 10 pgﬁ
w =vasn R (8.14)
which, according to Egs. (8.6) and (8.7), is needed to
compensate for the undesired 2/ j* contribution to y"°"och,
By comparing Eq. (8.13) to Eq. (8.14), we see that it is
enough that the coefficients ¢, ¢,, ¢3 parametrizing f
satisfy the single constraint
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63
136'1 + 74C2 = —V.

5 (8.15)

The third flexibility parameter c; does not enter this

constraint because it starts contributing to W at the «

"j—? level, corresponding to a term o ”2]# in y. Such a flexed
contribution is not needed at SPN. The choice of the value
of c; is free. We could simply take c¢; = 0. See below for
the effect of choosing a nonzero value of c;.

Equation (8.15) yields only one constraint on the two
flexibility parameters c¢;, ¢,. The numerically simplest
solution of Eq. (8.15) (having the smallest denominators)
would be ¢| = %1/, ¢, = —3v. On the other hand, similarly
to the choice of p, gauge, or energy gauge, for the EOB
Hamiltonian, we could choose here, respectively, a flexi-
bility factor £, containing either only p2, namely,

63

=_—up?, 8.16
fl 26 vpy ( )
or only p?, namely,
63
= — . .17
fi 148 vp (8.17)

By straightforward computations, we showed that the addi-
tional contribution Af"H to the (nonlocal) Hamiltonian is
equivalent, modulo a canonical transformation, to the
following (p,-gauge-type) Hamiltonian

_ 16 Pt
Af hH :Eljz |:(13C1 +74C2)F
P2
+ (12¢y 4 121¢; 4 49¢5) =
-

+12(c» +c3)1] (8.18)

ol

Let us note in passing that an efficient way of showing that
A" H is canonically equivalent to Eq. (8.18) is to compute
its integral along an ellipticlike orbit [instead of an hyper-
boliclike one, as in Eq. (8.11)]. (The time integral of the
change of a Hamiltonian under an infinitesimal canonical
transformation vanishes both along hyperbolic orbits and
along elliptic motions.) The latter integral is much simpler
than Eq. (8.11) and reads

2
b{ thHf‘h] o= %jg [(T4cy 4 13¢)eb
elliptic

+ (1242¢, + 366¢5 + 150c¢, ) e
+ (96¢; + 968¢5 + 1544¢,)e?

In view of Eq. (8.18), it is easy to see that the Hamiltonian
variation A/~"H associated with a general f, (with
arbitrary parameters c;, ¢,, ¢3) is equivalent to varying
the potentials A, D, Q parametrizing a p,-gauge EOB
Hamiltonian by the amounts

ATA = Afagu®,
AfD = Afﬁ_lsus,
ATQ = Afgyptut, (8.20)
where
128
Afa(, = ?U(CZ —+ C3),
- R
A d5 = EV(]ZC] + 1216’2 —+ 49C3),
LR
A quq = ED(BCI —+ 746‘2). (821)

The latter changes parametrize the contribution A/~"H
which is a part of the nonlocal Hamiltonian, H""°f; see
Eq. (2.9). They are absent in the 4 part of the nonlocal
Hamiltonian H""°¢" More generally, both parts of the A-
type Hamiltonian, the local one, H'°", and the nonlocal
one, H"™"°¢h " are totally independent of the choice of the
flexibility factor f. Therefore, when one decides (as is our
preferred choice) to use the f route® for computing the local
Hamiltonian, one ends up with f-type EOB potentials (say
in p, gauge) parametrizing the complementary local
Hamiltonian that are related to the corresponding h-type
ones in the following way:

loc.f __ loch _ Af
ag = dg Aag,
Sloc,f __ ZHloc,h f
e = oot — ATgy,

loc,f __ loch _ Af

Aas” = Ga4 qu4. (8.22)

The minus signs on the right-hand sides are needed because
Alag, etc., parametrize the additional contribution
+A/hH € Hnoct: see Eq. (2.9).

The changes (8.22) have been written for a general
flexibility factor of the form (8.5). Let us now apply these
general results to the relevant case in which the parameters
c1, €y, 3 satisfy the constraint (8.15). We are going to see
below that, when using the f route, the SPN-level value of
the EOB coefficient gy is fully determined and takes the

value indicated in Table VII. We therefore conclude from

the last Eq. (8.22) that the SPN value of the EOB coefficient

qlﬁf’h that would be derived by using the £ route is also fully

determined and differs from the f one by

We mean by f route the use of a tuned flexibility factor f such
that y"onloel separately satisfies the rule of Ref. [41].
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TABLE VII. Coefficients of the f-route local 4 4+ SPN part of

the EOB potentials, Eq. (11.7).

Coefficient Expression

ale (2521725 2 4237)1/ + (g 22— %)1/2

ale (— 1026501 4 246367 72)p + al' v+ 4

dl* (1P — 28 72)y + (—260 + 1B 7?)2

211500 (331170554 62?(2)7 ﬂz)y + c_igzz/z
(1503

a5 20y — 831% + 104°

gl (15381056611 913503361 2+ (- 2075 + 3;33 )2
+(640 — 615 )3

q%s -4-Z 2—}—61/

a6y Br-20 + 1167 - 1404

q%s 71/+l78U2+27—41/3—61/4

336 ,
ag" = qgt + ?

(8.23)
This has the effect of changing the rational O(v?) con-
tribution —2%312 in gi" into — 57,2,
The corresponding changes in the values of a16°C and c_ils"c
are (currently) irrelevant because they only shift the two
O(v?) parameters ¥ and d% that are left undetermined by
our method. If wished, the three flexibility parameters cy,
¢, c3 can be chosen so as to satisfy, besides the constraint
Eq. (8.15), the two other equations Afgg =0 and
Afds =0, ensuring that the two undetermined O(z?)
parameters of the f route coincide with their corresponding
h-route values. This yields the following specific values:

189
) = ——
1 4 v,
C *—QU
2 — 8 )
63
€3 =gV (8.24)

These values define a sort of minimal choice for the
flexibility factor, ensuring that the corresponding nonlocal
scattering angle /23" is linear in v, while leaving fixed

the two O(v?) parameters a’gz and Zigz entering the local
dynamics.

Let us mention at this point that the formulation used in
the published version of Ref. [26] contains an inconsistency
related to the present discussion. Indeed, the value of the
local Hamiltonian defined (in p, gauge) by Eqs. (17) there
is the f-route value, while Eq. (5) states that one was using
the h route. The simplest way to correct this inconsistency
is to multiply the Pf scale r?, entering Eq. (5) by a factor
f =14 f;, solution of Eq. (8. 15) Alternatively, if one
insists on using the h route (i.e., r , as Pf length scale in the

nonlocal action), one should replace the value of ¢l =

g™ given in Eqgs. (17) there, by ¢i", as given in

Eq. (8.23) above. [Correlatively, the f-route value of

Xim = Xies given in Eq. (19) there should then be

changed into its h-route value y3i%, = yab% - + '™, where

K= =8 apSr?; see Egs. (8.4) and (8.6)].

IX. USING THE MASS-RATIO DEPENDENCE
OF THE SCATTERING ANGLE TO
DETERMINE MOST OF THE »"=2
STRUCTURE OF THE f-ROUTE
LOCAL HAMILTONIAN

In the following, we assume that we define the nonlocal
Hamiltonian by using a flexed Pf scale {, = f(t)rh,, with
a flexibility factor f(¢) = 1 + n?f,(t) satisfying the con-
straint discussed in the previous section. This allows us to
separately apply the constraints found in Ref. [41] to the
scattering angle deriving from the corresponding local
Hamiltonian, H'°f. We are going to see that these con-
straints determine most of the nonlinear-in-v contributions
to Hloc,f .

Let us start by recalling that, given any (local)
Hamiltonian, the scattering angle of hyperboliclike motions
is given by the integral (u = 1/r) [61]

umax 8 du
— [ S E )5S
A 8J.pr(u ) ”

where Uy, = Upay (E, j) = 1/rmin corresponds to the dis-
tance of closest approach of the two bodies and where the
radial momentum p, = p,(u; E, j) is obtained from writing
the energy conservation at a given angular momentum. As
Jj =J/(GM u), the PM expansion of the scattering angle is
an expansion in powers of 1/j « G,

S (B ) +7) = 0.1

loc [ & .
X (Eets Jo v 1
e o) 5 ) x"’c(pw,v) + 25 (Poor V) 7
1
+)(l°°(poo,1/)j—3~l— (9.2)

where we replaced y = geff by P =1/ é‘esz - L

The test-mass (Schwarzschild) limit y3" corresponds to
setting v = 0.

With this notation, let us consider the function (which
vanishes for v = 0)

n>2,

Tw(Peor V) = M (Do ) = 25 (Pos). (9.3)

where = /1 + 2u(E.4 — 1). Reference [41] has shown

that 7, must be a polynomial in v of order (at most)
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d, = [%51], where [x] denotes the integer part of x:
T,~v+ 1>+ -+ v%. Therefore, we have the following
conditions C),:

(1) [C,:] T, =0 does not depend on v;

() [C3:] T3 ~v;

h={1+2[(1 + pX)'/? = 1]}1/?

(iii) [Cyi] Ty ~ s
(iv) [Cs:] Ts ~v + v
(V) [Ce] Te~v+02
Here, we shall apply these results at the SPN level, using
the SPN expansion of 4, namely,

1 1 1 1 1 1
=1 +§I/p§o + (——u——z/z)pi, + <—v2 +—y+—y3>p20

878 167 16" 16
5, 5 3405 N\
+< 128" T128" T4’ T128Y )P
7 2 7 9 3 5 4 7 5 10 12
Ay SRy Uy Ry . 4
* (256” +356 T 2567 T 18 tase” )P T OWPe). (5-4)

and, correspondingly, of T,

TN (Peov) = [ (Poos )i = 20PN, m22. (9.5)
Our SF-based computation above has heretofore deter-
mined only the coefficients of the O(v') terms in the (u-
rescaled) local Hamiltonian. The determination of most of
the O(v*?) coefficients in the local EOB Hamiltonian will
now be obtained by first computing the PN expansion of the
(local part of the conservative) scattering angle, '°° [using in
Eq. (9.1) a PN-expanded expression for p,] and then
computing the various 7,,’s at the SPN accuracy.
From the condition C,, we find

9 27
9 = —sv- ?1/2 + 607,
18 6 24
qsx :7112 +7u+7v3 — 604 (9.6)
From the condition C;, we find
qi&c =20v — 8312 + 10473,
123 69
oo — 2 ) - 202 + 11607 — 1404, 7
9635 = 1Y 5V+ 6v U (9.7)
From the condition C,, we find
loc 1580641 93031 ,
= - m° v
a4 3150 1536
n _2075 n 31633 , 2
3 512
615
40 — — 72 |2, )
+(60 3271'>I/ (9.8)

From the condition Cs, we fix @2 (and @4 = 0) so that

_ 1054 63707 _
e _ (33 054 6370 ﬂ2>y+ 7

>\ 175 512
1069 205 .\ ,
<?—¥ﬂ' )IJ s (99)

where the O(1?) coefficient 1_1’5’2 remains undetermined.
Finally, from the condition Cg, we fix a’6’3 (and ag4 =0)
so that

e _ <_ 1026301 246367

ay 575 307 n2>1/—|—ag'y2+41/3, (9.10)

where the O(1?) coefficient a’éz remains undetermined.
The additional condition C; (meaning that T; ~ v+
v* + 1) does not carry any new information.
Summarizing, the conditions C, have allowed us to
determine all the terms in the SPN-accurate (gauge-fixed)
f-flexed local effective EOB Hamiltonian apart from the

two O(1?) terms parametrized by a% and d% .

X. VALUES OF THE 5PN-ACCURATE f-ROUTE
LOCAL SCATTERING ANGLE AT PM ORDERS G,
G*, G5, AND G*

Having determined most of the coefficients parametriz-
ing the local Hamiltonian, we can write down the following
(PN-expanded) values for the f-flexed local parts of the
successive n-PM contributions, y,, to the scattering angle
(subtracted by their Schwarzschild values):
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2 (¢ — 5h) = _gpgoy_F (19_6V2 —%V)pﬁo

(2 B 5 e (L5 05 15 105 )
—v+—v == ——V——V ,
o' ta” "nY 72567 T 256" “6a” 256" )P

91 69 51
A = 5 = —8p v+ (8% = 36v)pd, + (—?v + 3407 — 81/3>p20 + (%u + —z/ —-320°3 + 8 )p?x,
15 45 109 123
—1 loc __ Sch 2 _ 2 2
(r4 )= 41/+<81/ 21/+256ﬂl/)p°0

225 . 33601 , 19597 4827 , 369 , ,
2 Tiessa™ " 102 YT e ¥ sty )P

<_94899 5, 93031 , 19455831/ 1937 , 2895 , 525 , 1845 2 3>p6

32768 Y T32768" Y " 33600 YT 16 Y T 2 Y T Y Taoas”

X9 = x5t = s + <4§17r21/ _ 168 v+ 241/2) Do
+ <— 2217305591/ + 5104649 v — %vznz + 739421/ — 40v >
(_ 11;08 o 142(2);179y . 411()526 g st A, 42541 .- %yzﬂz
119160049 ﬂzy> ;.

v——a 1%

128 2BV T Tgss TV R%Y T Y T T 3aa0 YT ;

(3675 150, 232185 1S, 39975 . 6327773 34325

+ 4414 29855 v — 22?‘7‘235 n’zyz) - (10.1)
The corresponding Schwarzschild terms (v = 0) are given by
™ (pe) = pim +200 3M™(Pe) = n(% + gpé), 13 (Poo) = 3, 13 + 1% +24p, + 634}700,
2™ (pe) = ﬂ(% + %pi + %ﬁ&) o M (pw) = 51; péo + % +320p,, + 640p3, + % Pao:
25 (pe) = ”(11855 n 456(2145 o2+ 131521835 e 0(1720)),
5™ () = —ﬁ 5;1, ;Z + %’ +4480p,, + 14336p3, + O(p3,).
1™ (pe) =7 (22]522825 + 762165 P+ 0(p‘§o)>,
25 (po) = 9%20 - % + 97—6é - ?p% + 3;2304 +64512p,, + O(pd,),
B (Peo) = 7 29(1)3307 +0(p)- (10.2)

Schw (

Here, the results for y3™ (p,, ) up to x3"%(p,, ) are exact, while the error terms in 3™ (p,) up to 3™ (p, ) correspond to

the 5PN accuracy.
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These results for the scattering angle provide a lot of new
information that offers gauge-invariant checks for future
independent computations of the dynamics of binary
systems.

In particular, using the fact (explicitly proven in Ref. [51])
that the nonlocal dynamics starts contributing to the scatter-
ing angle only at O(G*), so that y3 = y°¢ + yhonloc = yloc,
our result above for ¥ actually descrlbes the total 3PM-
level scattering angle. Its explicit expression [when combin-
ing the test mass and v=! piece and adding our recent 6PN
extension, embodied in Eq. (6.13)] reads

4 64
X3 = +—+ (24— 8v)po, + <——36u+81/2> pl

3p Poo 3

91
+ (—?1/+34v2—81/3>p5
69 5l
+ <%1/+?1/ -32° —|—81/>
1447 93 , 27
(—50401/—% —1—Ou + 3004 —

+0(p&).

81/5>p9

In this expression, the last term o p2, is the 6PN contribution
to y5. As already mentioned, this result is in agreement with
the corresponding 6PN-level term in the PN expansion of the
3PM-level recent result of Refs. [29,31]. It has also been
recently obtained in Ref. [40]. Let us note in passing that all
|

(10.3)

63 37

h3 nonloc,f ) . 8 4 B PN
ai (1) = peny ==

Concerning the corresponding complementary f-type local contribution y,

1357 (p
2p2 =222 22 (P L
<2)+"p°°{ 1120~ 280 <2>”

the rather complicated v structure of y5 is actually described
by the simple rule C5 mentioned above [i.e., the linearity of
T5, Eq. (9.3), in v]. Indeed, we have

Wys = (1+20(r = DA™ (Peo) = 2000 C(po), (10.4)
where
1
;(SChW(poo)—3 — (=14 12p% +72p% +64p%).  (10.5)
and
Cly)=(r—DAgpy) +Bgar).  (10.6)
whose 6PN-accurate expansion reads
_ 91 69
6PN — 441 = pt 6
CM(p) = 44 18p% + {5 Poo = 45 15
1447
———pd +0(plY). 10.7
000 P> T O(pe) (10.7)

In addition, our results also provide a complete, SPN-

accurate value for the 4PM-level scattering angle y, =

20T 4 yhomeet Tt is convenient to reexpress the result for

x4 in terms of its rescaled version, 7, = hy,. We have
evaluated in Sec. VIII the nonlocal contribution to A’y,,
namely (when using a flexibility factor f; of the type
discussed there),

2753
(10.8)

locf we have already given its explicit value in

Egs. (10.1) above. Let us also cite the much simpler expression of its rescaled Version, which is linear in v. Similarly to the

rescaled version of y; written above, it can be written as

h3 locf( ,1/) _
where
15 123 767 4033
~loc,f _ _ - I S ) — "
4 (pm)_”[ 4+<256” 16>p°°+< 48 16384

Finally, concerning the SPM and 6PM local scattering angles, s

(14 20(y = DS (poo) + 125 (Poo).

33601

(10.9)

6514457 93031
2 )t o= 2 6 8
16384 )p +< 134400 © 32768 )p“’] +0(ps).
(10.10)
el and y°", most of the information displayed in

Egs. (10.1) above comes from the h”"~!-rescaling rule. (It is, however, important to confirm this rule by explicit
computations.) Apart from the latter rule, the new 5SPM and 6PM information derived here concerns the linear-in-v

contributions. We can write the expressions
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8 41 , 1168 370 5069 , 41 227059
P ) i ol == (s g =15 pa (o e e T )
23407 111049 . 1460479 58874
dv 2 2 _ _ 5 0 7 ,
+< 15 5760 7 960 " T s25 135 ”)p°°+ (P=)
615 , 105 625 (10065 293413 257195 ., 1845
—1 =15 locf Schw 22, 2 _ 2 2\ 2
vor (1) =26™ (Pl = 5+ v =4 64 192 " 8192 © T 512 V7 )P
L5, o) 23675 61855 , 232185 , 63277573
-——v ————Vv———un e -
2 % 96~ 732768 16384 13440 )P

+ 0(pS,),

(10.11)

which emphasize that the coefficients of the 2? contributions are currently not fully determined, since they involve the O(2?)

12 2
terms ds and ag .

Let us also rewrite this information in a form more directly connected with exhibiting the simple ~1 + v + 1 structure of

= lxlocf )(gchw'
2 21 1\ 1 19457 59 41
h4 1OCf Schw) _ [ _ R — 2
v —45) 53+( 10+5”>pm+< 60 +10+8ﬂ>p°°
41 5 10681 5069 , 4572503\ |
”” 144 " T aa T T 4300 )P
049 o 20T, 4 o, 5558621 STISTT N\
5760 7 T 15V T 33600 4320 V)P
+ O( Zo)
L (1500 — S 5 105 615 )\, (L1845 , 257195 , 10065 224113\ ,
256" TR TT5%) 64 192 )P
15 . 15 _, 61855 2321185 , 4625 20420849
_ 2t 2 2 _ 4 6
+( 327% T 3% T 35768 T i63ss T T 12 YT 6720 )p°°+0(p°°)

XI. FINAL RESULTS FOR THE
SPN-ACCURATE f-ROUTE LOCAL
EOB HAMILTONIAN

Let us gather the 5PN-accurate results (for the f-type
local dynamics) obtained so far in the previous sections.
They concern various forms of the local Hamiltonian:
(i) the energy-gauge version of the local effective EOB
Hamiltonian, (ii) the p,-gauge version of the local effective
EOB Hamiltonian, (iii) the local real Hamiltonian,
and (iv) the canonical transformation connecting the p,
gauge to the energy gauge. Before listing our results, let us
recall again the link between the usual “real” Hamiltonian,
H, and the dimensionless (u-rescaled) effective EOB
Hamiltonian ﬁeff:

HY = H% = M\/1+20(H% - 1).  (1L1)

(10.12)

Note that we sometimes (as indicated here) add a subscript
eob to the real, local Hamiltonian H'* when we wish to
emphasize that it is expressed in terms of EOB canonical
coordinates. But, numerically, H'% is equal to the usual
(local) Hamiltonian, whose conserved value is equal to the
total, c.m. conserved energy of the binary system [minus
the nonlocal 4 + 5PN contribution linked to Eq. (2.2)].

A. 5PN-accurate f-flexed local effective EOB
Hamiltonian in energy gauge

We recall that the energy-gauge, squared effective EOB
Hamiltonian is written as

Hlips = H2 + (1 = 2u)Qpg(u. Hg),  (11.2)

where the rescaled Schwarzschild Hamiltonian Hg=

V(1 =2u)[1+ (1 —2u) p? + j?u?] and where the energy-
gauge ( potential is written as
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Orc(u. Hg) = u?qopg(Hs:v) + 1 qapg (Hys v)
+ 1t qur(Hs:v) + ugspe (Hgs v)
+u6q6EG(HS;U)+"" (113)

The exact value of the 2PM coefficient g,pg(7; v) is given by
Eq. (6.1) (Where we recall that 2 (y;v) = [1 + 2u(y — 1)]'/?).
The exact v dependence of the 3PM coefficient g3p (y; v) is
described by

o) A0t (1)
Bq?s(y) _ 1
Thrw) (1 h(y;v))’ e

where the exact value of B3(y) is given in Eq. (6.4) and
where our new method has allowed us to compute the 6PN-
accurate value of the function A 5(y), as given by Egs. (6.5),

Less PN information is known about the higher PM
coefficients ¢,gg(7;v), though the analog of the exact v
structure displayed for n = 3 in Eq. (11.4) has been given
in Ref. [41]. Here, we shall parametrize their PN expan-
qaec(riv) = ’/( — 325

sions as follows:
7
2y _ T 2
3 30" ) 2"

+ qzltEG(y) (72 -1)+ qzztEG(l/) (72 - 1)2’
gsec (73 1) = @6 (V) + @lec () (> = 1),

Gerc(r:v) = ngG (v).

175 41

(11.5)

Here, the first term in g4gg is at the 3PN level; the first term
in gspg is at the 4PN level; and the first, and only, term in
gegg 18 at the 5PN level.

The final form of the v-dependent PN-expansion param-
eters ¢'; (v) entering the f-flexed energy-gauge (squared)

(6.11), and (6.13). According to Refs. [29,31], the exact effective Hamiltonian, Eqgs. (11.3) and (11.5), is the
value of A 3(y) is given by Egs. (6.6) and (6.7). following:
|

5632 33601 ,\ (405 123 5\, 13
Qapc(V 6144 4 64 2

699761 93031 , 77443 31633 O\ 615 ,\ 5 293 ,

130 — > =

Tig (v (7200 12288" )”+< 480 4096”) 256" )Y T

44357 29917 )\ (205, 2387\, 9,
9sec (v 6144 7 )" ea 2 )V T

15540601 2590847 ,\ (15581 1., 347673 )\ , (SI31 1763 ,\ ; 93 ,
93e(¥ 25200 61440 © )* 80 5% To0480 " )" 24 256" )Y T16”

9733 | 541363 1717 1-, 17857 ) 326 287 11
—dl el P [ -2 ) — A 11.6

Gora(¥ ( 350 10240 )”( 60 5% T5120” +"6>” +<3 64 )” 8" (11.6)

B. 5PN-accurate f-type local effective EOB
Hamiltonian in p, gauge

In the standard p, gauge, the final form of the S5PN-
accurate building blocks A(u;v), D(u;v), and Q(u, p,;v)
of the f-type local effective EOB Hamiltonian A% off are

+a%u’ + alud,
Dioe = 1+ 6vu® + (52v — 602)u® + du + d°u’,
Oloc = PF2(4 = 3v)vu® + ¢'¥u? + gt u]

+ P8 + qlosi®) + qlos phir.

94 41
AIOC—1—2M+21/M +IJ<?—§

(11.7)

The values of the coefficients a*®, al°°, difc, d'°, ¢s, gl¢,
4%, g, and gy parametrizing the 4 + 5PN structure of
H'% are summarized in Table VII.

C. Standard (f-type local) EOB Hamiltonian at SPN

For completeness, let also display the 5PN (f-type local)
real Hamiltonian as function of u, p,, and p?, where

p*=pi+ i

Inserting the results of the previous subsection in the EOB
energy map (11.1), one gets the following explicit (real)
EOB Hamiltonian:
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TABLE VIIIL.
All coefficients Cgf)(v) start linearly in v, except C§6) (v) and
C((f)(z/) which begin instead at 0( 2). Furthermore, the highest

Coefficients entering the real EOB Hamiltonian.

power of v in the coefficients C
coefficients stop at v°

(1/) is 1, whereas the remaining
. The number of nonzero coefficients is

then 95.
Coefficient  Powers Value
Cg(;)( ) PP’ =iy —mt — 2kt — ot
1(3)24’/5 1%54”6
) PP ey =gl =y o
+2?6 v+ 256”
Céo)(l/) prptut vtk gt ot
+o50 —3st’
e (v) PP —grt gt -t =50
CExO)(V) prptut 64”+(512” —
+( +51271' w3
B+ 0+ s
o6 A G e -1
+H=5R 7 + 20w’
(=T A2y 25,5 4 63,6
) et =Rt (G =S
Hag -2+
+(%—%7r2)1/4+156v5 A
@) P B - - - B
o) e —fr =i =g -t
c? ) piptw’ +Eu I 928 4 33,5
C§2>(V) pip*ut _AIT”+( 67"‘ 65174249”2)”
+(1549 4 13921 2y, 3
+(79 16243”2)1/ +21/5
C(<)2>(1/) PIP0uS Sy (MBI 3650 0,2
(- 8US3 2 4 31307 4 | du)
ot
Ci“)(y) piptu? By4+22 -3 -2 -3
() pip*u’ —%v - 824405 + 1004 + 20°
Cé4)(u) pipOut Ly (2012 4 A5,
+(3l63 72 _1697),3
(=S8 2 4 LS4 4 1S
C§6>(1/) [T TN R N
C(<)6)(1/) P8 P03 Sy pALR2 B 84 g
C(()S)(y) piptur 324308 + 24 -3

FylocSPN Z C( )( ) p2 p2lyb=k=1.

eob

(11.8)

SKS0USISS,

The v-dependent coefficients Cgil) (v)=>, C(ﬁfiy” are
listed in Table VIII.

Let us recall once more that, modulo the only two
undetermined coefficients agz and 51’;2, the full SPN-accu-
rate dynamics has been determined here. It is given by
adding to the local action defined by HfOSCPN the f-flexed
4 + 5PN nonlocal one written down in Egs. (2.10) and
(2.11). We find it remarkable that, though the real local
Hamiltonian finally involves 95 different numerical coef-
ficients keying the various powers of u, p?, p?, and v (as
listed in Table VIII), our combination of tools has allowed
us to determine all these coefficients, except for two of
them. To help visualize the structure of the 5PN
Hamiltonian [encoded in the wv-dependent coefficients

Cék (v)], we present the matrix of the nonzero numerical

coefficients Cgk 21 entering Cgk (v)y=>, C2k LV in Fig. 1.
We summarize in Fig. 2 the source of information having
allowed us to determine each one of these 95 coefficients.
Figure 2 is a schematic version of Fig. 1, in which we do
not distinguish p? from p2, so that there seems to appear
only 36 coefficients: the test-particle limit determines the v/'
row; the 1SF computations determine the 2> row; the first
two columns are, respectively, determined by the 1PM and
2PM exact EOB Hamiltonians; and the >3 dependence of
the next third and fourth columns (respectively, correspond-
ing to 3PM and 4PM) is completely determined by the
EOB-PM result concerning the v-polynomial structure of
T,, Eq. (9.3). The latter result also determines the coef-
ficients in the last two columns (SPM and 6PM) except for

the two coefficients hg; and h'()z.

D. Canonical transformation between
the p, gauge and the energy gauge

Let us finally give the values of the parameters g;, ;, and
n; entering the generating function g(g, p), Eq. (5.7), of the
canonical transformation connecting the p,-gauge and the
energy-gauge f-flexed local Hamiltonians. If we denote the
p,-gauge phase-space variables as (r, p,) [with Hamiltonian
H(r,p,)] and the energy-gauge ones as (7, p)) [with
Hamiltonian H'(¥, p})], we have H(r,p,) = H'(¥,p})
with the following link between the phase-space variables
(besides py = j = pj):

r=r+0y9(r.py);  pr=pr+0g(r.py).  (11.9)
In Table IX, we list the final form of the gauge parameters,
necessary to pass from the standard EOB gauge to the

energy gauge.

024062-24



BINARY DYNAMICS AT THE FIFTH AND FIFTH-AND-A-HALF ...

PHYS. REV. D 102, 024062 (2020)

v v

v v

v v
C((J8> CSS) C;G) C(()4) C§4) C§4)

v v v v v v v
C[()?) C;Z) C§2) CéZ) C§2) C(gﬂ) C;O)

v v v
o o o oy oy

FIG. 1. Matrix of the 95 nonzero numerical coefficients Cgfl encoding the various powers of v in the Hamiltonian (11.8). The checks
indicate the coefficients determined in the present work. The only two missing coefficients are indicated by circled dots.

5PN
H, loc

1PM 2PM EOB - PM

v] 1sF

v | Test Particle

ulpl(] u2p8 u3p6 u4p4 u5p2 u6

FIG. 2. Schematic representation of the theoretical tools used to
obtain the various contributions to the S5PN-accurate local
Hamiltonian, adapted from Ref. [26]. These contributions are
keyed, on the horizontal axis, by powers of u = GM/r and
squared momentum p> ~ p? and, on the vertical axis, by powers
of v=mym,/(m; + m,)?. The checks indicate the coefficients
determined in the present work. The question marks denote the
only two missing coefficients. Note that, even if certain coef-
ficients in Table VIII only include terms up to O(x°), the
identification p?> ~ p? done in this schematic figure lumps terms
together so that O(1°) terms arise in each column.

XII. 5.5SPN-LEVEL ACTION AND ITS
TRANSCRIPTION INTO THE EOB STANDARD
GAUGE HAMILTONIAN

A somewhat surprising result of SF computations was
the discovery [46] of half-integer-power PN contributions
(starting at the 5.5PN level) to the near-zone metric and to
the Hamiltonian. This was quickly understood [45-47] as
coming from second-order tail (or tail-of-tail, or simply
tail?) effects. The conservative action term associated with

such tail? effects was obtained in Ref. [23] [see Sec. IXB
there, Eq. (9.19)]. It reads

Ssspn = _/dtHSASPN’ (12.1)

where the 5.5 PN Hamiltonian is given by the nonlocal tail®

expression
B (GM\?2 [eodr | .
Hsspn = Hyp = ) (ﬁ) / — @GP (1,1 + 7)

o T

- G®lit(t, t — 1)), (12.2)

with B = —%. Similarly to the tail' effect discussed
above, this action involves a time-split bilinear function
of the multipole moments that is closely linked to the
gravitational wave flux, namely,

gsplil(t’ t’) _ il(})(t)](%)(t’) + ...

505 il ij (12.3)

At the present 5.5PN accuracy, it is enough to use the
leading-order version of the time-split function G*!i'(z, 1),
obtained by keeping only the lowest-order quadrupolar
contribution (neglecting higher multipole terms) with /;; ~
pr ;) evaluated at the Newtonian level. In addition, we can
also neglect the difference between M and M.

An important conceptual point is that, though Egs. (12.1)
and (12.2), seem to define only the nonlocal part of the
5.5PN action, actually they give the complete 5.5PN action.
Indeed, the usual PN-expanded way of computing the local
part of the action (e.g., by integrating the near-zone
Hamiltonian density, as in Ref. [10]) cannot generate
any half-integral PN contribution. In addition, the nonlocal
action, Egs. (12.1) and (12.2), has (contrary to the 4 4+ 5 PN
one) no ultraviolet divergence at small 7 = ¢ — . This
indicates the completeness of the 5.5PN action written
above. Actually, the correctness of this action has been
directly checked by satisfactorily comparing its predictions
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TABLE IX. Gauge parameters entering the canonical transformation (5.7).

PN order Parameter Value
g Bv+i2
3PN 9 %1/ - %1/2
(see Ref. [28])) % Sv-3v
h (%—%ﬂz)u—i-(—%-i-%ﬂz)uz—}—%lﬁ
4PN hy ﬁ V- 11—61/ - ﬁl/
(see Ref. [30]) hs Bly -2 -7
he -v-3/+3
n (9555 — S v + (532 + s =S W + (— + ) +
n (55500 —2as7e )V + Gyigs 7 = L0 + (5 — s )’ =50/
s (oo — Fa7as 7 v + (=I5 + Zigie )% + (gt — 5w )’ = 3
ny By =322 4 33 e
ns 2—;1/—;—51/24—3711/3—!—%1/4
5PN e W50y — 1L+ 32303 + B4
ny %1/+%1/2+%1/3—%1/4
ng %1/4—%1/2—}—%1/3—%1/4
ng %L/—f—%uz—&-%f—%y“
nyo %v—l—%uz—}—%zﬁ—%lﬁ
with SF computations (that automatically include all local 2335 42955 6204647
ple) =1+ e’ + et b
and nonlocal effects); see Ref. [23]. 192 768 36864
As before, we can use the Delaunay averaging technique 352891481 , 286907786543 |,
to relate the 5.5PN Hamiltonian (] 22) to its EOB .COUnte.r- 884736 353894400
part Eh;] time average of M spx was alieady considered in 6287456255443 |, 5545903772613817 |,
el [£2] anc sfown fiete 10 be Expressible as 4246732800 2219625676300
2BG /GM\2 . 422825073954708079 ¢ O(e'8 127
(Hssen) = =155 <63> MonysS7 - (12.4) 106542032486400 ¢ O (127)
. . . The last two terms will not be used below. [The first two
lelereglphys = 27/ Pyhys is the (physical) orbital frequency terms in ¢(e) were previously computed in Refs. [62,63].]
and where

2

S?“ad = ZP7|1ij(P) ) (12.5)
p=1

with 1;;(p) denoting the Fourier coefficients of the quadru-
pole moment 7;;(z).

Extending the results of Ref. [23], we have computed
[starting directly from the integral expression (12.2)] the
orbital average of Hsspy to the 16th order in eccentricity,
with the result

p? L6848
M 20598
M° 525 4B

p(e), (12.6)

<H5.5PN> =

where a, is dimensionless and

Note that the rescaled function @(e) = ¢(e)(1 —e?)'3/2,
once reexpanded in e, becomes

Se) — 1.4 1087 , 4027 , 172009
P ="T92¢ T 768 ¢ T 36864 €
1758725 , 211269943 . 976098889
e e e
884736 © ' 353894400 4246732800
| 96425035243, 2583007392829
e e
6658877030400 35514010828800
L o(e'®), (12.8)

with coefficients which remain of order 1.

Let us now transcribe the 5.5PN-level tail> time-aver-
aged nonlocal original Hs spy into its corresponding EOB
version, parametrized (in standard p, gauge) by an effective
EOB Hamiltonian expanded as a series in powers of p2:
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SHP i 5.5on = Agsu'>? + Dssu''/2p2 + 614,4.519;‘“9/2
+ qe35p°u"? + g2 5p3u* + O(pl0).
(12.9)

We can compute the orbital average of 6H%; (henceforth
omitting the additional 5.5 PN subscript), by writing

R SH?
(6H2) = - / Ol 4, (12.10)
/3

¢

16 2

1 143 1 - 36465 3 195 _ 20995 _
13/2 {A“ + <_A6.5 + _D5.5> et + < Ags +5quas+ —Ds_s) et + ( D

3380195 -

where, at this leading order, we can use the Newtonian
relations for r = r(¢) and p, =1,

1= 2
(i)

1 +ecos()’ sing.

N (12.11)

with the (rescaled) orbital frequency of the radial motion
given by GMn, o = n = a7, The result reads

1616615
16384

A6.5

8 64 2048 055

101745 1615 35

5 255 6 929553625
+ 16 2635 + Tog 9445 )€ + A

+ 0(e').

Comparison (at the Newtonian level) among these two
gauge-invariant quantities,

A 2
(6Hz) = — (Hs5pn)> (12.13)
uc
allows us to determine all tail® coefficients:
13696
Acs =Uv—1,
65 =¥ 55 "
~ 264932
D =
5= 575 ™
88703
445 = V—1890 T,
2723471
635 = " 556000 ™
5994461
(12.14)

1825 = ¥15700800 "

The coefficients Ags, Dss, guss, and G635 agree with
previous results (both from Ref. [23] and from self-force
computations). The last coefficient, gg, 5, is instead new
and constitutes a prediction for future self-force computa-
tions of the averaged redshift invariant at order O(e®). Note
that the entire 5.5 PN action is linear in v (and proportional
to v). Therefore, self-force computations at the 5.5 PN
level allow one to compute exact, v-dependent 5.5 PN
observables.

In the present section, we have considered 5.5PN-level
gauge-invariant quantities linked to ellipticlike motions.
We shall leave to future work the 5.5PN contribution to the
scattering angle implied by the action (12.1).

D -
4194304 65 T 31072 55 T T6ase 944

+ To0oa 4635 + 128 C]s,zs) ‘38}
(12.12)

XIII. ACTION VARIABLES AND DELAUNAY
HAMILTONIAN FOR THE (f-ROUTE) LOCAL
EFFECTIVE 5PN DYNAMICS

We have derived above the SPN-accurate local
Hamiltonian (in its f version), notably by making use of
the special v-dependent structure of the scattering angle
[41]. The so-obtained local SPN dynamics has been so far
expressed within the EOB formalism, using two special
gauges (p, gauge and energy gauge). As these gauges are
uniquely fixed by their definitions, all our results above can
be considered gauge invariant. Our discussion above of the
gauge-invariant scattering angle has, in particular, con-
firmed the fully gauge-fixed nature of the p, gauge. The
same holds for the energy gauge (as shown in
Refs. [28,41]). It is, however, interesting to complete our
study of the 5PN local dynamics by discussing another
gauge-invariant description of the dynamics, applicable to
bound-state motions (rather than scattering motions),
whose usefulness for relativistic gravity was first empha-
sized in Ref. [57], namely, the Delaunay Hamiltonian,

H"' = H(I,, 1), (13.1)

i.e., the Hamiltonian expressed in terms of the action

variables
1
I, =— dr,
r 271_?{[% r
1, = ! y{ de¢ = =7 (13.2)
4= 55 P Podd =Py =1J. -

Note that we work here with dimensionless scaled variables
I, =1")(GMp), 1= j = J/GM p.
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Equivalently [modulo solving Eq. (13.1) with respect to
1,], one can consider the gauge-invariant functional link
between the radial action /, and the energy and the angular
momentum, say,

I = L(r.J)- (13.3)

As indicated here, we are going to see that great simpli-
fications are reached if we use as energy variable the
(scaled) effective EOB energy

/\

E é eff’ (134)

which is related to the total local c.m. energy by the usual
EOB energy map

HYf = M\/T+ 2u(y - 1). (13.5)

We use the same notation y as in our previous discussion of
scattering states, but one must note that we are now going to
consider bound states for which y < 1. This implies that the
above-defined squared asymptotic EOB momentum p2 is
now a negative quantity:

r—=1=ps=-|pP (13.6)

Before studying the precise structure of the gauge-invariant
function I, = I,(y, j), let us recall how this function acts as
a potential for deriving both the periastron advance (®) and
the radial period (P):

Qg i)
2n dj
P ol (y.J)
_ 13.7
smgm ~ )= (13.7)

The factor A(y;v) = [1 + 2u(y — 1)]"/? in the last equation
comes from the “redshift” factor dH/dH; connecting the
real-time period to the effective-time period [32].

We have computed the function /,(y, j) associated with
the f-route local SPN-accurate Hamiltonian by using the
technique explained in Ref. [57] (and used there at the 2PN
level). We start from the local effective EOB (p,-gauge)
Hamiltonian at 5PN

A = A[l + 2 + p?AD + q4pi+qep® + asp?).
(13.8)

where

g (W)u* + qaz () +¢I44( Jut,
= ger (V)1 + g3 (v)1?
= g (V)u’. (13.9)

We then use the energy conservation law

y = ﬁgff(l?%jz’ u) (13.10)
to iteratively solve for the radial momentum p, as a
function of y, j, and u = 1/r. This is done in a PN-
expanded way, after restoring a placeholder# = 1/c¢ for PN
orders, with the following PN orders:

prnpy, ’JY U U, P T P
(13.11)
Under this scaling, the quantity
2 =1+ pj? (13.12)

is fixed as 7 — 0 and describes the eccentricity of the
limiting Newtonian-like dynamics (We are considering the
case in which 0 < —p% ;2 <1, so that 0 <e? < 1)
The PN-expanded value of the radlal momentum has the
structure

5
(s p% ) = D P (s p P+ 0('?). (13.13)
k=0

with leading-order contribution

PO (s . ) = (p2 +2u — )V (13.14)
and 1PN correction given by
@ 2 o WF 0)
pr (i p%.j) = —5 +2upr’. (13.15)
Pr

The roots of the second-order polynomial pZ, + 2u — u?j2,

1te
Uy =—H5—,
Jz

(13.16)

are the Newtonian-like values associated with the perias-
tron and apoastron passages.

Following Ref. [57], one can compute the PN-expansion
of the radial integral
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(13.17)

1
_ 2k
Irigfdr(g p upm,n )

by taking the Hadamard partie finie of the resulting
integrals. This leads to an explicit PN-expanded expression
for the radial integral,

5
= > Pk i)+ 00"),

1,(ps Jiv) (13.18)
k=0
starting with the Newtonian-like value (k = 0):
17 (P jiv) = —j + 12:ﬁ+ lz.uu%
P V 1 - Y

We recall that we are here considering ellipticlike motions
with y? < 1.

The function I,(y, j;v) exhibits a remarkably simple
structure, which is the reflection of the simple v depend-
ence of the PM-expanded scattering angle [41]. (The latter
structure separately applies to the presently considered f-
route local dynamics.) We can write the SPN-accurate local
I,(y,j;v) in the form

IgPN'loc(]/,j,IJ)

ﬁm+@m+wﬂn

hj h3j3

B(y) + vl (n) + 15 (7)

thS
B(y) + vl (v) + P15 (v) + VP15 (y)
I’l7j7
N I3(y) + UIS] (r)+ 1/21’52(7/) + 1/31’9’,3 (r)+ 1/41’54(3/)
h9j9 :

=—j+1(y) +

(13.20)

Here, each line does not correspond to a well-defined PN
order, though the successive lines start at some minimum PN
order which increases linearly with the power of j present in
the denominators. On the first line, the term —j can be
considered to be of Newtonian order, while the second term
is a function of y (given below) which, when itis expanded in
powers of y — 1 = O(5?), starts at the Newtonian order but
then contains higher PN corrections of arbitrarily high PN
orders. Similarly, the next line (proportional to 1/ ) starts at
1PN order but includes higher PN orders when expanded in
powers of y — 1 = O(»?). Each extra power of 1/j* repre-
sents an extra PN order. The last term, o 1/;°, is 1/j'°
smaller than the first, Newtonian term —j, which corre-
sponds (in view of the scaling j i) to a relative factor '°,
corresponding indeed to a SPN accuracy.

There are several remarkable features in the structure
(13.20). First, the only j-independent term in this PN

expansion (on the first line) starts at the Newtonian order
and is exactly given by the simple formula
272 -1

This result was already obtained in Ref. [64] and connected
there (see also Ref. [65]) with the analytic continuation
(from y > 1to y < 1) of the 1PM scattering coefficient y;.
Second, and most remarkably, after pairing all the powers
of j in the denominators with the same power of
h(y;v) = [1 + 2u(y — 1)]"/?, the complicated v dependence
of the original PN-expanded /, is reduced to a simple
polynomial v dependence of the numerators. Indeed, these
exhibit the simple rule’ that the numerator 15, corre-
sponding to the denominator (/7)*"*! is a polynomial in v
of order n. [The latter rule follows from the rule about
h" 1y, via the analytic continuation in y allowing one to
identify ®(y, j) with a suitably defined analytic continu-
ation of y(y, j) +x(r.—j) [64].]

The last remarkably simple feature of the expansion
(13.20) is that the v — 0 limits of each numerator, i.e., the
coefficients I3, | (y) are polynomial functions of y, which
are given by the following expressions:

Io(y) = (13.21)

3 15
IS -=
[ (r) = 1 +— 4
35 315 1155
S -~
=g~ " a
231 9009 , 45045 51051
S _ = 4 6
L0 =356 256 7 " 256 7 T 256 7
32175 546975 10392525
]S(},) 2 4
7 16384 4096 ' 8192
14549535 , 47805615
4096 16384
323323 33948915 260275015
I§(y) = - - !
o 65536 65536 32768
1301375075 , 5019589575
32768 65536
3234846615 |,
ikt 13.22
65536 (13.22)
Note the y — 1 values of the latter test-mass polynomials
35 231
(1) = (1) ==— I3(1) ==
p(1) =3, 3(1) 7 (1) 1
32175 323323
S _ S _
(1) = T (1) o (13.23)

The simple “Schwarzschild” polynomials /,,,(y) can be
exactly computed by considering the v — 0 limit of the
radial action (Schwarzschild limit). Indeed, the test-particle
limit of the radial action,

"This result was not uncovered in previous discussions [57,64]
of the radial action.
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TABLE X. Coefficients entering the j expansion, Eq. (13.20), of I,(y, j;v).

Coefficient Value
11;1 (}/) _%+( 557+g )( _1)+( 10873 365154649”2)(7 ])2+( 7;(5)%87+15§§9”2)(Y 1)3
() () B R ) + (S B 1
L) B L) - 1)+ (R BB = )y — 1)
e -2 e )+ (-2l sy )
() ( 1205265ﬂ2+18925) (=3 — 13y — 1290275 72 | 1039349, _ )
e PG ALY
1) S
15 (r) fpds +I5 1B - Ra
15 () 42665 + 1005 2
I3 (7) ?%
[5eh( gcffvj) _ 1 }{ drpSeh( éeff,j), (13.24) wliere the. ilntegral ii ta12<en around the tW().ZI'OzOtS of the cubic
pis polynomial P3(u) = y* — (1 — 2u)(1 + j*u*) that are close

is easily written down by solving &% = HZ = (1-2u)x
[1+ (1 =2u)p? + >

u?] and reads (remembering & = 7)

to the Newtonian roots u; used in our PN-expanded
computation above. We see that I5(y, j) is a complete
elliptic integral (i.e., a period of an elliptic curve), so that it
can be written down explicitly, e.g., in terms of a combi-

nation of usual Legendre complete elliptic integrals (how-

—(1-2u )
150 (y, j) = zﬂ%du\/}/ 1(12_)2(:)” ) (13.29)

ever, the third type of Legendre elliptic integral appears).

TABLE XI. Coefficients entering the PN expansion, Eq. (13.27), of the Delaunay effective Hamiltonian H. g (1, I3;v) — 1.
Coefficient Value
B _L
eff 217
2 15 _ 3
Eeff 815 LI
4 5,-35_L 27 1 105 3,y L _ 1451
Edy Gv-Par~2mr + (7 —2v) LE 16 18
6 _231_ 21,2 125 123 -2y, 1 1 _315 4 45 1 303 4 15,2 4l -2 661y, ) 1
Eeff [ 4 gV +(2 1287 )U]Iglg—'_( ; T3V 1§1§+[8 t3v +(123” 12)”]@@
45 1 _9,2 825 75, 1 6363 1
+( 2”"’225)151{;"'( sV T TV an s i
8 32175 45,3 | (18925 4 1005 12y, 4 (248057 _ 425105 12,0 L
Esr - +ier + (= Toe +asg )V + (Soss — Sisre 7Y nE
20307 1107 22 . 5025 7749 _ 105 A 7643 _ 123 ) 453613 | 80959 2
H-E 33 + (- + 3P + + (5 W+ (= + 5006 7 s
Ep) I 480 4096 BE
21435 3755 615 .2 46275 3 2989 123 22 124129 2 120763 |
R+ + (-2 + g )}1416+[ ”Jr( - L v )}111
_63,2 3465 _85365 585 2 _ 5745 50703_ﬁ 3\ 1 _ 75303 1 )
+(=Fv + 52 %2)1’18"'(%2” v+ 16 )11 256 119
E10 323323 385 4 10045 2 42665 2 g _ 572999 | 35 07 | 1755159 12y 2 o (121807 2
Eeit [ -y (e B + (7545 55 Ti6d6 + g TV + (g
+6817563) ] 1
640 oL

386595 3 18495 | 5335 72 ST
+[- B8R 4457 + (- + 35 72?4 (G - 14893

MG 4 315 4 20655 4 17425 2 2344005 2
+E vt (- + o W+ (—Hess
" 17929177[2 76818229)1/] i

1481955 77,'2)1/} 1

Sdu + 392325 392325 15 )I/2

— 54

8192 6720 5
769545 116065 8815 2 1907369 4 1345585 72
+[%2 — 16507 + (1S B + (= + “40% )”]_
125235 _ 135 4 4 (16145 _ 7995 ;2 1241145 72 | 3 2 205425\, 2
+[4E2 vV (055 - o T w? + (Hezse d oV
860567 2 478829887 1 1
+(— %096 7 + 6500 ) ]1;17
71575 | 3153 3671 861 1418201 _ 937783 72
+[= +320 + (3P G ) + (B 81927[)41‘,‘%
2464245 175 4 615 2 _ 4255 149563 153649 2 (1388971 12 _ 21149141y 1 1
H-Fm2 B+ o’ - % I+ 192 16384”) 24576 100800 ) ]131‘;
181845 81 A 17699%1 235,29 I
+(- 852 - + 1769931 4 2835 )1110
105 4 26595 2 200445 75 A 1550595 1874587 1
g - oo rt g 128 )11”+ 1024 17
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The latter exact, elliptic-integral representation is rather
complex, but it is relatively easy to compute both its PN
expansion [i.e., its expansion in powers of #; see
Eq. (13.11)] and its expansion in inverse powers of j.
This is discussed in detail in Appendix C, which also
includes a discussion of the simpler complete elliptic
integral giving the test-mass periastron advance.

Finally, the primitive information (beyond the test-mass
limit) contained in the 5PN radial action /,(y, j;v) is fully
described by the small number of y-dependent coefficients
of the various powers of v in the numerators of Eq. (13.20).
These coefficients [contrary to their corresponding v — 0
limits 75, (y)] are not known as exact functions of y but
only as limited expansions in powers of y — 1 = O(»?). For

instance, I’gl (y) is known to fractional 3PN accuracy, i.e.,
up to the third order in y — 1. The PN knowledge of the

higher terms 7%, ,(y) linearly decreases as n increases,

until the last terms 14 (y), with p = 1, 2, 3, 4, which are
only known at the lowest (Newtonian) accuracy, i.e., only
for y = 1. The known information carried by all these

1%, ., (y) is gathered in Table X.

By inverting the functional relation I, = I,(E, j), one
can finally obtain the explicit value of the corresponding
(effective) Delaunay Hamiltonian, H,g(1,, j). This is con-
veniently done by defining the variables

I3EIr+j, jzlz, (1326)
in terms of which one can get the PN expansion of
Heff<12,13)//l = }/Cz in the form

HSPN,loc,f (12’ 13; IJ) 5 _
— =7+ ) P Eg (L. Iyiv) + 0(n').
=0

(13.27)

The values of the coefficients E2k(1,, I3;v) are displayed in
Table XI. Note, however, that the structure of this (effec-
tive) gauge-invariant Delaunay Hamiltonian is not particu-
larly illuminating. The simple v structure exhibited by the
radial action function (13.20) is lost in the Delaunay
Hamiltonian (13.1). Indeed, the hidden simplicity of the
5PN local dynamics is more transparent when encoding it
either in the EOB potentials displayed above or in the radial
action (13.20). Let us emphasize again that, given a specific
gauge choice (say, p, gauge or energy gauge), the corre-
sponding EOB potentials are completely gauge fixed and
can therefore be considered as being as gauge-invariantly
defined as the more traditional gauge-invariant functions
I,=1.(E,j;v) or H(I,, j;v).

XIV. CONCLUSIONS

We have shown how to successfully combine several
different theoretical tools to develop a new methodology

[26] for extending the analytical computation of the
conservative two-body dynamics beyond the current
post-Newtonian knowledge (4PN). Our approach has
allowed us to derive an almost complete expression for
the 5SPN-level action, given by the sum of a 4PN + 5PN

nonlocal action, Eq. (2.2), and of a local one
[ pdg — HENdt. We succeeded in determining the full
<5PN

functional structure of H (which contains 95 nonzero

loc.f
numerical coefficients), except for two (¢*-level) unknown
coefficients (¢* level in the EOB potentials A and D). The
two main derivations underlying our new results are i) the
computation of the Delaunay average of the nonlocal action
around eccentric orbits to the tenth order in eccentricity
included and ii) the self-force computation of the redshift
along eccentric orbits (around a Schwarzschild black hole)
to sixth order in eccentricity.

We completed our results beyond the SPN level in two
different directions. On the one hand, we added the 5.5PN
contribution to the action (which is purely nonlocal) and
transcribed it into its EOB (p,-gauge) form up to the eight
order in p,. On the other hand, we used a recent extension of
our self-force computation to the eighth order in eccentricity
to improve the determination of the third post-Minkowskian
[O(G?)] part of the dynamics to the 6PN level. This allowed
us to compute the O(G?) contribution to the scattering angle
up to the 6PN level included. Our 6PN-accurate O(G?)
scattering angle agrees with the recent third post-
Minkowskian [O(G?)] result of Bern et al. [29,31].

We computed both the nonlocal and the local contribu-
tions to the SPN-accurate, O(G*) scattering angle. As our
5PN (and 5.5PN) results are complete at the O(G*) order,
the latter result offers checks for future fourth post-
Minkowskian calculations. We could conveniently separate
the study of the nonlocal versus local contributions to the
scattering angle by flexing (at the SPN level) the scale

2r{2 /c entering the definition of the nonlocal action.

We point out a remarkable hidden simplicity of the local
5PN dynamics. This hidden simplicity only manifests itself
when using a gauge-invariant description of the dynamics.
There are several (complementary) ways of viewing the
(local) SPN dynamics in a gauge-invariant fashion. One can
use the EOB description, in one of its gauge-fixed versions
(p, gauge or energy gauge). When comparing the EOB
encoding of SPN-level information (and v structure) to the
(simplified) h""'y, scattering encoding, one can see not
only that they are one-to-one but also that the EOB
encoding is as minimal as the A"y, one. (See, Sec. X.)
An alternative gauge-invariant approach is to focus on
gauge-invariant observables. Two of them have a particu-

A

larly interesting structure: the scattering function y(E., /)

and the radial action I,(éeff, J). We have emphasized that
the (f-flexed local) radial action (when expressed in terms
of the EOB effective energy éeff and of the product Aj,
where h = E''/M) has a remarkably simple structure, see
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Eq. (13.20), which parallels the simple structure of

A

x(Eeir, j)- This simplicity is, essentially, already automati-
cally incorporated in the structure of the EOB Hamiltonian
[see Table VII and Eq. (11.6)]. Let us also note that the
local 5PN dynamics is completely logarithm free and that
all its numerical coefficients are rational at PM orders G=3
and include 7> at PM orders G=*. We have relegated most
of the technical details of our computation to various
Appendixes. More precisely,

(1) Appendix A displays our new self-force result on the
time-averaged redshift (z;) at the sixth order in
eccentricity, O(e®), and its conversion into the
corresponding EOB potential gg(u).

(2) Appendix B shows how to obtain a closed-form
expression for the 2PM Hamiltonian in the standard
(p,) EOB gauge by computing the (inverse) Abel
transform of its corresponding (closed-form) energy-
gauge expression.

(3) Appendix C discusses the radial action and the
Delaunay Hamiltonian for the test-mass limit.

Most of the coefficients entering long expressions, like
the redshift invariant at the sixth order in eccentricity, have
been given in the form of tables. (They are available in
electronic format upon request.)

Standard PN approaches to binary dynamics (in their
various flavors: Hamiltonian, Lagrangian, or effective-
field-theory) have reached their limits, in view of the
complexity of the required computations and of the subtle
infrared issues linked to time nonlocality. Our work, which
tackles nonlocality from the beginning, offers an alternative
approach to standard computations, combining information
from different contexts and using it in a synergetic way. It is
therefore expected that it may lead to further progress in
analytically controlling the dynamics of binary systems. It

would be interesting to explore combining our new
approach with the recently pioneered new approach to
binary dynamics based on focussing on (classical or
quantum) scattering motions [28,29,31,38].

The techniques we have been defining here can be
extended to higher PN orders. We will separately present
our complete, recent 6PN-level results [39].

Two coefficients are still missing in the SPN Hamiltonian
of a two-body system. Several routes for determining the
two missing coefficients are conceivable, notably, second-
order self-force computations or partial standard PN
computations of the SPN dynamics targeted toward a
selected mass dependence. (The recent progress in com-
puter-aided evaluation of the PN-expanded interaction
potential of binary systems [16,18,40] gives hope that
the two missing coefficients might be soon derived.) Also,
high-accuracy numerical simulations might enter the game.
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APPENDIX A: THE TIME-AVERAGED
REDSHIFT (z,) AT O(e®) AND ITS EOB
TRANSCRIPTION g (x)

A redshift invariant for slightly eccentric orbits was
introduced in the spacetime of a nonrotating black hole
by Barack and Sago [48] as the orbital averaged value of the
linear-in-mass-ratio correction 6U to the coordinate time
component of the particle’s 4-velocity. The latter has been
computed through the 9.5PN level in Ref. [50] up to the
fourth order in the eccentricity, improving the previous

TABLE XII. Coefficients entering the PN expansion of 5z‘fﬁ, Eq. (A2).

Coefficient Value
s 1
3 4
e _S3_ 4L
4 127 128
< 178288 1994301 _ 38471 | 6455 2 1953125
s s In(2) + S5 In(3) — g5 + qo0s 7 + 167 + 557 In(5)
CL-“ 8
c _ 1694, | 66668054 29268135 782899 2 _ 2027890625 17344111
& sy + 55> In(2) s In(3) + 5og 7 12006~ 10(5) 5040
o 847
6 5
P _ 18404963
6.5 151200
c 10083929027 11019270343 | 10727453, | 4609218071875
“ 687 1n(320)30—i— 059370 -3 i_%8283§4 - Ry 041n(5)
4663687 _4 _ 130309059379 2 _ 14238373347 96889010407

+ Sounss 28311552 F 17050 In(3) + =555 In(7)
cln 10727453
7 5670
< 620926159
75 470400
c _138663992506361 1097743020107 4 _ 1044921875 2 _ 159152
s sosaea0 -~ 0(7) + Gosessisao * 3001~ 1n(5) 5-¢03)

4891192867 ,, _ 160452171 >
70875 1 o0 In(3)

__ 133972817261 77:2 + 9033082952 1[1(2)2 + 12;3276 ]/2 + 105459653332171 111(2)

2764800 1575

16372125

(Table continued)
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TABLE XII. (Continued)

Coefficient Value
160452171
— 1055 Ly In(3)
84510345271221 _ 116526439405625 1044921875
+ = w000 n(3) iwooiss — In(5) st~ rIn(5)
1912624751720539 __ 160452171
+ 3959310000 500 In(2)1In(3)
4574838928 1044921875
In 4891192867 | 1216376, _ 160452171 1044921875 2287419464
Csz 1750 +o05 7 Zo0 - In(3) 3001~ 1n(5) + =55 In(2)
In 204094
Cg +555
e 17411624626943
8.5 22632825600
c _325452157955686875 189182288, 2 | 9958568909678 . _ 35883263448213399 904011369824
S Seciasos - In(5) 3675 /T 35001605 Zasaasoon - In(3) Togas 7 In(2)
17956170280520566 _ 13247132039065180 | 919213293396729 4 _ 45448745981842837 2 | 3089591667 2
"'2 3814635 ln(2)2 45226957500 +28285899345920 ”9 1 L1098 12838400 m + S5 In(3)
62937890625 2 _ 12558688734 2 5264 1975634
+ 25755 > In(5)7 = =R n(2)7 4+ S554(3) + G In(2) In(3)
3089591667 262937890625 16842023587039315 262937890625
+ 5500 rIn(3) + 255522 1n(2) In(5) + B2 In(7) + 255552y In(5)
In 452005684912 4964431663039 | 3089591667 189182288 . |, 262937890625
€9 tosas — 10(2) + 55501655 T a0 In(3) 675 ¥ T 55— In(5)
In’ _ 47295572
Cy 3675
c 151427301903 768417611 3 __ 609707863599642191 82220684377
s ogoo0 - 7 In(3) 113400 * 0500678814720 % T~ 3060000 Y
25820141287513 111806640625
+ = 560000~ 7 In(2) a3501 7 In(5)
o | 82200684377
9.5 7938000

analytical knowledge at 6.5PN for SU¢ [49] and at 4PN for  the same, 9.5PN, level. Our analytical computation of the
conservative SF effects along an eccentric orbit in a

Schwarzschild background follows the same approach
as in Ref. [50], to which we refer for a full account of

sU [23,49]. Higher-order terms in the eccentricity expan-
sion have been obtained in Refs. [50,66] up to the order
O(e*), but at the 4PN level of approximation only, by : . _ )
combining the 4PN results of Ref. [23] with the first law for  intermediate steps. We work with the redshift function z; =
eccentric orbits [44]. The O(e*) 9.5PN-accurate results of U~!and its first-order SF perturbation 6z, = —6U/U o (with
Ref. [50] have also been transcribed there in terms of the ~ Uo denoting the corresponding background value). The
corresponding EOB potentials d(u) and g(u) = g, (u). small—eccentrlclt}/ expansion of the tlme—-averaged value
We have extended here the calculation of Ref. [50] by (62), expressed in terms of the (Schwarzschild-background)
including contributions of sixth order in eccentricity through ~ MVerse parameter u,, = 1/p and eccentricity e, reads

TABLE XIII.  Coefficients entering the expression for gg(u,), Eq. (A3), in terms of the redshift function and its derivatives.

Coefficient e

) - (G276, 37V, + 621245 - 23120, +320) 527

2 (u) 1o (20715 = 216u,, + 56) U2

s (u,) — 5 (—2048 — 568038697344u12 + 1699666882561 — 223561417224u8, + 732608646844,

4325936106715, — 17888024322u8, + 42346416u;, + 501408678672u;, — 802643130720u),

+867902879808ul! — 278227213 — 438377232u}, + 111360u,,) %
Cs'(u,) — 1255 (291931776u)! — 1340770752u) + 2510150688u;, — 2598166704u5 + 1680719416,
—721475988uS, + 211137750u;, — 42247977uj, + 5663472u3, — 48398417
(1-24,)°
+23808u, = 512) gt
Cs'(u,) — 15 (19180801}, — 4203792u], 4 3933936u, — 2053224u;, 4 656676u;, — 13244 1u3, + 16376u3,
(1-2u,)*
e 3 u, (1=2u,)° (1=3u,) /2
5 (up) ~ ogg (45720u}, — 503161, + 205545, — 4349u}, + 552u,, — 24) G
¥ w) (1-2u,)°(1-3u,)3/?
CS (MP) - 8% L (ll—6u/,)4 £

(Table continued)
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TABLE XIIL. (Continued)

Coefficient Value
¥ w3 (1-2u,)°(1-3u,)%?
Cg (up) _%W
cs (u,) — 545 (77968396845 — 188603769615 + 197586172847, — 11785773608, + 4429675444
—ou )3
—109412372u, + 1781696213 — 183321942 + 1062884, — 2672) %
r P P
C¢ (u,) 75 (1613260848 — 339128647, + 30156192u, — 1482409215, + 44349164 — 8371574}
(1-2u,)*
2 p— —_
s (up) 135 (26640, — 107761} — 6970u3, + 40011, — 552u;, -+ 24) U2 (=)
P P
C5 () — (4 - d5u, + 72} L2
e? w, (1=2u,)(1=3u, )32
i ) ot n
Co' () — 15 (490326, — 438120} + 11586u) — 60912, — 88u,, + 8) 12 =)
ot (1=2u,)%(1=3u,)*/?
Cy (up) 5 (8 = 8luy, + 1dduy) == o
Cs' (u _ 4 (1=20,)°(1-3,)”
2 ( p) 15 u,(1-6u,)*
Csﬁ(up) 16 (1=2u,)° (1=3u,,)>2

5 u%(l—6b¢p)3

TABLE XIV. Coefficients entering the PN expansion of ¢4(u), Eq. (A4).

Coefficient Value
c 827 | 1399437 2358912 390625
b2 —T+ 30 ln(3)— 25 ln(2)+ 18 ln(S)
c 2613083 |, 6875745536 23132628 101687500
bs os0- T o gy In(2) 75 1n(3) to-In(5)
be 2723471
3.5 756000
c 153776136875 447248 . _ 9678652821 96889010407
bg s In(5) + 5555y soo0—In(3) + = ige0 - n(7)
_ 41589250561 _ 9733841 72 _ 211076833264 1 (9)
7938000 327680 14175
In 223624
by +5575
c 1783458013
b4-5 + 56343000
c 3651910996, _ 7733712492302375 912077147376081 _ 211655031897463
bs 86625 / Sortsoe7s -~ In(5) + = ses0000 In(3) o331200~ 1n(7)
5043177377399716 38342542739 2 | 15438788608 2
T S se0eas—In(2) + Fggrg w0+ s n(2)
_ 1061386821 |1)(3)2 _ 830363821453539
875 1746360000
208984375 2 _ 417968750 2122773642 2122773642
— 208984375 | (52 _ $UT968TS0 1 (5) — 2122773682 2 In(3) — 2223682 I (3)
70193205248 417968750
+ PEE2# 8y In(2) — #5552 1n(2) In(5)
In 208984375 35096602624 1825955498 _ 1061386821
bs 5o~ In(5) + 2 In(2) 4 B g5 n(3)
b _ 375333092211461
905313024000
c 54126285229417 ., _ 315130937024 7843492521 39285904041 448936953125
bg =35m0 Y~ s v In(2) + 55 In(2) In(3) + F5 y In(3) + 55 In(2) In(5)

448936953125 _ 11892972284088646293 _ 1686162964063105097 _ 2314158285520063375
+ 5508 =y In(5) Sr3o1360000 — 1n(3) 12770057500°  1n(2) Sesrasszos - In(5)

192 1878836255027762051 4253856, 2 _ 262462223346649 4 _ 375306539275861 2
7¢(3) + doesasooo0— n(7) + 255550y 10737418240 % 23121100800
39285904041 2 | 448936953125 2 21523313234464 2
+=500 — In(3)” + =5 = 1n(5) S5 In(2)
| 384973167765003181159
5873637369600
In _54126285220417 | 4253856, _ 157565468512 39285904041 448936953125
bg ta7147000 i Y 2005 In(2) + =55 In(3) + =55 =1n(5)
In? 1063464
bg + 1225
c 102893846003 431653923653437
bgs Togas000 Y + = Tosasoos — #1n(2)
30475181893883804796413 . _ 2758233739833 961624729 3 _ 22361328125
144994933923840000 ¢ Zoo000 7 In(3) + F5gza00 7 Teo 7 In(5)
pin 102893846003
6.5 39690000
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(6z1) = 5ZTO<"‘IJ) + 625172(“17) + 64&?4(”1))

+ 875" (u,) + O(e®). (A1)

New with this work is the computation of the 9.5PN-accurate
O(e%) contribution, namely,

825" = c§ud + c§ub + (c& + e In(u,))u,

+ (¢§ + e In(u, ) )uS + c§ sup ul?

+ (¢§ + M In(u, ) )ul, + ¢ sup ub?

+ (c§ + e In(u,) + e In?(u,))ud + c§sup
+ (¢§ + it In(u,) + c19rlz In?(u,))u)

+ (€5 + cbs In(uy)up” + O(u)?),

with coefficients listed in Table XII.
The improved knowledge of the redshift function can

then be converted into the EOB potential gq(u)p® €
Q(u, p,) by using the relation (obtained in extending to
the O(e%) level the O(e*)-level results of Ref. [44])

17/2

(A2)

6-2k
d

B(up)—i—z <Z e (u d

where we have used the notation 7+ f f. The coefficients

B(u,) and ce (up) are listed in Table XIIL
The PN expansion of ¢¢(u) then reads

q6(u)

(). (A

= bSu® + b§u’ + bS su”/? + (b§ + b In(u))u
+ bj.5u9/2 + (b5 + blsn In(u))u’ + bg.sun/2
+ (bg + b In(u) + b In? (u) )u®
+ bg.5u13/2 + 0(147)’

with coefficients listed in Table XIV.

APPENDIX B: TRANSFORMING THE
ENERGY-GAUGE 2PM Q TERM, ¢,i (Hs)u?,
INTO ITS (CLOSED-FORM) p,-GAUGE VERSION
VIA AN ABEL TRANSFORM

In the energy gauge, the 2PM EOB Q potential reads
OPM — gorg(7)u? where y = Hg. We want to transform it

9 27 6
g (x) = 6ux + (8v — 6L7)x% + (—51/ —?vz + 61/3))63 + (71/ + 12+

11, 20,

( 20" "7 "
(3, 2, 20,5 35,
TLART LRV LA L

5 4 12, 170 5 30 ,
—§u4+61/5>x5—|—<—1/+— + o =

in a p,-dependent one, say, QPM = qg )(p,)u2, that leads
to the same scattering angle. Usmg Eq. (4.22) of Ref. [28],
this means that the two functions must yield the same
integral [*® doQ, where do = dR/PR. Writing this con-
dition at the 2PM level [neglecting any O(G?) correction] is
easily seen to lead to the condition

@ (p,)

VP -1-p?

Reexpressing this condition (and the two functions) in
terms of the variables ¢ =y> — 1 and x = p? yields

@G (7 (B1)

/\/r-_

(pr)
¢ 4 (X)/Vx
=— | dx—-—F—7——. B2
QZEG(C) 7 Jo X \/m ( )
The latter condition expresses the fact that the function
greg(c) is the (usual) Abel transform of the function

qép )(x)/\/;c But the Abel transform (with inverse square
root kernel) is just (in the sense of Marcel Riesz’s integral
operators) a derivative of order —1 5 Therefore, the inverse
transform (a derivative of order + 2) can simply be written as
the composition of a derivative and an Abel transform.

Hence, we have the following formula for the inverse of
Eq. (B2):

v [ o= 5. @3)

Ny

The function g,gg(c) to be inserted in this formula is [after
expressing y in terms of ¢ = y?> — 1 in qypg(7), Eq. (11.5)]

3 1
— 24450 (1=—), B4
teoe) =36 +50 (1= ) (B4
with h(c) = /1 =2v+ 2uv(1 + ¢)'/2.
One can first easily obtam the all-order PN expansion of
the function qg ")(x) (where we recall that x = p?) by

expanding ¢,gg(c), Eq. (B4), in powers of ¢ and then
inserting this expansion in Eq. (B3). The result reads

18 24

iy - 6y4) x*

7777
6 6
netny t oty T )x

21
v+ = 3 6+6U7>x7+0(x8). (B5)
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It is also possible to obtain a closed-form expression for the
function q( r) (x) by computing the integral /(x) entering
the inverse Abel transform, Eq. (B3).

To compute the integral /(x), Eq. (B3), we change the
variable ¢ = y%> — 1 back into y. This yields

1) 3/V1+x (57% — 1)2ydy (1 1 >
X)=— — .
2 )i V1+x—p2 1+2u(y = 1)
(B6)
We introduce then the notation
VT s
Yr= X, Vv = 2w =z L,

so that

t)=3 [ L (1 )

=2(1+572)\/r; =1

3 (57 =y
vl =P )

3
=2(1 + 5¢2 2 1——1, B8
(L4577 )\/r NG (B8)
where we introduced
yr 5 2_1
J= dy E 4 5 )r

N (S )

_ y’d Q3(7) (B9)

— A 7/\/1’3(}’).

Here, P; and Q5 denote the cubic polynomials in y entering
the integrand of the integral J.

At this stage, it is already clear that the original integral
I(x) is the sum of an elementary term and of an elliptic
integral given by J. To get an explicit form of the elliptic
integral J, we need to perform the Legendre reduction of J.
This means writing the identity

- 2d1P3 + (do + dl}/)Pg
VP3

and determining the coefficients d, and d; so as to reduce

the integral [dyQ;(y)/\/P3(y) to an integral whose
numerator is a polynomial of degree 1. Indeed, the choice

2(dy + diy)/P5)

(B10)

4

dO =3V

dy = —1,
3 1

(B11)

implies

2d1P3 + (d() + dlj/)Pg
8 2
=05+ (—37/3 —57/5 + 1)7—§m3

8 7
=03+ (—3r3 -=72+ 1) (r +7.) + 577}

3 3
8 5
that is,
2d\Py + (dy + diy)Py =03+ Ci(y +7,) + G5, (B13)
where
8
Cr==3ri=3r+1
7 8
Cr =107 +57 — 10 (B14)
3 3
Thereby, the identity (B10) becomes
03 +Ci(y+vr,)+C
20y + ) /P = EFEOTIIIES  as)
so integrating both sides gives
4 oY tn
2|zy, -1 )v/P3(1)=J+C d
<3 Yy ) 5(1) +G % Y /Py
v dy
C —, B16
) v (519
where
P3(1) = (r7 = D(1 +7.). (B17)
This yields the following expression for J:
J = —2<3n - 1> (rr =D +7.)
tr 14 + Yv
G dy
1 VP3(r)
r d
—c / r__dr (B18)
1V Ps(r)

The remaining integrals are then explicitly expressible in
terms of complete Legendre elliptic integrals, namely,
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Yr

i dy
1= —F
\Y Py (}’)
2 la—1
— \/a_:?EllipticF <arcsin %,

yr
sz/ ans
1

VP3(7)

a—>b
a—-c)’

la—1 -b
:—2\/a—cElliptiCE<arcsin a—, a ), (B19)
a—b Va-c
where a =vy,, b = —y,, c = —y,, and
a—-1 y,—1
va—c=vy,+7, :r—’
a—>b 2y,
-b 2
azo_ (B20)
a—-c vty

Here, we got I; from Ref. [67], Eq. (6), p. 254, Sec. 3.131,
and [, from Ref. [67], Eq. (5), p. 255, Sec. 3.132, using in
the latter case (x — ¢) in the numerator of the integrand and
simplifying the final result. The minus sign in I, corre-
sponds to a general prefactor a/b, which is —1 in the
present case.

Inserting the latter elliptic-integral representation of J in
the above expression of I(x) and then inserting /(x) in
Eq. (B3) finally gives a closed form expression for the

2PM-level p,-gauge function q2 (x) (with x = p?). This
exercise shows, however, that the energy-gauge expression
of the 2PM dynamics, involving the algebraic function
q2i6(7), Eq. (11.5), is drastically simpler than its p,-gauge
retranscription.

APPENDIX C: RADIAL ACTION AND
PERTASTRON ADVANCE IN THE
TEST-MASS LIMIT

We recall the notations y = é’eff,

r=1=pi=-[pP (C1)

and
e? =1+ pgj? (€2)
The exact radial action in the test-mass (or

Schwarzschild, or v — 0) limit reads

\/P3

5,
(r.J 1—2u

(C3)

where P;(u) is the following cubic polynomial in u =1,

Py(u) = y* = (1= 2u)(1 + j*u?)
=y> = (1 =2u + j*u® - 2j%u?)

=y? =1+ 2u— j2u® +2j%u. (C4)
Here we are interested in ellipticlike motions with 0 <
e? < 1,ie., with =1 < p% j? < 0. The inequality |p[j < 1
does not a priori allow us (contrary to the scattering-motion
case) to straightforwardly use a PM expansion in powers of
% « G at a fixed value of y (or p,). The standard expansion

technique for ellipticlike motions is the PN expansion.
A useful way to formalize the PN expansion is to introduce
a PN scaling, say, with the bookkeeping parameter 5
introduced in the scaling relations (13.11). The main
geometrical effect of this scaling is to introduce a para-
metric separation between the two roots of the cubic
polynomial P3(u) that are close to the roots,

1te
Uy =—5—,
Jz

(C5)

of

Py(u) =y> =1+ 2u— j2u® = pX +2u— j2u®, (C6)
and the third root of P3(u). It is easily seen that this is
formally equivalent to introducing a related PN book-
keeping parameter, say, €, and to write P3(u) as

P3(u) = pg +2u— jfu’ +e(2j?w’).  (CT)
One can then expand the radial integral (C3) in powers of ¢,
using the technique explained in Ref. [57].

From the general result given in Egs. (3.8) and (3.9) of
Ref. [57], one can see that the PN expansion of the sum
I3 + j defines, when considered at a fixed (negative) value
of p2., an analytic function of the variable % having an

expansion in powers of l} of the form

12 +1(7
+Z n2n+1 .

n>0 J

By.J)+ (C8)

We wish to algorithmically compute the coefficients Ig(y)
and I5,,,(y) entering the Laurent expansion (C8).This
expansion shows that, when keeping fixed pZ (with
p% < 0), one can analytically continue I3(y, j) down to
%—» 0. To be able to use the integral definition (C3) of

I5(y, j) in the limit§ — 0, one must (following the method

of Sommerfeld used in Ref. [57]) interpret the integral 59 du
as a contour integral in the complex u plane, along a closed
contour C circling around the two roots of P3(u) close to
(C5). When % — 0, the latter two roots become complex

024062-37



BINI, DAMOUR, and GERALICO

PHYS. REV. D 102, 024062 (2020)

(because e ~ +iy/—p2j) and tend toward :I:i@. The
important point is that, in this limit, these two roots tend
toward zero, and therefore remain well separated from the
third root which tends toward % [indeed, the sum of the three
roots of P3(u) is equal to 1]. One can technically see the
possibility of expanding the contour integral defining
I5(y, j) in this limit by introducing the scaled integration
variable y such that u = f In terms of this variable, we have
the contour integral

L(y.j) =

As the contour C circles around the roots =+i @ of
Py(y) = p% — »* (while avoiding them), it is allowed to
expand the integrand in powers of } The latter expansion
leads to well-defined complex-contour integral expressions
for the looked-for coefficients I§(y) and I3, , (7). One can
then contract the complex contour C down to the (doubled)
interval [—i\/—p2,, +i\/—p3] along the imaginary axis,
and thereby reduce the integrals to real integrals in the
variable x = y/(i\/—pZ). The latter real integrals on the
interval x € [—1,+1] can then be evaluated by using
Hadamard’s partie finie [57]. Using this technique, we
computed the exact expressions of the test-mass coeffi-
cients I3(y) and I3, (y) given in the text.

Let us also note that Ref. [57] [see Eq. (A.8) there] has
explicitly computed the (simpler) complete elliptic integral
giving the test-particle periastron advance Ky, = P/
(27), ie., the j derivative of I5"(&.. j). The authors
expressed the result in the simplified form

N ) 13
Ksen(Eetrs ) = Ksencire (/) (1 +E)V4F {Z Zli (C10)

where the prefactor

_ 12 1/4
KSch,circ(.]) = <1 ] 3N >

corresponds to the circular-orbit limit and where the argu-
ment & is defined as

(C11)

& = tan? <; arcsin(\/)_c)>, (C12)

in terms of

108 12 RS |
xX=—1 <1—,—2n2> (2E—l—,—2
7 J J

E - 16
—36.—2172(1 +3El’]2) N ) (C13)
J ]
Here, E denotes
. -1 . 1.
E = eff2 = Eeff <1 + 5 eff”]2> 5 (C14)
where we introduced the further notation
y =&t =1+ Eeen. (C15)
Inserting the PN expansion of £ in terms of x, i.e.,
L1, 169 o 1009
== — — (0] Cl6
§=5" T3 Tese1” Tso0a0" T O (C16)
with
2E2 4+ 1 E
v 108 2B i ) 4327(9 S 5) 6
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_ 46656 8L J_10+ / )n“’ +0(n'"?), (C17)
in the expression of Kg,(Eer. j), then yields
3 05 15 .
Ksen(Eegr» j) = 1 +Jg'l + (4 I +2 2Eeff>’74
15 = 315 . L155Y ¢
+ <4] EZ + 2—j4Eeff + 4—J6>77
205205 4725, 45045
648 160 et Ty 6 et )1
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where we used the energy variable E. = (y — 1)/n*. The
latter expression is easily checked to agree with (minus) the
Jj derivative of the v — 0 limit of our 5PN-expanded radial
action above, as given in Table XI.
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