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This work presents a complete reevaluation of the hadronic vacuum polarization contributions to the
anomalous magnetic moment of the muon, ahad;VPμ , and the hadronic contributions to the effective QED
coupling at the mass of the Z boson, ΔαhadðM2

ZÞ, from the combination of eþe− → hadrons cross section
data. Focus has been placed on the development of a new data combination method, which fully
incorporates all correlated statistical and systematic uncertainties in a bias free approach. All available
eþe− → hadrons cross section data have been analyzed and included, where the new data compilation has
yielded the full hadronic R-ratio and its covariance matrix in the energy range mπ ≤

ffiffiffi
s

p
≤ 11.2 GeV.

Using these combined data and perturbative QCD above that range results in estimates of the hadronic

vacuum polarization contributions to g − 2 of the muon of ahad;LOVP
μ ¼ ð693.26� 2.46Þ × 10−10 and

ahad;NLOVP
μ ¼ ð−9.82� 0.04Þ × 10−10. The new estimate for the Standard Model prediction is found to be

aSMμ ¼ ð11659182.04� 3.56Þ × 10−10, which is 3.7σ below the current experimental measurement. The
prediction for the five-flavor hadronic contribution to the QED coupling at the Z boson mass is

Δαð5ÞhadðM2
ZÞ ¼ ð276.11� 1.11Þ × 10−4, resulting in α−1ðM2

ZÞ ¼ 128.946� 0.015. Detailed comparisons
with results from similar related works are given.

DOI: 10.1103/PhysRevD.97.114025

I. INTRODUCTION

The anomalous magnetic moment of the muon, aμ ¼
ðg − 2Þμ=2, stands as an enduring test of the StandardModel
(SM), where the ∼3.5σ (or higher) discrepancy between the
experimental measurement aexpμ and the SM prediction aSMμ
could be an indication of the existence of new physics
beyond the SM. For aexpμ , the value is dominated by the
measurementsmade at the BrookhavenNational Laboratory
(BNL) [1–3], resulting in a world average of [4]

aexpμ ¼ 11659209.1ð5.4Þð3.3Þ × 10−10: ð1:1Þ

Efforts to improve the experimental estimate at Fermilab
(FNAL) [5] and at J-PARC [6] aim to reduce the exper-
imental uncertainty by a factor of 4 compared to the BNL
measurement. It is therefore imperative that the SM

prediction is also improved to determine whether the
g − 2 discrepancy is well established.
The uncertainty of aSMμ is completely dominated by the

hadronic contributions, ahadμ , attributed to the contributions
from the nonperturbative, low energy region of hadronic
resonances. The hadronic contributions are divided into the
hadronic vacuum polarization (VP) and hadronic light-by-
light (LbL) contributions, which are summed to give

ahadμ ¼ ahad;VPμ þ ahad;LbLμ : ð1:2Þ

This analysis, KNT18, is a complete reevaluation, in line
with previous works [7–9], of the hadronic vacuum
polarization contributions, ahad;VPμ . The hadronic vacuum
polarization contributions can be separated into the leading-
order (LO) and higher-order contributions, where the LO
and next-to-leading order (NLO) contributions are calcu-
lated in this work.1 These are calculated utilizing dispersion
integrals and the experimentally measured cross section,

σ0had;γðsÞ≡ σ0ðeþe− → γ� → hadronsþ γÞ; ð1:3Þ
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1The next-to-next-to-leading order (NNLO) contributions have
recently been determined in [10] and are included as part of aSMμ
below.
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where the superscript 0 denotes the bare cross section
(undressed of all vacuum polarization effects) and the
subscript γ indicates the inclusion of effects from final
state photon radiation. At LO, the dispersion relation reads

ahad;LOVP
μ ¼ α2

3π2

Z
∞

sth

ds
s
RðsÞKðsÞ; ð1:4Þ

where α ¼ αð0Þ, sth ¼ m2
π , RðsÞ is the hadronic R-ratio

given by

RðsÞ ¼ σ0had;γðsÞ
σptðsÞ

≡ σ0had;γðsÞ
4πα2=ð3sÞ ; ð1:5Þ

and KðsÞ is a well known kernel function [11,12], given
also in Eq. (45) of [7], but differing by a normalization
factor of m2

μ=ð3sÞ. This kernel function [which behaves as
KðsÞ ∼m2

μ=ð3sÞ at low energies], coupled with the factor of
1=s in the integrand of Eq. (1.4), causes the hadronic
vacuum polarization contributions to be dominated by the
low energy domain. At NLO, the data input is identical,
with corresponding dispersion integrals and kernel func-
tions [13] (see also [7]). In the previous analysis [9]
(denoted as HLMNT11), the LO hadronic vacuum polari-
zation contributions were found to be

ahad;LOVP
μ ðHLMNT11Þ ¼ ð694.91� 4.27Þ × 10−10; ð1:6Þ

which resulted in the total SM prediction of

aSMμ ðHLMNT11Þ ¼ ð11659182.8� 4.9Þ × 10−10: ð1:7Þ

This, compared with the experimental measurement, gave a
g − 2 discrepancy of 3.3σ.
In addition to calculating ahad;VPμ , the combination of

hadronic cross section data is also used to calculate the
running (momentum dependent) QED coupling, αðq2Þ.
This, in particular, is then used to determine the effective
QED coupling at the Z boson mass, αðM2

ZÞ, which is the
least precisely known of the three fundamental electroweak
(EW) parameters of the SM [the Fermi constant GF, MZ,
and αðM2

ZÞ] and hinders the accuracy of EW precision fits.
Using an identical data input as that used for ahad;VPμ , the
hadronic contributions to the effective QED coupling are
determined from the dispersion relation

Δαð5Þhadðq2Þ ¼ −
αq2

3π
P
Z

∞

sth

ds
RðsÞ

sðs − q2Þ ; ð1:8Þ

where the superscript (5) indicates the contributions
from all quark flavors except the top quark, which is
added separately. Together with the leptonic contributions,
this is used to determine the running coupling αðq2Þ ¼
α=ð1 − Δαhadðq2Þ − Δαlepðq2ÞÞ.

The structure of this paper is as follows. Section II
describes all changes to the treatment and combination of
hadronic cross section data since [9]. Section III gives
details concerning the contributions to ahad;LOVP

μ and
ΔαhadðM2

ZÞ from the different hadronic final states and
energy regions, culminating in updated estimates of both
ahad;LOVP
μ , ahad;NLOVP

μ , and ΔαhadðM2
ZÞ. These results are

then compared with other works and the new prediction of
ahad;VPμ is combined with all other SM contributions to
determine the SM prediction aSMμ , with details given
concerning the consequences of this on the existing
g − 2 discrepancy and the new result for αðM2

ZÞ. Finally,
the conclusions of this work, along with discussions of the
prospects for g − 2 in the future and potential improve-
ments for aSMμ , are presented in Sec. IV.

II. CHANGES SINCE THE LAST ANALYSIS
(HLMNT11)

A. Radiative corrections

1. Vacuum polarization corrections

Equations (1.4) and (1.8) require the experimental cross
section to be undressed of all VP effects as VP (running
coupling) corrections to the hadronic cross section are
counted as part of the higher order contributions to ahad;VPμ .
Any new and old data that have not been corrected for VP
effects require undressing. However, recent data are more
commonly undressed in the experimental analyses already,
removing the need to apply a correction to these data sets.
This benefits the data combination as new, more precise
data undressed of VP effects are dominating the fit for
many channels which, in turn, reduces the impact of the
extra radiative correction uncertainty which is applied to
each channel.
Following the previous analyses, the “bare” cross section

σ0had in Eq. (1.5) is determined to be

σ0had ¼ Cvpσhad; ð2:1Þ

where Cvp is a multiplicative VP correction. For this
purpose, the self-consistent KNT18 vacuum polarization
routine, vp_knt_v3_0, has been updated via an iteration
of the new data input.2 An in-depth discussion of the
determination of the vacuum polarization and the corre-
sponding routine will be given in [14].
The decisions to undress all data sets previously cor-

rected in [9] are unchanged, with the exception of two
measurements of the inclusive hadronic R-ratio by the
Crystal Ball Collaboration [15,16]. A reexamination of the
experimental analyses of these two measurements has

2This routine is available for use by contacting the authors
directly.
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shown that not only do they include some treatment of the
VP, but that they also both account for this correction with
sizable systematic uncertainties. Applying an extra VP
correction here would be an overestimate of the correction
and its corresponding uncertainty. Therefore, undressing of
these data is not applied here. In addition, it should be noted
that in a separate work [17], two measurements by the
KLOE Collaboration [18,19] in the πþπ− channel are now
undressed of VP effects using an updated routine [20]
compared to the one used previously [21].
The undressing of narrow resonances in the cc̄ and bb̄

regions requires special attention. Importantly, the elec-
tronic width of an individual resonance, Γee, must be
undressed of vacuum polarization effects using a para-
metrization of the VP where the correction excludes the
contribution of that resonance, such that

Γ0
ee ¼

ðα=αno resðM2
resÞÞ2

1þ 3α=ð4πÞ Γee: ð2:2Þ

Here, αno res is the effective QED coupling neglecting the
contribution of the resonance itself and is given by

αno resðsÞ≡ α

1 − Δαno resðsÞ
; ð2:3Þ

whereΔαno resðsÞ is determined from Eq. (1.8) such that the
input RðsÞ does not include the resonance that is being
corrected. To include the resonance would lead to an
inconsistent definition of the narrow resonance.

2. Final state radiative corrections

Final state radiation (FSR) cannot be separated in an
unambiguous way in the measured hadronic cross sections.
Therefore, while formally of higher order in α, FSR
photons have to be taken into account in the definition
of the one particle irreducible hadronic blobs and will
already be included as part of the leading order hadronic
VP contributions. However, depending on the experimental
analyses, some amount of real photon FSR may have been
removed during the event selection. Adding back these
missed contributions is model dependent and not feasible
for general hadronic final states. It is therefore necessary to
estimate the possible effects and their impact on the
accuracy of the data compilations. Similar to the case of
VP corrections, an extra radiative correction uncertainty
due to FSR effects is then estimated channel by channel.
For the important πþπ− and KþK− channels, detailed

studies have been performed for this analysis. Here, and
especially in the limited energy range below 2 GeV, it has
been shown that scalar QED provides a good description of
photon FSR; see e.g. [22–24]. In the past, to estimate
possible FSR effects in πþπ− and KþK− production, the
fully inclusive, order α correction to the cross section,

σð0Þhad;ðγÞðsÞ ¼ σð0ÞhadðsÞ
�
1þ ηðsÞ α

π

�
; ð2:4Þ

has been used.3 Here, the function ηðsÞ is given e.g. in [22]
and the subscript γ indicates the one photon inclusive cross
section. However, experimental cross section measure-
ments, by nature, include all virtual and soft real radiation
effects. Therefore, to estimate possibly missing photon
FSR, ideally only the effects from (hard) real radiation
above/within resolution/cut parameters which are specific
for a given experiment or analysis have to be estimated.
Whereas in the calculation of the inclusive correction a
regularization of the virtual and real soft contributions is
required to obtain the infrared finite result η, the hard real
radiation, ηhard;real, can be estimated numerically from

ηhard;realðsÞ ¼
Z

s−2
ffiffi
s

p
Λ

4m2

ds0ρfinðs; s0Þ; ð2:5Þ

where m is the mass of the (scalar) particle, Λ is a finite
infrared cutoff parameter on the invariant mass of the
emitted photon, and ρfin is the radiator function (see
Appendix B of [23]).
In the case of the KþK− channel, by far the largest

contribution to aμ and Δα (and their errors) comes from the
energy region of the ϕ peak, where the phase space for real
radiation is severely restricted. While the calculation of real
radiation accounting for all experimental cuts would be very
complicated and beyond the scope of this work, an estimate
can easily be made based on Eq. (2.5), by relating Λ to the
cuts in the photon accolinearity given in individual exper-
imental analyses. In Fig. 1, the result for the fully inclusive
correction ηðsÞ (left panel) is compared to the estimates for
the real hard radiation, where ηhard;realðsÞ (right panel) now
depends on the accolinearity cuts as given by the two
experimental analyses depicted. Clearly, at and around
the ϕ peak, phase space restrictions strongly suppress any
hard real radiation and using the inclusive correction would
lead to an overestimate of the possible effects. Given the
small size of both the possible correction in the ϕ region and
the contribution of the KþK− channel above the ϕ to both
mean value and error of aμ and Δα, no correction or
additional error estimate due to FSR is now applied in the
KþK− channel. For the neutral kaon channel, hard photon
radiation (which would resolve the quark charges) is
similarly suppressed and no FSR correction or additional
error is applied in this channel also.
The situation is different in the two pion channel. A

study similar to the two kaon channel showed that in
principle larger contributions from real radiation of the
order of the inclusive correction can arise. However, these
contributions are strongly dependent on the cut applied in

3Here, the term “fully inclusive” means inclusive of effects
from virtual and real (both soft and hard) one-photon emission.
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Eq. (2.5) and would require a more detailed, measurement-
by-measurement analysis, which is beyond the scope of this
work. In addition, for many of the data sets the required
detailed information is not available. Therefore, in sets
which are understood to not include the full FSR correc-
tions, the fully inclusive correction (as shown in Fig. 2) is
applied to the respective measurements. In the πþπ− data
combination, recent sets from radiative return, where
additional photons are part of the leading order cross
section and are studied in detail as part of the analyses,
have now become dominant. Therefore, the impact of the
fully inclusive FSR correction to older sets is suppressed
for both mean value and error in comparison to previous
analyses. The procedure to determine the corresponding
error estimate is discussed in the next section, while
resulting numbers are given in Sec. III A, which contains
the detailed analysis of the πþπ− channel.
For the subleading, multihadron channels, there are, at

present, no equivalent FSR calculations. Depending on the

experimental analysis, they are (at least to some extent)
estimated byMonteCarlo (MC) simulation and contribute to
the systematic uncertainties.4 However, formany data sets, it
is far from clear to which extent FSR effects are included in
the systematic errors. Therefore, possible effects are
accounted for by applying an additional uncertainty deter-
mined as a fraction of the respective contribution.

3. Estimating extra uncertainty due to
radiative corrections

As in [7–9], extra uncertainties are estimated whenever
additional radiative corrections are applied. This is done,
first and foremost, to account for any under- or over-
correction that may occur due to a lack of information
concerning the treatment of radiative corrections in the
experimental analyses. However, these radiative correction
uncertainties also account for any possibly incorrect treat-
ment in the analyses, e.g. missed FSR or inconsistent
subtraction of VP contributions. This is especially true for
older data, where there is very little or even no information
at all regarding how the data have been treated.
In each channel, the difference Δavpμ between the

estimates of aμ with and without additional VP corrections
is determined. For the uncertainty due to VP, one-third of
the shift

δavpμ ¼ 1

3
Δavpμ ð2:6Þ

is taken. This is reduced from one-half in [9], safe in the
knowledge that the KNT18 VP routine [14], which is
determined iteratively in a self-constistent way, is accurate
to the level of a permille when correcting the cross section
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FIG. 1. The effect of final state radiation in the KþK− channel in the ϕ resonance region. Left panel: the fully inclusive FSR correction
ηðsÞ. Right panel: hard real radiation ηhard;realðsÞ, estimated with accolinearity cuts used in the two analyses [25,26]. The eþe− → KþK−

cross section is also plotted for reference.
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4In the recent work [27], a version of the MC program
CARLOMAT [28] is discussed, which includes real photon radi-
ation in multihadron channels. This could be used to further study
the FSR effects.
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and that newer data sets are commonly undressed of VP
effects by the experiment with a modern routine.
For the extra uncertainties due to FSR, there are now no

contributions from the KþK− and K0
SK

0
L channels (see the

discussion above). For the πþπ− channel, the full difference
between the estimates of aπ

þπ−
μ with and without additional

FSR corrections is taken as the FSR uncertainty. For all
other channels, including the inclusive data combination
above 1.937 GeV, a fraction of 1% of the respective cross
section is applied as the uncertainty.
The numerical estimates of all additional radiative

correction uncertainties are given in the respective sections
for the individual channels. The same procedures are
applied in the calculation of the contributions to Δαhad.

B. Data combination

The combination of σ0ðeþe− → hadronsÞ data and its
corresponding uncertainty has undergone a great deal of
scrutiny since [9]. This has been due to the ever increasing
amount of data that have become available and due to a
better understanding of the treatment of correlated uncer-
tainties that are now a prominent feature of many cross
section measurements. In [9], covariance matrices in the
πþπ− channel from BABAR [29] and KLOE [18,19] for
statistical and systematic uncertainties had already been
included based on the method of fitted renormalization
factors. In the following, a new method for the combination
of σ0had data is introduced, which will allow one to fully take
into account all correlated uncertainties.

1. Clustering data points

Within each hadronic channel, data points from different
experiments are assigned to clusters (see [7–9] for details).5
In this work, the clustering algorithm has been improved. It
is universal for all different channels and only differs in the
assigned maximum cluster size δ (and δres, a maximum
cluster size applicable at individual narrow resonances).
A scan over δ (and δres if applicable) is performed to
determine a suitable clustering configuration which must
avoid both over- and underclustering. Too wide or over-
populated clusters would effectively lead to a rebinning of
data points from individual experiments and risk loss of
information, while a too narrow clustering would result, in
the extreme, in an erratic point-to-point representation of
the cross section and no gain in the accuracy. The preferred
configuration is then chosen based on the global χ2min=d:o:f:
and the uncertainty on ahad;VPμ , combined with checks by
eye of the resulting spectral function.

2. Fitting data

The previous analyses [7–9] employed a nonlinear χ2-
minimization utilizing fitted renormalization factors as
nuisance parameters that represented the energy indepen-
dent systematic uncertainties. Although a powerful method,
recent literature [30] (see also [31]) has highlighted the
possibility that an incorrect treatment of multiplicative
normalization uncertainties in a χ2 minimization can incur
a systematic bias (see Chap. 4 of [30]). In addition,
although the nonlinear χ2-minimization used in [9] was
adjusted to include covariance matrices, the method’s
reliance on fitting energy independent renormalization
factors prevented the use of correlated uncertainties to
their full capacity. As recent precise data, specifically
radiative return measurements in the πþπ− and KþK−

channels, have been released with energy dependent
uncertainties and nontrivial bin-to-bin correlations for both
the statistical and the systematic uncertainties, the fit
procedure had to be modified to allow the full use of all
available correlations in a bias-free approach. Therefore,
instead of fitting renormalization factors (nuisance param-
eters), an iterative fit procedure as advocated in [30] has
been adopted, which reinitializes the full covariance matri-
ces at each iteration step and, consequently, avoids bias.
Previously, in [7–9], a constant cross section had been

assumed across the width of each cluster. In this work,
the fitted cross section values at the cluster centers are
obtained from the iterative χ2-minimization where the cross
section is taken to be linear between adjacent cluster
centers. This allows for a more stable fit and is consistent
with the trapezoidal rule integration utilized for the ahad;VPμ

and Δαhad integrals. If data points at energies
ffiffiffi
s

p ¼ EðmÞ
i

are combined into cluster m, then the weighted average of
the cross section value Rm and energy Em for the cluster
center are

Rm ¼
"XNðmÞ

i¼1

RðmÞ
i

ðdR̃ðmÞ
i Þ2

#"XNðmÞ

i¼1

1

ðdR̃ðmÞ
i Þ2

#−1

ð2:7Þ

and

Em ¼
"XNðmÞ

i¼1

EðmÞ
i

ðdR̃ðmÞ
i Þ2

#"XNðmÞ

i¼1

1

ðdR̃ðmÞ
i Þ2

#−1

; ð2:8Þ

where RðmÞ
i is the cross section value of data point i

contributing to cluster m, NðmÞ is the total number of data
points contributing to cluster m, and

dR̃ðmÞ
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdRðmÞ

i;statÞ2 þ ðdRðmÞ
i;sysÞ2

q
: ð2:9Þ

dRðmÞ
i;stat and dRðmÞ

i;sys denote the absolute statistical and
systematic uncertainties, respectively. With a linear cross

5The effect that different clusterings have on the χ2min=d:o:f. of
the fit, the resulting ahad;VPμ value, and its error has been discussed
in detail in [9].
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section now assumed, if data point i belongs to cluster m

and EðmÞ
i > Em, then its interpolant cross section value Ri

m
is given by

Riþ
m ¼ Rm þ ðEðmÞ

i − EmÞ
ðEmþ1 − EmÞ

ðRmþ1 − RmÞ; ð2:10Þ

where theþ indicates that EðmÞ
i > Em. If, on the other hand,

EðmÞ
i < Em, then

Ri−
m ¼ Rm−1 þ

ðEðmÞ
i − Em−1Þ

ðEm − Em−1Þ
ðRm − Rm−1Þ; ð2:11Þ

where the − indicates that EðmÞ
i < Em. For data points at the

borders where no interpolation is possible, Ri
m is found by

linear extrapolation.
A covariance matrix is constructed for the combination

which contains all the uncertainty and correlation informa-
tion of all data points. Using the covariance matrix as
defined by the data alone could result in bias (see [32,33]).
The covariance matrix is therefore redefined at each step of
the iteration using the fitted Rm values. Convergence of the
iteration is observed in this work to occur after only a
few steps.
The covariance matrixCðiðmÞ; jðnÞÞ is given as the sum of

the statistical covariance matrix CstatðiðmÞ; jðnÞÞ and the
systematic covariance matrix CsysðiðmÞ; jðnÞÞ. At each stage
of the iteration, it is defined as

CIðiðmÞ; jðnÞÞ ¼ CstatðiðmÞ; jðnÞÞ

þ CsysðiðmÞ; jðnÞÞ
RðmÞ
i RðnÞ

j

Ri;ðI−1Þ
m Rj;ðI−1Þ

n ; ð2:12Þ

where the quantities Ri;I
m and Rj;I

n are the interpolant cross
sections given by either equation (2.10) or (2.11) and I
denotes the iteration number of the fit. This is then used as
input into the now linear χ2-function,

χ2I ¼
XNtot

i¼1

XNtot

j¼1

ðRðmÞ
i −Ri;I

m ÞC−1
I ðiðmÞ; jðnÞÞðRðnÞ

j −Rj;I
n Þ;

ð2:13Þ

where Ntot is the total number of contributing data points
and C−1

I ðiðmÞ; jðnÞÞ is simply the inverse of the covariance
matrix defined in Eq. (2.12). Performing the minimization
yields a system of linear equations

XNtot

j¼1

�
ðRðnÞ

j −Rj;I
n Þ∂R

i
m

∂Ra

�
V−1
I ðmðiÞ;nðjÞÞ¼0; i¼1;…;Ntot;

ð2:14Þ

where

V−1
I ðmðiÞ; nðjÞÞ ¼

XNðmÞ

i¼1

XNðnÞ

j¼1

C−1
I ðiðmÞ; jðnÞÞ: ð2:15Þ

The solution to this yields the cluster centers Rm and the
covariance matrix VIðm; nÞ which describes the correlation
between the errors dRm and dRn. As in Eqs. (2.10) and

(2.11), the termRj
n is to be taken as eitherR

jþ
n , ifEðnÞ

j > En,

or Rj−
n , if EðnÞ

j < En. Subsequently, if E
ðmÞ
i > Em, then

∂Ri
m

∂Ra

����
EðmÞ
i >Em

¼ ∂Riþ
m

∂Ra
¼

�
1 −

ðEðmÞ
i − EmÞ

ðEmþ1 − EmÞ
�
δma

þ ðEðmÞ
i − EmÞ

ðEmþ1 − EmÞ
δmþ1;a; ð2:16Þ

and, if EðmÞ
i < Em, then

∂Ri
m

∂Ra

����
EðmÞ
i <Em

¼ ∂Ri−
m

∂Ra
¼

�
1 −

ðEðmÞ
i − Em−1Þ

ðEm − Em−1Þ
�
δm−1;a

þ ðEðmÞ
i − Em−1Þ

ðEm − Em−1Þ
δma; ð2:17Þ

where δ denotes the usual Kronecker delta.
In [30], it was stated that for the fit of parton distribution

functions, convergence is expected to occur after very few
iterations, which is also observed here. The final result
includes the total output covariance matrix Vðm; nÞ which,
as in [9], is inflated according to the local χ2min=d:o:f: for
each cluster if χ2min=d:o:f: > 1. This is done in order to
account for any tensions among the data. The use of the full
covariance matrix allows for the inclusion of any-and-all
uncertainties and correlations that may exist between the
measurements. The flexibility to now make use of fully
energy dependent uncertainties ensures that the appropriate
influence of the correlations is incorporated into the deter-
mination of the cluster centers, Rm, with the correct propa-
gation of all experimental errors to the g − 2 uncertainty.
Note that, for all channels, the differences between the

old and the new data combination procedures are small and
lead to changes of ahad;VPμ well within the quoted errors.
Importantly, combining data which have only global
normalization uncertainties results in negligible differences
between [9] and this work, indicating that previous results
were largely unaffected by the potential bias issue.

3. Integration

As in [7–9], the data are integrated using a trapezoidal rule
integral in order to obtain ahad;VPμ andΔαhad. In principle, the
use of the trapezoidal rule integral could lead to unreliable
results due to the form of the kernel function or at narrow
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resonances if data are sparse. However, with the current
density of cross section measurements, especially in the
dominant hadronic channels, the differences between trap-
ezoidal rule integration and any higher order polynomial
approximation are consequently small and of no concern.
This can be seen in the plots in Fig. 3.
The calculation of the uncertainty of ahad;VPμ and Δαhad

has been modified to improve the determination of the error
contribution at the integral boundaries. Should the upper or
lower integral boundary, Ea, with energy Em < Ea < Emþ1

and cross section value Rm < Ra < Rmþ1, be found by
linear interpolation (or extrapolation if it is necessary to
extend the integral boundaries), then the output covariance
matrix Vðm; nÞ is interpolated accordingly using the
standard error propagation formula

Vða; bÞ ¼
X
m

X
n

∂Ra

∂Rm
Vðm; nÞ ∂Rb

∂Rn
; ð2:18Þ

where m, n run over all clusters, b is a label for any energy
Eb, and Vðb; aÞ ¼ Vða; bÞ.

III. DETERMINING ahad;VPμ AND ΔαhadðM2
ZÞ

The following section summarizes the data combination
and estimates of ahad;LOVP

μ and ΔαhadðM2
ZÞ from the leading

and major subleading hadronic final states. All contribu-
tions from exclusive hadronic channels are evaluated up to
1.937 GeV, which is the chosen transition point between
the sum of exclusive channels and the inclusive R-ratio data
in this work. This is discussed in detail in Sec. III F 1. Each
contribution to ahad;LOVP

μ is quoted with its respective
statistical (stat) uncertainty, systematic (sys) uncertainty,
VP (vp) correction uncertainty, and FSR (fsr) correction
uncertainty individually. This is followed by the contribu-
tion with a total (tot) uncertainty, determined from the
individual sources added in quadrature,

ahad;LOVP
μ ¼ ahad;LOVP

μ � ðδahad;LOVP
μ Þstat � ðδahad;LOVP

μ Þsys
� ðδahad;LOVP

μ Þvp � ðδahad;LOVP
μ Þfsr

¼ ahad;LOVP
μ � ðδahad;LOVP

μ Þtot: ð3:1Þ

All results for aμ are given in units 10−10. For the
contributions to ΔαhadðM2

ZÞ, only the mean value with
the corresponding total uncertainty,

ΔαhadðM2
ZÞ ¼ ΔαhadðM2

ZÞ � ðδΔαhadðM2
ZÞÞtot; ð3:2Þ

is quoted and all results are given in units 10−4. In both
cases, uncertainties include all available correlations and
local χ2 inflation as discussed in Sec. II B 2. In the
following, unless stated explicitly, only those data sets
that are new additions since [9], or those that have under-
gone studies that are mentioned in the text, are discussed
and referenced. All other contributing data sets are refer-
enced in [7–9].

A. π +π − channel

The πþπ− channel is by far the most important con-
tribution to ahad;VPμ , dominating both its mean value and
uncertainty. With 26 data sets totaling almost 1000 data
points, it is also the largest individual data combination.
Two new radiative return measurements from the KLOE
Collaboration [34] and the BESIII Collaboration [35] in the
important ρ region have greatly improved the estimate of
this final state. The new data from the KLOE Collaboration
(KLOE12) agree well with both other measurements by
KLOE (KLOE08 [18] and KLOE10 [19]). The three
measurements are, in part, highly correlated, necessitating
the construction of full statistical and systematic covariance
matrices to be used in any combination of these data. This
has been achieved in the separate work [17], where all
details regarding the correlations, the resulting combination
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of the KLOE data, and a comparison with other exper-
imental measurements of σππðγÞ are presented. These
covariance matrices are used here as input in the full
πþπ− combination in order to fully incorporate the corre-
lation information of the KLOE data as an influence on
both the estimate of aπ

þπ−
μ and its uncertainty.

The BESIII measurement in the ρ resonance region
(again with full statistical and systematic covariance
matrices) allows for an in-depth comparison of the existing
radiative return measurements already contributing to the
πþπ− channel, namely the three measurements by the
KLOE Collaboration and the finely binned measurement
from the BABAR Collaboration [29]. In [9], details were
given regarding tension between the KLOE and BABAR
measurements, where the BABAR data were considerably
higher. As is evident from Fig. 4, tension exists between the
BABAR data and all other contributing data in the dominant
ρ region. When considering this along with the plots of the
resulting cross section in Fig. 5, it is clear that the new
BESIII data agrees well with the KLOE data and the full

πþπ− combination. Interestingly, however, it is in better
agreement with the BABAR data at the peak of the
resonance where the cross section is largest. Although
BABAR still influences with an increase, the agreement
between the other radiative return measurements and the
direct scan data largely compensates for this effect. This is
demonstrated by Fig. 6, with the combination clearly
favoring the other measurements. Tension between data
sets, however, still exists and is reflected in the local χ2

error inflation, which results in an ∼15% increase in the
uncertainty of aπ

þπ−
μ . The effect of this energy dependent

error inflation is shown in Fig. 7, where the difference in
using a local scaling of the error instead of a global one is
clearly visible. Tensions arise in particular in the ρ
resonance region, where the cross section is large.
The full combination of all πþπ− data is found to give

aπ
þπ−

μ ½0.305 ≤
ffiffiffi
s

p
≤ 1.937 GeV�

¼ 502.97� 1.14� 1.59� 0.06� 0.14

¼ 502.97� 1.97 ð3:3Þ
and

Δαπþπ−ðM2
ZÞ½0.305 ≤

ffiffiffi
s

p
≤ 1.937 GeV�

¼ 34.26� 0.12: ð3:4Þ
Although this value of aπ

þπ−
μ stays well within the error

estimate of [9], it exhibits a substantial decrease of the
mean value. This has been attributed to the new data
combination routine which allows for the full use of
correlations in the determination of the mean value as well
as the uncertainty and the inclusion of the new, precise
radiative return data which suppresses the influence of
BABAR in the ρ resonance region.
In comparisonwith Eq. (3.3), theBABAR data alone in the

same energy range give an estimate of aπ
þπ−

μ ðBABARÞ ¼
513.2� 3.8. Should all available πþπ− data be combined
using a simple weighted average as in Eq. (2.7), which only
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BESIII (15): 368.15 ± 4.22

FIG. 4. The comparison of the integration of the individual
radiative return measurements and the combination of direct scan
πþπ− measurements between 0.6 ≤

ffiffiffi
s

p
≤ 0.9 GeV.
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provides the error weighting to each cluster by its local
uncertainty, the estimate for aπ

þπ−
μ would be aπ

þπ−
μ ðnaive

weighted averageÞ ¼ 509.1� 2.9. In this case, the estimate
is strongly pulled up by the fine binning and high statistics of
the BABAR data that dominate when no correlations are
taken into account for the mean value. This difference of
nearly 2σ when comparing to Eq. (3.3) indicates the
importance of fully incorporating all available correlated
uncertainties in any combination of the data.
The uncertainty has reduced by approximately one-third.

Again, this is due to the new, precise radiative return data
which further dominate the πþπ− fit and the improvement
of the overall combination which now fully incorporates

the energy dependent correlations. In addition, the radiative
corrections uncertainties have reduced since [9], as dis-
cussed in detail in Sec. II A.

B. π +π −π0 channel

Since [9], there has been only one new addition to the
πþπ−π0 channel [36]. This new data set improves this
channel away from resonance, where previously only
BABAR data [37] had provided a contribution of notable
precision. Compared to [9], an additional change is applied to
three separate data scans over the ϕ resonance in a meas-
urement by CMD-2 [38], where the systematic uncertainties
between the three scans are now taken to be fully correlated
[39]. These changes, along with the new data combination
routine, have resulted in an improved estimate of

aπ
þπ−π0

μ ½0.66 ≤
ffiffiffi
s

p
≤ 1.937 GeV�

¼ 47.79� 0.22� 0.71� 0.13� 0.48

¼ 47.79� 0.89 ð3:5Þ
and

Δαπþπ−π0ðM2
ZÞ½0.66 ≤

ffiffiffi
s

p
≤ 1.937 GeV� ¼ 4.77� 0.08:

ð3:6Þ
Figure 8 shows the full integral range of the data for the
πþπ−π0 cross section. Figure 9 shows an enlargement of the
ω and ϕ resonance regions in this channel.

C. 4π channels

The πþπ−πþπ− channel now includes two new additions
since [9]. First, an improved statistics measurement by
the BABAR Collaboration in the range 0.6125 ≤

ffiffiffi
s

p
≤

4.4875 GeV [40] supersedes their previous measurement
in this channel [41]. More recently, a data set by the CMD-3
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Collaboration in the range 0.92 ≤
ffiffiffi
s

p
≤ 1.06 GeV [42] has

been completed, which better resolves the interference
pattern of the ϕ → πþπ−πþπ− transition that is clearly
evident in the nonresonant cross section. In addition, the
M3N thesis data [43] that are not published, but were
previously included in this channel, are now discarded.
With these changes,

aπ
þπ−πþπ−

μ ½0.6125 ≤
ffiffiffi
s

p
≤ 1.937 GeV�

¼ 14.87� 0.02� 0.13� 0.03� 0.15

¼ 14.87� 0.20 ð3:7Þ
and

Δαπþπ−πþπ−ðM2
ZÞ½0.6125 ≤

ffiffiffi
s

p
≤ 1.937 GeV�

¼ 4.02� 0.05: ð3:8Þ
Here, the mean value has increased since [9] largely due to
the new BABAR data. The fitted cross section and data are
displayed in Fig. 10.

The picture for theπþπ−π0π0 final state has also improved,
with a new measurement of this channel by BABAR [44]
providing the only new data in this channel since 2003. As
with the πþπ−πþπ− channel, the M3N data [43] in this
channel have been omitted. The estimate for this channel is

aπ
þπ−π0π0

μ ½0.850 ≤
ffiffiffi
s

p
≤ 1.937 GeV�

¼ 19.39� 0.09� 0.74� 0.04� 0.19

¼ 19.39� 0.78 ð3:9Þ
and

Δαπþπ−π0π0ðM2
ZÞ½0.850≤

ffiffiffi
s

p
≤ 1.937GeV� ¼ 5.00�0.20;

ð3:10Þ
where there is clear improvement since [9]. The uncertainty
contribution from πþπ−π0π0 is, however, still relatively large
in comparison with its contribution to ahad;LOVP

μ and Δαhad
and requires better new data. The new fit of the data for the
bare cross section eþe− → πþπ−π0π0 is shown in Fig. 11.
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The fit without the newBABAR data is shown for comparison
to highlight the large improvement this new data set provides.

D. KK̄ channels

The KþK− channel now includes a precise and finely
binned measurement by the BABAR Collaboration, sup-
plemented with full statistical and systematic covariance
matrices [45]. This is the first and only example to date of
the release of energy dependent, correlated uncertainties
outside of the πþπ− channel and has an overwhelming
influence on the data combination. There is also a new
measurement in this channel of the ϕ resonance by the
CMD-3 Collaboration [46]. The existing CMD-2 scans in
the same region [47] are omitted from this work as they
suffer from an overestimation of the trigger efficiency for
slow kaons [46] and are awaiting reanalysis [48]. In
addition, two new scans by the SND Collaboration mea-
sured at the tail of the ϕ and into the continuum are
included [49]. The systematic uncertainties of these two
scans, along with the existing two scans by SND [26], are
considered to be fully correlated [39]. The combination of
the available KþK− data now gives

aK
þK−

μ ½0.9875 ≤
ffiffiffi
s

p
≤ 1.937 GeV�

¼ 23.03� 0.08� 0.20� 0.03� 0.00

¼ 23.03� 0.22 ð3:11Þ
and

ΔαKþK−ðM2
ZÞ½0.9875≤

ffiffiffi
s

p
≤ 1.937GeV� ¼ 3.37�0.03;

ð3:12Þ

which exhibits an increase of the mean value of more than
1σ from the estimate in [9] attributed to the inclusion of the
new BABAR and CMD-3 data. The cross section of the
process eþe− → KþK− is displayed in Fig. 12.
The uncertainty has drastically improved since [9] with

much of the change being due to a finer clustering over the
ϕ resonance after the inclusion of the new high statistics
BABAR data. Following from the discussion in Sec. II A 2,
there is now no FSR correction applied to this channel and,
therefore, there is no extra radiative correction uncertainty
due to FSR. It should also be noted that any FSR correction
would result in an increase of aK

þK−
μ , showing again the

strong influence the new data have had in this channel to
increase the mean value since [9], where previously an FSR
correction was applied.
New data for the K0

SK
0
L final state is included from the

BABAR Collaboration above the ϕ resonance [50] and from
the CMD-3 Collaboration on the ϕ [51]. Two existing
measurements in this channel [26,52] have multiple data
scans of which the systematic uncertainties are now taken
to be fully correlated [39]. This combination results in a
contribution of

a
K0

SK
0
L

μ ½1.00371 ≤
ffiffiffi
s

p
≤ 1.937 GeV�

¼ 13.04� 0.05� 0.16� 0.10� 0.00

¼ 13.04� 0.19 ð3:13Þ

and

ΔαK0
SK

0
L
ðM2

ZÞ½1.00371 ≤
ffiffiffi
s

p
≤ 1.937 GeV�

¼ 1.77� 0.03: ð3:14Þ

Again, there is also no additional FSR correction uncer-
tainty applied to this channel, with the reasoning in Sec. II
A 2 enforced by the probability of photon emission being
highly suppressed for a neutral final state and given the
limited phase space. The cross section of the process
eþe− → K0

SK
0
L is displayed in Fig. 13.
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E. KK̄π and KK̄2π channels

Since [9], the neutral final state K0
SK

0
Lπ

0 has been
measured by BABAR [53] and SND [54], completing all
modes that contribute to the KKπ final state and removing
the reliance on isospin for this channel (other thanK0

S ≅ K0
L).

Therefore, the KKπ cross section is now calculated using

σðKKπÞ ¼ σðK0
SK

�π∓Þ þ σðK0
LK

�π∓Þ
þ σðKþK−π0Þ þ σðK0

SK
0
Lπ

0Þ
≃ 2σðK0

SK
�π∓Þ þ σðKþK−π0Þ þ σðK0

SK
0
Lπ

0Þ;
ð3:15Þ

resulting in a contribution of

aKKπμ ½1.260 ≤
ffiffiffi
s

p
≤ 1.937 GeV�

¼ 2.71� 0.05� 0.11� 0.01� 0.01

¼ 2.71� 0.12 ð3:16Þ

and

ΔαKKπðM2
ZÞ½1.260 ≤

ffiffiffi
s

p
≤ 1.937 GeV� ¼ 0.89� 0.04:

ð3:17Þ

In [9], the isospin estimate in the same energy range yielded

aKKπμ ðHLMNT11 isospin estimateÞ ¼ 2.65� 0.14: ð3:18Þ

This good agreement between the HLMNT11 isospin
estimate and the data-based approach in this analysis is also
demonstrated in Fig. 14.
For KK2π, BABAR have measured the previously miss-

ing modes K0
SK

0
Lπ

þπ−, K0
SK

0
Sπ

þπ− [50], K0
SK

0
L2π

0 [53],
and K0

SK
�π∓π0 [55], such that this contribution is now

determined using

σðKK2πÞ ¼ σðKþK−π0π0Þ þ σðKþK−πþπ−Þ
þ σðK0K̄0πþπ−Þ þ σðK0

SK
0
L2π

0Þ
þ σðK0

SK
�π∓π0Þ þ σðK0

LK
�π∓π0Þ

≃ σðKþK−π0π0Þ þ σðKþK−πþπ−Þ
þ σðK0K̄0πþπ−Þ þ σðK0

SK
0
L2π

0Þ
þ 2σðK0

SK
�π∓π0Þ: ð3:19Þ

Here, again, it is assumed that K0
S ≅ K0

L and, hence,

σðK0K̄0πþπ−Þ¼σðK0
SK

0
Lπ

þπ−ÞþσðK0
SK

0
Sπ

þπ−Þ
þσðK0

LK
0
Lπ

þπ−Þ
≃σðK0

SK
0
Lπ

þπ−Þþ2σðK0
SK

0
Sπ

þπ−Þ: ð3:20Þ

Therefore, the estimate in this channel is now found to be
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FIG. 13. The cross section σ0ðeþe− → K0
SK

0
LÞ with an enlarge-

ment of the ϕ resonance.
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aKK2πμ ½1.350 ≤
ffiffiffi
s

p
≤ 1.937 GeV�

¼ 1.93� 0.03� 0.07� 0.01� 0.01

¼ 1.93� 0.08 ð3:21Þ

and

ΔαKK2πðM2
ZÞ½1.350 ≤

ffiffiffi
s

p
≤ 1.937 GeV� ¼ 0.75� 0.03:

ð3:22Þ

Comparing Eq. (3.21) with the HLMNT11 isospin estimate
in the same energy range of

aKK2πμ ðHLMNT11 isospin estimateÞ ¼ 2.51� 0.35 ð3:23Þ

and examining Fig. 15, it is evident that the isospin
relations provided a poor estimate of this final state.
Using the data, KK2π contributes a much smaller mean
value with a greatly reduced uncertainty.

F. Inclusive R-ratio data

The combination of inclusive hadronic R-ratio data
between 1.937 ≤

ffiffiffi
s

p
≤ 11.2 GeV has three new data

additions since [9]. The first of these are the precise
BABAR Rb data between 10.54 ≤

ffiffiffi
s

p
≤ 11.20 GeV [56],

which must be deconvoluted of the effects from initial state
radiation (ISR) and must have the radiative tails of the
resonances from the ϒð1S − 4SÞ states removed (see [57]).
These data are then added to the perturbative QCD (pQCD)
estimate of Rudsc [58] to be included as an accurate data set
in the inclusive channel in this region. The inclusion of the
BABAR Rb data is particularly beneficial as it resolves
the resonances of the ϒð5SÞ and ϒð6SÞ states, removing
the need to estimate these structures using a Breit-Wigner
parametrization as was done in [7–9]. These data are shown
in Fig. 16, together with the previously used incoherent

sum of the resonance parametrizations which are clearly
very different from the bb̄ cross section as measured by
BABAR. Note that apart from the CLEO(98) data point [59]
at 10.52 GeV, the CLEO(07) data point [60] at 10.538 GeV
and the CUSB data point at 11.09 GeV [61], there are no
other data in this bb̄ resonance region.
The other new data are recent precise measurements by

the KEDR Collaboration: one set between 1.84 ≤
ffiffiffi
s

p
≤

3.05 GeV [62] and two scans in the energy range 3.12 ≤ffiffiffi
s

p
≤ 3.72 GeV [63]. For the latter, the systematic uncer-

tainties are taken to be fully correlated [39]. The fit of the
inclusive data in the range 1.937 ≤

ffiffiffi
s

p
≤ 3.80 GeV is

shown in Fig. 17, which demonstrates the good agreement
between KEDR and pQCD. In [9], the decision was made
to use pQCD in the range 2.6 ≤

ffiffiffi
s

p
≤ 3.73 GeV, where the

quality of inclusive data was poor, with an error inflated
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FIG. 15. The cross section σ0ðKKππÞ compared to the previous
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according to the percentage errors of the inclusive BES data
in this region [64]. With the new KEDR data [62,63], the
inclusive data combination is much improved, as shown in
Fig. 17. In this range, the data combination results in

ahad;LOVP
μ ½inc:; 2.60 ≤

ffiffiffi
s

p
≤ 3.73 GeV� ¼ 11.19� 0.17;

ð3:24Þ

whereas from pQCD (with an inflated uncertainty [9]), the
estimate would be

ahad;LOVP
μ ½pQCD; 2.60 ≤

ffiffiffi
s

p
≤ 3.73 GeV�

¼ 10.82� 0.35: ð3:25Þ

For the larger energy range 1.937 ≤
ffiffiffi
s

p
≤ 11.2 GeV, the

resulting data combination is displayed in Fig. 18. As well
as the differences observed between the data and pQCD
below the charm threshold, the data above it (unchanged
since [9]) also show a slight variation from the prediction of
pQCD. Considering that with the new, precise KEDR data,
the differences between the inclusive data and pQCD are
not as large as previously and that this work is aiming at a
predominantly data-driven analysis, the contributions in the
entire inclusive data region are now estimated using the
inclusive data alone. Hence, for this analysis, the contri-
bution from the inclusive data is found to be

ahad;LOVP
μ ½inc; 1.937 ≤

ffiffiffi
s

p
≤ 11.2 GeV�

¼ 43.67� 0.17� 0.48� 0.01� 0.44

¼ 43.67� 0.67 ð3:26Þ

and

ΔαhadðM2
ZÞ½inc; 1.937 ≤

ffiffiffi
s

p
≤ 11.2 GeV�

¼ 82.82� 1.05: ð3:27Þ

1. Transition region between exclusive and inclusive data

The transition region between the sum of exclusive states
and the inclusive R-ratio data is of interest and deserves
reexamination. For the sum of exclusive channels, while
many measurements extend to 2 GeV or beyond, with
increasing energy the inclusion of more and more multi-
hadronic final states is required to achieve a reliable
estimate of the total hadronic cross section. Previously,
in [9], the sum of exclusive data was used up to 2 GeV,
which defined the transition point between the exclusive
sum and the inclusive data combination. In this analysis,
the new KEDR data [62] contribute two data points below
2 GeV, extending the lower boundary of the inclusive data
down to 1.841 GeV (compared to 2 GeV in [9]) and
providing an opportunity to reconsider the previous choice
concerning the data input in this region.
From the lower boundary of the KEDR measurement up

to 2 GeV, the resulting contributions to ahad;LOVP
μ from the

sum of exclusive states, the inclusive data combination, and
pQCD are given in Table I. The integrated values of the
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ffiffiffi
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estimate from pQCD for comparison. The yellow band represents the total uncertainty of the inclusive data combination.

TABLE I. Comparison of results for ahad;LOVP
μ ½1.841 ≤

ffiffiffi
s

p
≤

2.00 GeV� from the different available inputs in this region.

Input
ahad;LOVP
μ ½1.841 ≤

ffiffiffi
s

p
≤ 2.00 GeV� × 1010

Exclusive sum 6.06� 0.17
Inclusive data 6.67� 0.26
pQCD 6.38� 0.11
Exclusive ð<1.937 GeVÞ
þinclusive ð>1.937 GeVÞ

6.23� 0.13
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inclusive data and pQCD agree within errors. However, the
contribution from the sum of exclusive states disagrees with
the estimates from both the inclusive data and pQCD,
where the sum of exclusive states provides a smaller
contribution. This is particularly visible in Fig. 19, where
although the sum of exclusive states agrees with the two
inclusive data points below 2 GeV at their respective
energies, the combined sum of exclusive states is lower
in general. This is largely attributed to the new data for the
πþπ−π0π0 final state, where Fig. 11 shows that these new
data result in a clear reduction of the fitted cross section
below 2 GeV.6 Due to this effect, the previous transition
point in [9] between the sum of exclusive states and the
inclusive data combination at 2 GeV is no longer the
preferred choice in this work, where it is clear from Fig. 19
that these two different choices for the data input are largely
incompatible at this point. A more natural choice for this

transition point is now 1.937 GeV, where it can be seen
from Fig. 19 that all available data choices at this energy are
in agreement within errors. This is further substantiated by
Table I, where the value for ahad;LOVP

μ from the contribution
from exclusive states below 1.937 GeV summed with the
contribution from the inclusive data combination above
1.937 GeV is, within errors, in agreement with the
integrated values of all other choices for the data input.
Consequently, in this work, this is chosen to be the
transition point between the sum of exclusive states and
the inclusive R-ratio data.

G. Total contribution of ahad;LOVP
μ and Δαð5Þ

hadðM2
ZÞ

Table II lists all contributions from individual channels
contributing to ahad;LOVP

μ , with the corresponding total.
From the sum of these contributions, the estimate for
ahad;LOVP
μ from this analysis is

ahad;LOVP
μ ¼ð693.26�1.19stat�2.01sys�0.22vp�0.71fsrÞ

×10−10

¼ð693.26�2.46totÞ×10−10; ð3:28Þ

where the uncertainties include all available correlations
and local χ2 inflation as discussed in Sec. II B 2. Using the
same data compilation as described for the calculation of
ahad;LOVP
μ , the NLO contribution to ahad;VPμ is determined

here to be

ahad;NLOVP
μ ¼ ð−9.82� 0.04Þ × 10−10: ð3:29Þ

The corresponding result for Δαð5ÞhadðM2
ZÞ is

Δαð5ÞhadðM2
ZÞ ¼ ð276.11� 0.26stat � 0.68sys

� 0.14vp � 0.83fsrÞ × 10−4

¼ ð276.11� 1.11totÞ × 10−4; ð3:30Þ

where the superscript (5) indicates the contributions from
all quark flavors except the top quark, which is added
separately. In each case, the errors from the individual
channels and sources of uncertainty are added in quadrature
to determine the total error. The fractional contributions to
the total mean value and uncertainty of both ahad;LOVP

μ and

Δαð5ÞhadðM2
ZÞ from various energy intervals is shown in

Fig. 20. Here, the dominance of the energy region below
0.9 GeV for ahad;LOVP

μ and its uncertainty is clearly evident,
with this being predominantly due to the contributions from
the πþπ− channel. Notably, the pie chart depicting the

fractional contributions to the ðerrorÞ2 of Δαð5ÞhadðM2
ZÞ

reveals how the uncertainty on this quantity is dominated
by the contributions from the radiative correction uncer-
tainties. Mostly, this large error contribution comes from
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from 1.937 GeV to 2 GeV. The patterned light blue band and
patterned red band show the continuation of the inclusive data
combination below 1.937 GeV and the continuation of the
exclusive sum above 1.937 GeV, respectively. The recent
KEDR data are individually marked and included in the inclusive
data fit. The light green band shows the data combination of old
inclusive hadronic cross section data that exist between
1.43 ≤

ffiffiffi
s

p
≤ 2.00 GeV, which were previously discussed in

[9] and are not used due to their lack of precision. The estimate
from pQCD is included for comparison as a dashed line with an
error band which is dominated by the variation of the renorm-
alization scale μ in the range 1

2

ffiffiffi
s

p
< μ < 2

ffiffiffi
s

p
.

6Interestingly, as can be seen from Fig. 19, the sum of
exclusive states is in good agreement with the imprecise and,
therefore, unused inclusive hadronic cross section data that exist
between 1.43 ≤

ffiffiffi
s

p
≤ 2.00 GeV. This is in contrast with the

findings in the previous analyses [7–9], which observed that the
inclusive data in this range were lower than the sum of exclusive
states.
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TABLE II. Summary of the contributions to ahad;LOVP
μ and Δαð5ÞhadðM2

ZÞ calculated in this analysis. The first column indicates the
hadronic final state or individual contribution, the second column gives the respective energy range of the contribution, the third column

states the determined value of ahad;LOVP
μ , the fourth column states the determined value of Δαð5ÞhadðM2

ZÞ, and the last column indicates any
new data that have been included since [9]. The last row describes the total contribution obtained from the sum of the individual final
states, with the uncertainties added in quadrature.

Channel Energy range [GeV] ahad;LOVP
μ × 1010 Δαð5ÞhadðM2

ZÞ × 104 New data

Chiral perturbation theory (ChPT) threshold contributions
π0γ mπ ≤

ffiffiffi
s

p
≤ 0.600 0.12� 0.01 0.00� 0.00 � � �

πþπ− 2mπ ≤
ffiffiffi
s

p
≤ 0.305 0.87� 0.02 0.01� 0.00 � � �

πþπ−π0 3mπ ≤
ffiffiffi
s

p
≤ 0.660 0.01� 0.00 0.00� 0.00 � � �

ηγ mη ≤
ffiffiffi
s

p
≤ 0.660 0.00� 0.00 0.00� 0.00 � � �
Data based channels (

ffiffiffi
s

p
≤ 1.937 GeV)

π0γ 0.600 ≤
ffiffiffi
s

p
≤ 1.350 4.46� 0.10 0.36� 0.01 [65]

πþπ− 0.305 ≤
ffiffiffi
s

p
≤ 1.937 502.97� 1.97 34.26� 0.12 [34,35]

πþπ−π0 0.660 ≤
ffiffiffi
s

p
≤ 1.937 47.79� 0.89 4.77� 0.08 [36]

πþπ−πþπ− 0.613 ≤
ffiffiffi
s

p
≤ 1.937 14.87� 0.20 4.02� 0.05 [40,42]

πþπ−π0π0 0.850 ≤
ffiffiffi
s

p
≤ 1.937 19.39� 0.78 5.00� 0.20 [44]

ð2πþ2π−π0Þnoη 1.013 ≤
ffiffiffi
s

p
≤ 1.937 0.99� 0.09 0.33� 0.03 � � �

3πþ3π− 1.313 ≤
ffiffiffi
s

p
≤ 1.937 0.23� 0.01 0.09� 0.01 [66]

ð2πþ2π−2π0Þnoηω 1.322 ≤
ffiffiffi
s

p
≤ 1.937 1.35� 0.17 0.51� 0.06 � � �

KþK− 0.988 ≤
ffiffiffi
s

p
≤ 1.937 23.03� 0.22 3.37� 0.03 [45,46,49]

K0
SK

0
L 1.004 ≤

ffiffiffi
s

p
≤ 1.937 13.04� 0.19 1.77� 0.03 [50,51]

KKπ 1.260 ≤
ffiffiffi
s

p
≤ 1.937 2.71� 0.12 0.89� 0.04 [53,54]

KK2π 1.350 ≤
ffiffiffi
s

p
≤ 1.937 1.93� 0.08 0.75� 0.03 [50,53,55]

ηγ 0.660 ≤
ffiffiffi
s

p
≤ 1.760 0.70� 0.02 0.09� 0.00 [67]

ηπþπ− 1.091 ≤
ffiffiffi
s

p
≤ 1.937 1.29� 0.06 0.39� 0.02 [68,69]

ðηπþπ−π0Þnoω 1.333 ≤
ffiffiffi
s

p
≤ 1.937 0.60� 0.15 0.21� 0.05 [70]

η2πþ2π− 1.338 ≤
ffiffiffi
s

p
≤ 1.937 0.08� 0.01 0.03� 0.00 � � �

ηω 1.333 ≤
ffiffiffi
s

p
≤ 1.937 0.31� 0.03 0.10� 0.01 [70,71]

ωð→ π0γÞπ0 0.920 ≤
ffiffiffi
s

p
≤ 1.937 0.88� 0.02 0.19� 0.00 [72,73]

ηϕ 1.569 ≤
ffiffiffi
s

p
≤ 1.937 0.42� 0.03 0.15� 0.01 � � �

ϕ → unaccounted 0.988 ≤
ffiffiffi
s

p
≤ 1.029 0.04� 0.04 0.01� 0.01 � � �

ηωπ0 1.550 ≤
ffiffiffi
s

p
≤ 1.937 0.35� 0.09 0.14� 0.04 [74]

ηð→ nppÞKK̄noϕ→KK̄ 1.569 ≤
ffiffiffi
s

p
≤ 1.937 0.01� 0.02 0.00� 0.01 [53,75]

pp̄ 1.890 ≤
ffiffiffi
s

p
≤ 1.937 0.03� 0.00 0.01� 0.00 [76]

nn̄ 1.912 ≤
ffiffiffi
s

p
≤ 1.937 0.03� 0.01 0.01� 0.00 [77]

Estimated contributions (
ffiffiffi
s

p
≤ 1.937 GeV)

ðπþπ−3π0Þnoη 1.013 ≤
ffiffiffi
s

p
≤ 1.937 0.50� 0.04 0.16� 0.01 � � �

ðπþπ−4π0Þnoη 1.313 ≤
ffiffiffi
s

p
≤ 1.937 0.21� 0.21 0.08� 0.08 � � �

KK3π 1.569 ≤
ffiffiffi
s

p
≤ 1.937 0.03� 0.02 0.02� 0.01 � � �

ωð→ nppÞ2π 1.285 ≤
ffiffiffi
s

p
≤ 1.937 0.10� 0.02 0.03� 0.01 � � �

ωð→ nppÞ3π 1.322 ≤
ffiffiffi
s

p
≤ 1.937 0.17� 0.03 0.06� 0.01 � � �

ωð→ nppÞKK 1.569 ≤
ffiffiffi
s

p
≤ 1.937 0.00� 0.00 0.00� 0.00 � � �

ηπþπ−2π0 1.338 ≤
ffiffiffi
s

p
≤ 1.937 0.08� 0.04 0.03� 0.02 � � �
Other contributions (

ffiffiffi
s

p
> 1.937 GeV)

Inclusive channel 1.937 ≤
ffiffiffi
s

p
≤ 11.199 43.67� 0.67 82.82� 1.05 [56,62,63]

J=ψ � � � 6.26� 0.19 7.07� 0.22 � � �
ψ 0 � � � 1.58� 0.04 2.51� 0.06 � � �
ϒð1S − 4SÞ � � � 0.09� 0.00 1.06� 0.02 � � �
pQCD 11.199 ≤

ffiffiffi
s

p
≤ ∞ 2.07� 0.00 124.79� 0.10 � � �

Total mπ ≤
ffiffiffi
s

p
≤ ∞ 693.26� 2.46 276.11� 1.11 � � �
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the uncertainty due to possible FSR applied to the combi-
nation of inclusive data above 1.937 GeV discussed in
Sec. II A 3. This, in particular, highlights the differences in
the kernel functions of the respective dispersion integrals

for ahad;LOVP
μ and Δαð5ÞhadðM2

ZÞ, where contributions from

higher energies have a larger influence on Δαð5ÞhadðM2
ZÞ than

on ahad;LOVP
μ . If, instead of a data driven analysis, the region

above 1.937 GeV was estimated using pQCD, it would
effectively eliminate the impacting radiative correction
uncertainties in this region. Figure 21 shows the contribu-
tions from all hadronic final states to the hadronic R-ratio
and its uncertainty below 1.937 GeV. Here, the individual
final states are displayed separately as well as with the
resulting total hadronic R-ratio. The full compilation for the
hadronic R-ratio is shown in Fig. 22. The data vector and
corresponding covariance matrix of the hadronic R-ratio in
the range mπ ≤

ffiffiffi
s

p
≤ 11.1985 GeV determined in this

work is available upon request from the authors.

H. Comparison with the HLMNT11 evaluation

To understand further how the changes in the data
combination/input have altered the estimate of ahad;LOVP

μ

and its uncertainty, a comparison of the results from
this analysis and the previous HLMNT11 evaluation [9]
is particularly interesting. Table III gives a channel-by-
channel comparison of the two works, highlighting the
differences in the individual contributions for each channel
and the total sum over their respective energy ranges.7

The largest difference occurs in the πþπ− channel, where
the mean value in this work is lower by almost 1σ of the
HLMNT11 analysis and the uncertainty has reduced by
approximately one-third. As described in the in-depth
discussion of the 2π contribution in Sec. III A, this is
largely due to the new, precise and highly correlated
radiative return data from KLOE and BESIII and the
capability of the new data combination method to utilize
the correlations to their full capacity. The global χ2min=d:o:f:
of the leading and major subleading channels in this work
are compared to those from the HLMNT11 analysis [9] in
Table IV. The reduction of the global χ2min=d:o:f: for the
πþπ− channel further highlights that the data combination
for this channel has improved. The energy dependent
changes in the resonance region are shown in Fig. 23,
where it can be seen that, as expected from the comparison
of the πþπ− results in Table III, the KNT18 data combi-
nation is in good agreement with the HLMNT11 analysis,
but sits lower overall.
The KþK− channel shows tension with the HLMNT11

analysis, where the new data in this channel from BABAR
[45] and CMD-3 [46] have incurred a large increase in the
mean value, while also improving the uncertainty despite
the small increase in global χ2min=d:o:f: This is also the case
for the πþπ−πþπ− channel. Other tensions include the
K0

SK
0
L, ηπ

þπ−, ηω, and ωð→ π0γÞπ0 channels, where again,
the new, more precise data have resulted in changes outside
the quoted HLMNT11 uncertainties. The KK2π channel
exhibits a similar change as discussed in Sec. III E.
All other channels are in good agreement between the
different analyses. It it important to note that this
work includes three channels that were not included as part
of the HLMNT11 analysis: ðηπþπ−π0Þnoω, ηωπ0, and

FIG. 20. Pie charts showing the fractional contributions to the
total mean value (left pie chart) and ðerrorÞ2 (right pie chart) of

both ahad;LOVP
μ (upper panel) and Δαð5ÞhadðM2

ZÞ (lower panel)
from various energy intervals. The energy intervals for
ahad;LOVP
μ are defined by the boundaries mπ , 0.6, 0.9, 1.43,

2.0, and ∞GeV. For Δαð5ÞhadðM2
ZÞ, the intervals are defined by

the energy boundaries mπ , 0.6, 0.9, 1.43, 2.0, 4.0, 11.2, and
∞GeV. In both cases, the ðerrorÞ2 includes all experimental
uncertainties (including all available correlations) and local
χ2min=d:o:f: inflation. The fractional contribution to the ðerrorÞ2
from the radiative correction uncertainties are shown in black
and indicated by “rad.”

7Note that the results for individual contributions to ahad;LOVP
μ

from this work that are listed in Table III differ from those
given earlier in Sec. III and in Table II, as for a comparison with
HLMNT11 [9], contributions to ahad;LOVP

μ from exclusive chan-
nels are evaluated up to 2 GeV. However, to consistently compare
the final results for ahad;LOVP

μ between the two works, the total
KNT18 result given in Table III is not determined as
the sum of the individual contributions listed above it, but is
the final result for ahad;LOVP

μ calculated in this work using the
exclusive channels evaluated up to 1.937 GeV. Summing
the KNT18 values listed in Table III (i.e. choosing to evaluate
the sum of exclusive states from this work up to 2 GeV), results in
ahad;LOVP
μ ¼ ð693.06� 2.45Þ × 10−10.
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FIG. 21. Contributions to the total hadronic R-ratio from the different final states (upper panel) and their uncertainties (lower panel)
below 1.937 GeV. The full R-ratio and its uncertainty is shown in light blue in each plot, respectively. Each final state is included as a
new layer on top in decreasing order of the size of its contribution to ahad;LOVP

μ .
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FIG. 22. The resulting hadronic R-ratio shown in the range mπ ≤
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≤ 11.1985 GeV, where the prominent resonances are labeled.
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ηð→ nonpurely pionicðnppÞÞKK̄noϕ→KK̄ , where these final
states were previously unmeasured by experiment and not
estimated through isospin relations. Overall, due to the large
reduction in the πþπ− channel, it is found that the estimate of

ahad;LOVP
μ has decreased between the HLMNT11 analysis

and this work, although this decrease is well within the
uncertainty. In total, the uncertainty has been reduced by
∼42% with respect to the HLMNT11 analysis.

TABLE III. Comparison of the contributions to ahad;LOVP
μ calculated in the HLMNT11 analysis [9] and in this work (KNT18), where

all results are given in units of ahad;LOVP
μ × 1010. The first column indicates the final state or individual contribution, the second column

gives the KNT18 estimate, the third column states the HLMNT11 estimate, and the last column gives the difference between the two
evaluations.

Channel This work (KNT18) HLMNT11 [9] Difference

Chiral perturbation theory (ChPT) threshold contributions
π0γ 0.12� 0.01 0.12� 0.01 0.00
πþπ− 0.87� 0.02 0.87� 0.02 0.00
πþπ−π0 0.01� 0.00 0.01� 0.00 0.00
ηγ 0.00� 0.00 0.00� 0.00 0.00

Data based channels (
ffiffiffi
s

p
≤ 2 GeV)

π0γ 4.46� 0.10 4.54� 0.14 −0.08
πþπ− 502.99� 1.97 505.77� 3.09 −2.78
πþπ−π0 47.82� 0.89 47.51� 0.99 0.31
πþπ−πþπ− 15.17� 0.21 14.65� 0.47 0.52
πþπ−π0π0 19.80� 0.79 20.37� 1.26 −0.57
ð2πþ2π−π0Þnoη 1.08� 0.10 1.20� 0.10 −0.12
3πþ3π− 0.28� 0.02 0.28� 0.02 0.00
ð2πþ2π−2π0Þnoηω 1.60� 0.20 1.80� 0.24 −0.20
KþK− 23.05� 0.22 22.15� 0.46 0.90
K0

SK
0
L 13.05� 0.19 13.33� 0.16 −0.28

KKπ 2.80� 0.12 2.77� 0.15 0.03
KK2π 2.42� 0.09 3.31� 0.58 −0.89
ηγ 0.70� 0.02 0.69� 0.02 0.01
ηπþπ− 1.32� 0.06 0.98� 0.24 0.34
ðηπþπ−π0Þnoω 0.63� 0.15 � � � 0.63
η2πþ2π− 0.11� 0.02 0.11� 0.02 0.00
ηω 0.31� 0.03 0.42� 0.07 −0.11
ωð→ π0γÞπ0 0.88� 0.02 0.77� 0.03 0.11
ηϕ 0.45� 0.04 0.46� 0.03 −0.01
ϕ → unaccounted 0.04� 0.04 0.04� 0.04 0.00
ηωπ0 0.42� 0.10 � � � 0.42
ηð→ nppÞKK̄noϕ→KK̄ 0.01� 0.01 � � � 0.01
pp̄ 0.07� 0.00 0.06� 0.00 0.01
nn̄ 0.06� 0.01 0.07� 0.02 −0.01

Estimated contributions (
ffiffiffi
s

p
≤ 2 GeV)

ðπþπ−3π0Þnoη 0.53� 0.05 0.60� 0.05 −0.07
ðπþπ−4π0Þnoη 0.25� 0.25 0.28� 0.28 −0.03
KK3π 0.08� 0.03 0.08� 0.04 0.00
ωð→ nppÞ2π 0.10� 0.02 0.11� 0.02 −0.01
ωð→ nppÞ3π 0.20� 0.04 0.22� 0.04 −0.02
ωð→ nppÞKK 0.01� 0.00 0.01� 0.00 0.00
ηπþπ−2π0 0.11� 0.05 0.11� 0.06 0.00

Other contributions (
ffiffiffi
s

p
> 2 GeV)

Inclusive channel 41.27� 0.62 41.40� 0.87 −0.13
J=ψ 6.26� 0.19 6.24� 0.16 0.02
ψ 0 1.58� 0.04 1.56� 0.05 0.02
ϒð1S − 4SÞ 0.09� 0.00 0.10� 0.00 −0.01
pQCD 2.07� 0.00 2.06� 0.00 0.01

Total 693.26� 2.46 694.91� 4.27 −1.64
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I. Comparison with other similar works

The DHMZ group has recently released a new
estimate of ahad;LOVP

μ [78] which, due to a similar data
input, is directly comparable with this work and provides
insight into how choices with regards to the data
combination can affect results. In particular, with the
uncertainties of ahad;LOVP

μ from both the KNT18 and the
DHMZ17 analyses now less than 0.5%, it is important
that these differences are understood in order to quantify
the reliability of different approaches and results. In [78],
the authors provide a channel-by-channel breakdown of
their estimates for the different finals states, which are
compared to the respective estimates from this work in
Table V. For the exclusive data channels, the DHMZ
group chooses to take the contributions from these data
up to 1.8 GeV, relying on estimates from pQCD above

this (with inflated errors for the pQCD data below the cc̄
threshold). As such, the estimates from this work in
Table V have been recalculated to mimic the chosen
energy regions of the DHMZ analysis and allow for a
consistent comparison.
When comparing the total estimate of ahad;LOVP

μ from the
two analyses, the results seem to be in very good agree-
ment. However, as can be seen from Table V, this masks
much larger differences in the estimates from individual
channels. The most striking of these is the estimate for the
πþπ− channel, where there is a tension of slightly more
than 1σ between the KNT18 and DHMZ17 results. This is
unexpected when considering the data input for both
analyses are likely to be similar and, therefore, points to
marked differences in the way the data are combined. The
higher value of the DHMZ17 estimate seems to suggest that
their data combination favors the data from the BABAR
measurement, with this data set being the only single set
that could influence the mean value of the πþπ− channel
to be as high. This behavior is similar to the result
obtained from combining the πþπ− data using only a
simple weighted average as discussed in Sec. III A. In
turn, this effect is compensated by other major subleading
final states having larger estimates in this work compared
to the DHMZ17 analysis. Specifically, the πþπ−π0,
πþπ−πþπ−, and K0

SK
0
L estimates are noticeably lower

in the DHMZ17 analysis. In addition, there is tension in
the region between 1.8 ≤

ffiffiffi
s

p
≤ 3.7 GeV, where the

choice to use data in this region has a higher integrated
contribution to ahad;LOVP

μ than the DHMZ17 estimate from
pQCD. This is particularly significant when reconsidering
Fig. 19, where it was observed that the sum of exclusive
states from in the range 1.8 ≤

ffiffiffi
s

p
≤ 2.0 GeV has a cross

section that is lower than the estimate from pQCD. The
differences seen in Table V above 1.8 GeV are then
caused by cross section data below the charm production
threshold being higher than pQCD (see Fig. 17) and lower
than pQCD above it (see Fig. 18). It should be noted that
the estimate for the ωð→ nppÞ3π final state from isospin
relations, although only a small contribution to ahad;LOVP

μ ,
exhibits a significant difference between the two analyses,
suggesting a different relation has been used in the
DHMZ17 analysis than in this work.
As well as the DHMZ analysis, an updated work by

Jegerlehner (FJ17) [79] resulted in an estimate of
ahad;LOVP
μ;FJ17 ¼ ð688.07� 4.14Þ × 10−10 based on the avail-

able eþe− data. Within errors, this result is in agreement
with both this work and the DHMZ17 analysis.
Interestingly, unlike the comparison with DHMZ17, the
two-pion contribution in the energy range 0.316 ≤

ffiffiffi
s

p
≤

2.0 GeV is found in the FJ17 analysis to be aπ
þπ−

μ;FJ17 ¼
ð502.16� 2.44Þ × 10−10 [80], which is in good agreement
with the KNT18 estimate in the same energy range of
aπ

þπ−
μ;KNT18 ¼ ð501.68� 1.71Þ × 10−10. However, a more
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TABLE IV. Comparison of the global
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2min=d:o:f:

p
for the

leading and major subleading channels determined in the
HLMNT11 analysis [9] and in this work (KNT18). The first
column indicates the final state or individual contribution, the
second column gives the KNT18 value, and the third column
states the HLMNT11 value.

Channel This work (KNT18) HLMNT11 [9]

πþπ− 1.3 1.4
πþπ−π0 2.1 3.0
πþπ−πþπ− 1.8 1.7
πþπ−π0π0 2.0 1.3
ð2πþ2π−π0Þnoη 1.0 1.2

ð2πþ2π−2π0Þnoηω 3.5 4.0
KþK− 2.1 1.9
K0

SK
0
L 0.8 0.8
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TABLE V. Comparison of the contributions to ahad;LOVP
μ calculated by DHMZ17 and in this work (KNT18), where

all results are given in units ahad;LOVP
μ × 1010. The first column indicates the final state or individual contribution, the

second column gives the KNT18 estimate, the third column states the DHMZ17 estimate, and the last column
gives the difference between the two evaluations. For the final states in this work that have low energy contributions estimated
from chiral perturbation theory (see [7]), the contributions from these regions have been added to the contributions from the
respective data.

Channel This work (KNT18) DHMZ17 [78] Difference

Data based channels (
ffiffiffi
s

p
≤ 1.8 GeV)

π0γ (dataþ ChPT) 4.58� 0.10 4.29� 0.10 0.29
πþπ− (dataþ ChPT) 503.74� 1.96 507.14� 2.58 −3.40
πþπ−π0 (dataþ ChPT) 47.70� 0.89 46.20� 1.45 1.50
πþπ−πþπ− 13.99� 0.19 13.68� 0.31 0.31
πþπ−π0π0 18.15� 0.74 18.03� 0.54 0.12
ð2πþ2π−π0Þnoη 0.79� 0.08 0.69� 0.08 0.10
3πþ3π− 0.10� 0.01 0.11� 0.01 −0.01
ð2πþ2π−2π0Þnoηω 0.77� 0.11 0.72� 0.17 0.05
KþK− 23.00� 0.22 22.81� 0.41 0.19
K0

SK
0
L 13.04� 0.19 12.82� 0.24 0.22

KKπ 2.44� 0.11 2.45� 0.15 −0.01
KK2π 0.86� 0.05 0.85� 0.05 0.01
ηγ (dataþ ChPT) 0.70� 0.02 0.65� 0.02 0.05
ηπþπ− 1.18� 0.05 1.18� 0.07 0.00
ðηπþπ−π0Þnoω 0.48� 0.12 0.39� 0.12 0.09
η2πþ2π− 0.03� 0.01 0.03� 0.01 0.00
ηω 0.29� 0.02 0.32� 0.03 −0.03
ωð→ π0γÞπ0 0.87� 0.02 0.94� 0.03 −0.07
ηϕ 0.33� 0.03 0.36� 0.03 −0.03
ϕ → unaccounted 0.04� 0.04 0.05� 0.00 −0.01
ηωπ0 0.10� 0.05 0.06� 0.04 0.04
ηð→ nppÞKK̄noϕ→KK̄ 0.00� 0.01 0.01� 0.01 −0.01 a

Estimated contributions (
ffiffiffi
s

p
≤ 1.8 GeV)

ðπþπ−3π0Þnoη 0.40� 0.04 0.35� 0.04 0.05

ðπþπ−4π0Þnoη 0.12� 0.12 0.11� 0.11 0.01
KK3π −0.02� 0.01 −0.03� 0.02 0.01
ωð→ nppÞ2π 0.08� 0.01 0.08� 0.01 0.00
ωð→ nppÞ3π 0.10� 0.02 0.36� 0.01 −0.26
ωð→ nppÞKK 0.00� 0.00 0.01� 0.00 −0.01
ηπþπ−2π0 0.03� 0.01 0.03� 0.01 0.00

Other contributions
J=ψ 6.26� 0.19 6.28� 0.07 −0.02
ψ 0 1.58� 0.04 1.57� 0.03 0.01
ϒð1S − 4SÞ 0.09� 0.00 � � � 0.09b

Contributions by energy region
1.8 ≤

ffiffiffi
s

p
≤ 3.7 GeV 34.54� 0.56 (data) 33.45� 0.65 (pQCD)c 1.09

3.7 ≤
ffiffiffi
s

p
≤ 5.0 GeV 7.33� 0.11 (data) 7.29� 0.03 (data) 0.04

5.0 ≤
ffiffiffi
s

p
≤ 9.3 GeV 6.62� 0.10 (data) 6.86� 0.04 (pQCD) −0.24

9.3 ≤
ffiffiffi
s

p
≤ 12.0 GeV 1.12� 0.01 (dataþ pQCD) 1.21� 0.01 (pQCD) −0.09

12.0 ≤
ffiffiffi
s

p
≤ 40.0 GeV 1.64� 0.00 (pQCD) 1.64� 0.00 (pQCD) 0.00

>40.0 GeV 0.16� 0.00 (pQCD) 0.16� 0.00 (pQCD) 0.00

Total 693.3� 2.5 693.1� 3.4 0.2
aDHMZ have not removed the decay of η to pionic states which incurs a double counting of this contribution with theKKnπ channels.
bDHMZ include the contributions from the ϒ resonances in the energy region 9.3 ≤

ffiffiffi
s

p
≤ 12.0 GeV.

cDHMZ have inflated errors to account for differences between data and pQCD.
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detailed comparison with the estimates of other channels
determined in [79,80] is not possible as the FJ17 analysis
chooses to estimate certain resonance contributions using

available parametrizations [4] instead of using the available
data. A comparison of recent and previous evaluations of
ahad;LOVP
μ determined from eþe− → hadrons cross section

data is shown in Fig. 24,8 which highlights the agreement
between the different works and the improvement in the
precision of the respective analyses.

J. SM prediction of g − 2 of the muon

The SM prediction of the anomalous magnetic moment
of the muon is determined by summing the contributions
from all sectors of the SM, such that

aSMμ ¼ aQEDμ þ aEWμ þ ahadμ ; ð3:31Þ

where aQEDμ is the QED contribution, aEWμ is the electro-
weak contribution, and ahadμ are the hadronic contributions
due to the hadronic vacuum polarization and hadronic light-
by-light scattering [see Eq. (1.2)]. The QED contributions
are known up to and including five-loop accuracy. The five-
loop calculation has recently been completed numerically
by Kinoshita et al. [86,87] to evaluate all 12,762 five-loop
diagrams. This calculation includes all contributions that
are due to photons and leptons alone. They are found to be

aQEDμ ¼ 11 658 471.8971 ð0.0007Þ ð0.0017Þ ð0.0006Þ ð0.0072Þ × 10−10

¼ ð11 658 471.8971� 0.007Þ × 10−10; ð3:32Þ

where the uncertainties are owing to the uncertainty on the
lepton masses, the four-loop contributions, the five-loop
contributions, and the determination of α using measure-
ments of 87Rb, respectively. With such a precise determi-
nation of aQEDμ resulting from a perturbative series that
converges extremely well, the QED result seems stable. It
should be noted, however, that the four-loop and five-loop
contributions rely heavily on numerical integrations and
independent checks of these results are crucial. This has
recently been accomplished through several different analy-
ses [88–94], which corroborate the results from Kinoshita
and collaborators. Therefore, it is safe to assume that the
estimate for the QED contribution is well under control.
The contribution from the EW sector is well known to

two-loop accuracy [95–99]. With the mass of the Higgs
now known, the updated estimate [100] gives

aEWμ ¼ ð15.36� 0.10Þ × 10−10; ð3:33Þ
where the knowledge of the Higgs mass has halved the
uncertainty of this contribution compared to the estimate

used in [9]. Although a relatively small contribution when
compared to aQEDμ , the uncertainty is not negligible con-
sidering the projected experimental accuracy, but is small
when compared to the hadronic uncertainties. However,
with this contribution known safely to two-loop accuracy,
the electroweak estimate is also very well under control.
For the hadronic vacuum polarization contributions, the

leading order and next-to-leading order contributions have
been calculated in this work. The LO contribution, from
Eq. (3.28), was found to be ahad;LOVP

μ ¼ ð693.26� 2.46Þ ×
10−10 and the NLO was given in Eq. (3.29) as ahad;NLOVP

μ ¼
ð−9.82� 0.04Þ × 10−10. The calculation of the NNLO
hadronic vacuum polarization contribution has been
achieved for the first time in [10] (see also the evaluation
in [79]), where contributions from five individual classes of
diagrams (each with an independent, respective kernel
function) were determined. It was found to be ahad;NNLOVP

μ ¼
ð1.24� 0.01Þ × 10−10. This estimate is slightly larger than
expected and results in a slight increase to the mean value of
ahad;VPμ . Summing these, the total contribution to the anoma-
lous magnetic moment from the hadronic vacuum polariza-
tion is

ahad;VPμ ¼ ð684.68� 2.42Þ × 10−10: ð3:34Þ

 685  690  695  700  705  710  715

aμ
had, LO VP x 1010

DEHZ03: 696.3 ± 7.2

HMNT03: 692.4 ± 6.4

DEHZ06: 690.9 ± 4.4

HMNT06: 689.4 ± 4.6

FJ06: 692.1 ± 5.6

DHMZ10: 692.3 ± 4.2

JS11: 690.8 ± 4.7

HLMNT11: 694.9 ± 4.3

FJ17: 688.1 ± 4.1

DHMZ17: 693.1 ± 3.4

KNT18: 693.3 ± 2.5

FIG. 24. Comparison of recent and previous evaluations of
ahad;LOVP
μ determined from eþe− → hadrons cross section data.

The analyses listed in chronological order are DEHZ03 [81],
HMNT03 [7], DEHZ06 [82], HMNT06 [8], FJ06 [83], DHMZ10
[84], JS11 [85], HLMNT11 [9], FJ17 [79], and DHMZ17 [78].
The prediction from this work is listed as KNT18, which defines
the uncertainty band that the other analyses are compared to.

8In addition, an evaluation using a global fit based on the
broken hidden local symmetry model [31] prefers lower values
for ahad;LOVP

μ than those displayed in Fig. 24.
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It should be noted that the negative NLO contribution results
in an anticorrelation between its uncertainty and the uncer-
tainty from the LO contribution, consequently resulting in a
slight reduction in the overall uncertainty that has been
incorporated into Eq. (3.34).
The hadronic LbL contributions, although small compared

to the hadronic vacuum polarization sector, have, in the past,
beendetermined throughmodel-dependent approaches.These
are based on meson exchanges, the large Nc limit, ChPT
estimates, short distance constraints from the operator product
expansion, andpQCD.Over time, several different approaches
to evaluating ahad;LbLμ have been attempted, resulting in good
agreement for the leading Nc (π0 exchange) contribution, but
differing for subleading effects. A commonly quoted deter-
mination of the LbL contribution is the “Glasgow consensus”
estimate of ahad;LbLμ ðGlasgow consensusÞ ¼ ð10.5� 2.6Þ ×
10−10 [101] (alternatively, see [102–105]). However, recent
works [106–108] have reevaluated the contribution to ahad;LbLμ

due to axial exchanges, where it has been found that this
contribution has, in the past, been overestimated due to an
incorrect assumption that the form factors for the axial meson
contribution are symmetric under the exchange of two photon
momenta [106]. Under this assumption, the determination in
[102] previously found the axial vector contribution to be
ahad;LbL;axialμ ¼ð2.2�0.5Þ×10−10. Correcting this reduces this
contribution to ahad;LbL;axialμ ¼ð0.8�0.3Þ×10−10 [106,107].
Applying this adjustment to theGlasgow consensus result, the
estimate in [108] finds

ahad;LbLμ ¼ ð9.8� 2.6Þ × 10−10; ð3:35Þ
which is the chosen estimate for ahad;LbLμ in this work. This
result is notably lower than the previously accepted LbL
estimates and will incur an overall downward shift on aSMμ . It
is, however, still within the original uncertainties when
comparing with the original Glasgow consensus estimate.
Alternatively, it should be noted that the estimate of
ahad;LbLμ ¼ ð10.2� 3.9Þ × 10−10 [108,109], which is a result
that is independent of the Glasgow consensus estimate,
could be employed here. In addition, the recent work [105]
has provided an estimate for the next-to-leading order
hadronic LbL contribution. It has found ahad;NLO-LbLμ ¼
ð0.3� 0.2Þ × 10−10, which does not alter the hadronic
LbL contribution significantly, but is taken into account
in the full SM prediction given below.
Much work has also been directed at the possibility of a

model independent calculation of ahad;LbLμ to further consoli-
date the SM prediction of aμ. One approach involves the
measurement of transition form factors by KLOE-2 and
BESIII, which can be expected to constrain the leading
pseudoscalar-pole (π0, η; η0) contribution to a precision of
approximately 15% [108]. Alternatively, the pion transition
formfactor (π0 → γ�γ�) canbecalculated on the lattice for the
same purpose [110]. New efforts into the prospects of

determining ahad;LbLμ using dispersive approaches are also
very promising [111–116], where the dispersion relations are
formulated to calculate either thegeneral hadronicLbL tensor
or to calculate ahad;LbLμ directly. These approaches will allow
for the determination of the hadronic LbL contributions from
experimental data and, at the very least, will invoke stringent
constraints on future estimates. Last, there has been huge
progress in developingmethods for a direct lattice simulation
of ahad;LbLμ [110,117–123]. With a proof of principle already
well established, an estimate of approximately 10% accuracy
seems possible in the near future. Considering these develop-
ments and the efforts of the Muon g − 2 Theory Initiative
[124] to promote the collaborative work of many different
groups, the determination of ahad;LbLμ on the level of the
Glasgowconsensuswill, at thevery least, be consolidated and
a reduction of the uncertainty seems highly probable on the
time scales of the new g − 2 experiments.
Following Eq. (3.31), the sum of all the sectors of the SM

results in a total value of the anomalous magnetic moment
of the muon of

aSMμ ¼ ð11659182.04� 3.56Þ × 10−10; ð3:36Þ
where the uncertainty is determined from the uncertainties
of the individual SM contributions added in quadrature.
Comparing this with the current experimental measurement
given in Eq. (1.1) results in a deviation of

Δaμ ¼ ð27.06� 7.26Þ × 10−10; ð3:37Þ
corresponding to a 3.7σ discrepancy. This result is compared
with other determinations of aSMμ in Fig. 25. In particular, a

160  170  180  190  200  210  220

(aμ
SM x 1010)−11659000

DHMZ10

JS11

HLMNT11

FJ17

DHMZ17

KNT18

BNL

BNL (x4 accuracy)

3.7σ

7.0σ

FIG. 25. A comparison of recent andprevious evaluations ofaSMμ .
The analyses listed in chronological order are DHMZ10 [84], JS11
[85], HLMNT11 [9], FJ17 [79], and DHMZ17 [78]. The prediction
from this work is listed as KNT18, which defines the uncertainty
band that other analyses are compared to. The current uncertainty
on the experimental measurement [1–4] is given by the light blue
band. The light grey band represents the hypothetical situation of
the new experimental measurement at Fermilab yielding the same
mean value for aexpμ as the BNL measurement, but achieving the
projected fourfold improvement in its uncertainty [5].
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comparison with the HLMNT11 estimate given in Eq. (1.7)
shows an improvement in the total uncertainty of aSMμ of
∼27%. It should be noted that although, as stated above, the
DHMZ17 estimate for ahad;LOVP

μ [78] is lower than the value
obtained in this work, the estimate of aSMμ from DHMZ17 is
higher than the estimate from this analysis as DHMZ17
chooses to use the estimate for the hadronic light-by-light
contribution of ahad;LbLμ ¼ ð10.5� 2.6Þ × 10−10 [101].

K. Determination of αðM2
ZÞ

From Eq. (3.30), the five-flavor hadronic contribution to

ΔαðM2
ZÞ is found to be Δαð5ÞhadðM2

ZÞ¼ð276.11�1.11Þ×
10−4. Combining this with the leptonic contribution
ΔαlepðM2

ZÞ ¼ ð314.979� 0.002Þ × 10−4 [125,126] and the
contribution due to the top quarkΔαtopðM2

ZÞ ¼ ð−0.7180�
0.0054Þ × 10−4 [127,128], the total value of the QED
coupling at the Z boson mass is found in this work to be

α−1ðM2
ZÞ¼ ð1−ΔαlepðM2

ZÞ−Δαð5ÞhadðM2
ZÞ−ΔαtopðM2

ZÞÞα−1
¼ 128.946�0.015: ð3:38Þ

Here, the top contribution is determined using the top quark
mass, mt ¼ 173.1� 0.6 GeV, and the value for strong
coupling constant at the mass of the Z boson, αsðMZÞ ¼
0.1182ð12Þ [4]. A comparison of these results with other

determinations of Δαð5ÞhadðM2
ZÞ and α−1ðM2

ZÞ is given in
Table VI. Note that, as discussed in Sec. III G, the different

weighting of the kernel functionof theΔαð5ÞhadðM2
ZÞ dispersion

integral compared to the integral for ahad;LOVP
μ results in

contributions from higher energy regions having a larger

influence on Δαð5ÞhadðM2
ZÞ than on ahad;LOVP

μ . Therefore, the
choice to use either the available inclusive data or pQCD
above ∼2 GeV as discussed in Sec. III I can have marked

differences on the values and errors obtained forΔαð5ÞhadðM2
ZÞ.

IV. CONCLUSIONS AND FUTURE
PROSPECTS FOR THE MUON g − 2

This analysis, KNT18, has completed a full reevaluation
of the hadronic vacuum polarization contributions to the

anomalous magnetic moment of the muon, ahad;VPμ , and the
hadronic contributions to the effective QED coupling at the
Z boson mass, ΔαhadðM2

ZÞ. These quantities have been
determined using the available eþe− → hadrons cross
section data as input into corresponding dispersion rela-
tions, with an aim to achieve both accurate and reliable
results from a predominantly data driven analysis. Since
[9], all aspects concerning the radiative corrections of the
data and the data combination have been reassessed in this
work. Specifically, the data are now combined using an
iterative, linear χ2-minimization developed from a method
that has been advocated to be free of bias and that has been
studied in detail. Importantly, this data combination method
allows for the full use of any available correlated statistical
and systematic uncertainties, incorporating experimental
covariance matrices in the combination in a bias-free
approach. These changes, plus the large quantity of new
hadronic cross section data, have resulted in improved
estimates for nearly all hadronic channels. This is particu-
larly true for the πþπ− channel, where the precision of this
final state has improved by approximately one third
compared to [9], with aπ

þπ−
μ from both analyses in very

good agreement. Importantly, the inclusion of recently
released neutral data in the KKπ and KK2π channels
has removed the need to rely on isospin relations to
estimate these final states. In addition, new inclusive
hadronic R-ratio data from the KEDR Collaboration have
improved the inclusive data combination. In particular, they
have provided the opportunity to reconsider the transition
region between the sum of exclusive states and the
inclusive data, which has resulted in the transition
point being chosen to be at 1.937 GeV in this work, where
the different choices for the data input in this point
are in agreement within errors. The complete data compi-
lation has yielded the full hadronic R-ratio and its covari-
ance matrix in the energy range mπ ≤

ffiffiffi
s

p
≤ 11.2 GeV.

Using these combined data, for the muon g − 2, this
analysis found ahad;LOVP

μ ¼ ð693.26� 2.46Þ × 10−10 and
ahad;NLOVP
μ ¼ ð−9.82� 0.04Þ × 10−10. This has resulted in

a new estimate for the Standard Model prediction of
aSMμ ¼ ð11659182.04� 3.56Þ × 10−10, which deviates
from the current experimental measurement by 3.7σ. For
the effective QED coupling, the new estimate in this work

ofΔαð5ÞhadðM2
ZÞ ¼ ð276.11� 1.11Þ × 10−4 yields an updated

value for the QED coupling at the Z boson mass
of α−1ðM2

ZÞ ¼ 128.946� 0.015.
In general, the predictions for aSMμ have been further

scrutinized and are well established. In particular, the
improvements in the uncertainty on the level discussed
in [130] are on track in preparation for the new exper-
imental results from Fermilab and J-PARC. The efforts of
the Muon g − 2 Theory Initiative and the groups involved
within it show great progress and promise in improving the
estimate of aSMμ further. Importantly, it should be noted that

TABLE VI. Comparison of recent and previous evaluations of

Δαð5ÞhadðM2
ZÞ determined from eþe− → hadrons cross section data

and the corresponding results for α−1ðM2
ZÞ.

Analysis Δαð5ÞhadðM2
ZÞ × 104 α−1ðM2

ZÞ
DHMZ10 [84] 275.59� 1.04 128.952� 0.014
HLMNT11 [9] 276.26� 1.38 128.944� 0.019
FJ17 [129] 277.38� 1.19 128.919� 0.022
DHMZ17 [78] 276.00� 0.94 128.947� 0.012
KNT18 [This work] 276.11� 1.11 128.946� 0.015
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there is no indication thus far that the SM prediction does
not deviate with the current experimental measurement by
more than 3σ. For the hadronic vacuum polarization
contributions, there is scope to further improve the esti-
mates, as new measurements of the πþπ− cross section are
planned to be released in the near future from BABAR,
CMD-3, SND, and, possibly, BELLE-2. Also, efforts are
currently being made to measure new inclusive R-ratio data
by BESIII and the experiments at Novosibirsk (SND,
CMD-3, KEDR). This, in particular, will benefit the

evaluation of Δαð5ÞhadðM2
ZÞ which, as discussed in Sec. III

K, is more sensitive than ahad;LOVP
μ to the precision of the

data from higher energy regions. In addition, lattice
determinations of ahad;VPμ are rapidly improving. Recent
work that combines data from lattice QCD with those from
experimental R-ratio data have already provided extremely
accurate results that are in good agreement with the current
estimates from the dispersive method [131]. Furthermore,
efforts to experimentally measure ahad;LOVP

μ in the spacelike
region are progressing [132,133] and would provide an
alternative check of the results from the dispersive
approach. Should any or all of these advances reduce
the uncertainty of ahad;VPμ even further, the improvement of
the hadronic light-by-light estimates will become particu-
larly crucial. This is further driven by the fact that the result
for ahad;VPμ determined in this analysis is the first estimate of

the hadronic vacuum polarization contribution that is more
precise than the currently quoted uncertainties for ahad;LbLμ .
However, given these developments in improving the
Standard Model prediction of aμ and the formidable
progress made by the new muon g − 2 experiments at
Fermilab and J-PARC, the prospects either to establish the
existence of new physics contributing to aμ or to rule out
many new physics scenarios are highly compelling.
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