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A new description of macroscopic Kruskal black holes that incorporates the quantum geometry
corrections of loop quantum gravity is presented. It encompasses both the “interior” region that contains
classical singularities and the “exterior” asymptotic region. Singularities are naturally resolved by the
quantum geometry effects of loop quantum gravity. The resulting quantum extension of spacetime has the
following features: (i) It admits an infinite number of trapped, anti-trapped and asymptotic regions; (ii) All
curvature scalars have uniform (i.e., mass independent) upper bounds; (iii) In the large mass limit, all
asymptotic regions of the extension have the same ADM mass; (iv) In the low curvature region (e.g., near
horizons) quantum effects are negligible, as one would physically expect; and (v) Final results are
insensitive to the fiducial structures that have to be introduced to construct the classical phase space
description (as they must be). Previous effective theories shared some but not all of these features. We
compare and contrast our results with those of these effective theories and also with expectations based on
the AdS=CFT conjecture. We conclude with a discussion of limitations of our framework, especially for the
analysis of evaporating black holes.
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I. INTRODUCTION

It is widely believed that predictions of general relativity
cannot be trusted once spacetime curvature enters the
Planck regime since modifications to Einstein’s equations
due to quantum gravity effects would then begin to
dominate. In particular, singularities of classical general
relativity are often regarded as windows onto new physics.
In loop quantum gravity (LQG), new physics emerges from
the underlying quantum Riemannian geometry (see, e.g.,
[1]) Thus, e.g., in the commonly used cosmological models
singularities are naturally resolved because, once a curva-
ture invariant approaches the Planck scale, quantum geom-
etry modifications of Einstein dynamics introduce strong
repulsive corrections that dilute that invariant, preventing a
blowup [2,3].
It is then natural to ask if these quantum geometry effects

also resolve black hole singularities. The simplest model is
provided by the Schwarzschild-Kruskal spacetime. For the
question of singularity resolution, it suffices to restrict
oneself to the black hole region that is bounded by the
singularity and event horizons, often referred to as the
“Schwarzschild interior.” Since this region is isometric to
the (vacuum) Kantowski-Sachs cosmological model, one
can transport LQG techniques developed for homogeneous
but anisotropic cosmologies. Therefore, the Schwarzschild
interior has drawn considerable attention from the LQG
community (see, e.g., [4–17] for investigations closely

related to this paper). The general procedure used in all
these investigations is the same: (a) The classical theory
is cast in a Hamiltonian framework using connection
variables; (b) the passage to quantum theory is through a
representation of the fundamental commutation relations
that descends from full LQG and, therefore, has in-
built elements of quantum geometry; (c) the quantum
Hamiltonian constraint is constructed by replacing curva-
ture with holonomies of the gravitational connection
around suitable loops that enclose minimum nonzero area
allowed by quantum geometry; and, finally, (d) detailed
physical predictions of the model are obtained using certain
‘effective equations.1 Solutions to these equations show
that the central singularity is resolved due to quantum
corrections. We follow the same procedure. As we show in
Sec. III, the singularity is replaced by a spacelike, three-
dimensional transition surface T to the past of which we

1In the cosmological models, effective equations were first
introduced by examining the form of the quantum Hamiltonian
constraint, then writing down an effective Hamiltonian constraint
on the classical phase space that includes key quantum correc-
tions due to quantum geometry effects of LQG, and calculating
its dynamical flow, again on the classical phase space. Later these
equations were shown to follow from the full quantum dynamics
of sharply peaked states [3,18,19]. In the Schwarzschild case, this
last step has not been carried out in any of the approaches,
including ours.
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have a trapped region (as in the Schwarzschild-Kruskal
black hole region) and to the future of which is an
antitrapped region (as in the Schwarzschild-Kruskal white
hole region).
However, the analyses [4–17] differ in the way step (C) is

implemented in detail. Consequently, the resulting effective
dynamics of step (D) varies from one approach to another.
Subsequent investigations have revealed that these effective
descriptions have undesirable or puzzling features whose
physical origin has remained unclear. For example, physi-
cal effects fail to be independent of the fiducial structure
introduced to construct the classical phase space in some
approaches [4,5,8], while quantum geometry effects could
be large in low curvature regimes in other approaches. In
particular, the quintessentially quantum transition surface
could emerge in a low curvature region for macroscopic
black holes with large masses [10,12]. Similarly, spacetime
geometry near the black hole horizon could receive large
quantum corrections even when the mass of the black hole
is very large and hence the curvature near its horizon is low
[6,7,13].2 A systematic discussion of these limitations,
including their origin, is given in Secs. IV D (and VI).
To compare and contrast these investigations, it is

convenient to divide them into three broad classes, in
terms of their method of selecting the loops needed in
step (C). In all these treatments, the loops are characterized
by two quantum parameters, labeled δb and δc. In [4,5,8],
these parameters are set to a constant; in [10,12] they are
certain Dirac observables, i.e., functions on phase space that
are constant along (effective) dynamical trajectories; and in
[6,7,9,11,13,20,21] they are more general functions on the
classical phase space that change not only from one
dynamical trajectory to another but also along each indi-
vidual trajectory. The overall strategy we will adopt is the
same as that in [10] but the specificDirac observableswe use
are chosen more judiciously, using conditions that refer to
the transition surface T . As a result, unlike in [10], the
transition surface T always lies in the Planck regime in our
effective theory, and there is also excellent agreement with
classical general relativity in low curvature regions. The
trapped and antitrapped regions are joined smoothly to
asymptotic regions, leading to a genuine quantum extension
of the full Kruskal spacetime beyond classical singularities.
(For a Penrose diagram of the full extension, see Fig. 4).
There is another key difference from previous inves-

tigations. The primary focus there was on Kantowski-Sachs
spacetimes, with emphasis on issues that feature promi-
nently in anisotropic cosmologies, such as bounces of
various scale factors [6,9–11,13,20], behavior of the energy
density, expansion scalar, shear potentials of the Weyl

curvature [21], and, geodesic completeness and generic
resolution of strong singularities [22]. Some of the dis-
cussions also included matter sources [20–22] or a cos-
mological constant [9,11]. While the inclusion of matter is
natural from the cosmological perspective, the analysis no
longer has direct relevance for quantum modifications of
the Schwarzschild geometry near its singularity. Finally, a
limitation of all existing studies of loop quantization of the
Schwarzschild interior is that effective geometry is not
extended to the asymptotic regions. By contrast, the object
of primary interest to this investigation is the Kruskal
spacetime, and the emphasis is on the corresponding
spacetime notions, such as trapped and antitrapped regions,
black hole–type and white hole–type horizons, the corre-
sponding asymptotic regions, and the behavior of the static
Killing field as one passes from the original Kruskal
spacetime to its quantum extension. In particular, we also
introduce an effective description in the asymptotic regions
and show that the effective metric in the asymptotic and
interior regions match at the horizons.
Material is organized as follows. Section II fixes the

notation used subsequently, recalls the basics of the
Hamiltonian framework, and summarizes the effective
equations and their solutions. This discussion is included
to make the paper self-contained. In Sec. III, we shift the
focus from phase space trajectories to spacetime geometry
and discuss the causal structure of the effective spacetime
metric. As one might expect, corrections to the classical
geometry are large in the regime where spacetime curvature
enters Planck scale. As a result, a transition surface T with
regular spacetime geometry now emerges, separating
trapped and antitrapped regions. There is a precise sense
in which T replaces the classical singularity in the quantum
corrected, effective geometry. In Sec. IV, we motivate and
introduce our specific choice of the quantum parameters δb,
δc and discuss various features of the resulting effective
spacetime geometry in the extended Schwarzschild interior.
In Sec. V, we introduce the effective description in the
exterior, asymptotic region of Schwarzschild spacetime and
show that this effective metric matches smoothly to that in
the interior.3 For macroscopic black holes spacetime
curvature is small near horizons. As one would hope on
physical grounds, quantum corrections are also small near
horizons in both interior and exterior regions and further
decay rapidly as one moves away from the horizon in the
asymptotic region. In Sec. VI, we summarize our main
results and contrast our approach and findings with those
used in previous investigations in LQG and also with the
expectations based on the AdS=CFT correspondence [26].

2The same turns out to be true for the δb, δc prescriptions
studied in Refs. [20,21] in the context of Kantowski-Sachs
cosmologies, when they are used to model the Schwarzschild
interior.

3Another approach that incorporates both the interior and the
exterior regions of Schwarzschild but without making a direct use
of homogeneity is summarized in [23]. This approach has also
been used to study effects of quantum geometry on Hawking
radiation [24], and collapse of self-gravitating shells [25].
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We conclude with a discussion of limitations of our
analysis.
Since the LQG literature on quantum corrections to the

Schwarzschild metric is spread over 10–15 years, we have
made an attempt to make the paper self contained by
recalling key ideas at various junctures. Throughout, one
should bear in mind that effective descriptions can be
expected to provide a good approximation to the quantum
evolution only if the massM of the black hole is large, i.e.,
GM≕m ≫ lPl, where lPl is the Planck length. This is the
regime of interest to this paper.

II. PRELIMINARIES

As explained in Sec. I, in the first part of the paper we will
focus on the Schwarzschild interior and use the fact that this
portion of the Kruskal spacetime is naturally foliated by a
family of homogeneous spacelike 3-manifolds. One can,
therefore, use techniques from loop quantum cosmology
(LQC) to construct a Hamiltonian framework based on
connection and triad variables, Ai

a and Ea
i , and then pass to

the quantum theory using the same methods that are used in
full LQG (see, e.g., [3]). In cosmological models, quantum
dynamics leads to a nonsingular evolution in which matter
density and curvature remain finite. Furthermore, one can
extract an effective description [3,18,19] from the resulting
quantum theory following a systematic procedure based on a
geometrical formulation of quantum mechanics [27].
Rigorous numerical simulations have shown that the effec-
tive description provides an excellent approximation to the
underlying quantum dynamics for isotropic [28–30], as well
as anisotropic spacetimes [31] so long as we consider
quantum states that are sharply peaked on “large” universes
at late times.
For the Schwarzschild interior, one can also introduce

quantum kinematics (see e.g., [4,10]) and write down the
Hamiltonian constraint operator. However, for our choice
of quantum parameters δb, δc, its explicit action is rather
complicated (see Appendix A). Therefore, in this paper we
will focus only on the effective description, leaving the
exploration of its relation to full quantum dynamics for a
future work. In contrast to previous investigations of
effective dynamics, our emphasis will be more on the
causal structure and geometric properties of the quantum
corrected spacetime than on phase space trajectories and
cosmological issues associated with the Kantowski-Sachs
spacetime. The purpose of this section is to summarize this
procedure. We begin with the phase space and classical
dynamics and then discuss effective dynamics. Our treat-
ment and conventions are based on Refs. [4,10], which the
reader can refer to for further details.

A. Phase space and classical dynamics

Recall that the interior of the Kruskal spacetime
is isometric to the Kantowski-Sachs vacuum solution.

The homogeneous Cauchy slices have topology R × S2.
As is customary in the phase space formulation of homo-

geneous models, let us introduce a fiducial metric q
∘
ab on Σ

q
∘
abdxadxb ¼ dx2 þ r2oðdθ2 þ sin2 dϕ2Þ; ð2:1Þ

where x ∈ ð−∞;∞Þ, θ and ϕ are 2-sphere coordinates, and
ro is a constant (with dimensions of length). Since Σ is
noncompact in the x direction, and all fields under con-
sideration are homogeneous, in the construction of the
phase space description we need to introduce an infrared
cut-off; otherwise expressions of the symplectic structure
and the (integrated) Hamiltonian constraint would be
divergent. This is achieved by introducing a fiducial cell
C in Σ, also with topology R × S2, but with x ∈ ð0; LoÞ. In
the phase space considerations, all fields and integrals will
be restricted to C. Although intermediate structures will
refer to Lo, the final physical results–such as equations of
motion–will be independent of this choice in our classical
as well as effective theory.
Using the underlying spatial homogeneity of the

Kantowski-Sachs spacetime, we can solve the spatial
diffeomorphism constraint and perform a partial gauge
fixing to satisfy the Gauss constraint. As a result, the
gravitational connection and the conjugate densitized triad
can be expressed as

Ai
aτidxa ¼ c̄τ3dxþ b̄roτ2dθ − b̄roτ1 sin θdϕþ τ3 cos θdϕ;

ð2:2Þ
and

Ea
i τ

i∂a ¼ p̄cr2oτ3 sin θ∂x þ p̄broτ2 sin θ∂θ − p̄broτ1∂ϕ:

ð2:3Þ
Here τi are SU(2) generators related to Pauli spin matrices
σi via τi ¼ −iσi=2, and the constants b̄; c̄; p̄b; p̄c represent
the dynamical variables. Thus, the symmetry reduced
phase space is now coordinatized by two configuration
variables ðb̄; c̄Þ and their conjugate momenta ðp̄b; p̄cÞ. The
symplectic structure is given by

Ω̄ ¼ Lor2o
2Gγ

ð2db̄ ∧ dp̄b þ dc̄ ∧ dp̄cÞ; ð2:4Þ

where γ is the Barbero-Immirzi parameter that captures the
quantization ambiguity in LQG.4 The symplectic structure

4The parameter γ arises in the passage from classical to
quantum theory. In quantum theory, it determines the LQG area
gap Δ via Δ ¼ 4

ffiffiffi
3

p
πγl2

Pl. Its value is generally fixed to be γ ¼
0.2375 using black hole entropy considerations. Although in the
final picture one can get rid of γ in favor of the more fundamental
and physical parameter Δ, both parameters feature in various
expressions in the existing literature [4–7,10]. To facilitate
comparison we will also keep both parameters.
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depends explicitly on the length Lo of the fiducial cell and

the radius ro in the fiducial metric q
∘
ab. We can absorb Lo

and ro by rescaling the connection and triad variables:
b ¼ rob̄, c ¼ Loc̄, pb ¼ Lorop̄b and pc ¼ r2op̄c. They then
satisfy the following Poisson brackets:

fc; pcg ¼ 2Gγ; fb; pbg ¼ Gγ: ð2:5Þ

Note that under the transformation ro → βro (where β is a
constant) the rescaled connection and triad variables are
invariant. However, under a rescaling of fiducial length Lo:
Lo → αLo (where α is a constant), we get b → b, c → αc,
pb → αpb and pc → pc. Therefore, physical quantities
can depend only on b; pc and the combinations c=Lo
and pb=Lo.
The gravitational connection and spatial triads now take

the form:

Ai
aτidxa ¼

c
Lo

τ3dxþ bτ2dθ − bτ1 sin θdϕþ τ3 cos θdϕ;

ð2:6Þ

and

Ea
i τ

i∂a ¼ pcτ3 sin θ∂x þ
pb

Lo
τ2 sin θ∂θ −

pb

Lo
τ1∂ϕ: ð2:7Þ

Given any choice of a time coordinate τ and the associated
lapse Nτ, each point in the phase space defines a spatially
homogeneous metric with Kantowski-Sachs isometries via

gabdxadxb ≡ ds2 ¼ −N2
τdτ2 þ

p2
b

jpcjL2
o
dx2

þ jpcjðdθ2 þ sin2θdϕ2Þ. ð2:8Þ

Therefore, by restricting ourselves to τ < 2m, we can use
the standard form of the interior Schwarzschild solution

ds2 ¼ −
�
2m
τ

− 1

�
−1
dτ2 þ

�
2m
τ

− 1

�
dx2

þ τ2ðdθ2 þ sin2θdϕ2Þ; ð2:9Þ

(where m ¼ GM) to set up a dictionary between phase
space variables and their spacetime counterparts.5 In terms
of m and the radius τ of metric 2-spheres, we have
jpcj ¼ τ2, p2

b ¼ L2
oð2mτ − 1Þτ2 and N2

τ ¼ ð2mτ − 1Þ−1.
With the Gauss and spatial diffeomorphism con-

straint fixed, we can extract classical dynamics from
the Hamiltonian constraint using Hamilton’s equations.

It turns out that in the effective theory there is a particularly
convenient choice of lapse for which dynamical equations
simplify sufficiently to obtain explicit solutions [10]. The
classical analog of that lapse is

Ncl ¼ γb−1sgnðpcÞjpcj1=2; ð2:10Þ

and we will denote the corresponding time variable by Tcl.
The corresponding Hamiltonian constraint is

Hcl½Ncl� ¼ −
1

2Gγ

�
2cpc þ

�
bþ γ2

b

�
pb

�
: ð2:11Þ

Using Hamilton’s equations, the evolution equations for
connection variables turn out to be

_b ¼ Gγ
∂Hcl½Ncl�

∂b ¼ −
1

2b
ðb2 þ γ2Þ; and

_c ¼ 2Gγ
∂Hcl½Ncl�

∂c ¼ −2c; ð2:12Þ

where the ‘dot’ denotes time derivative with respect to Tcl.
Similarly, for the triad variables we obtain,

_pb ¼ −Gγ
∂Hcl½Ncl�

∂pb
¼ pb

2b2
ðb2 − γ2Þ; and

_pc ¼ 2Gγ
∂Hcl½Ncl�

∂pc
¼ 2pc: ð2:13Þ

Solutions to these dynamical equations together with the
Hamiltonian constraint turn out to be

bðTclÞ ¼ �γðe−Tcl − 1Þ1=2; cðTclÞ ¼ ∓coe−2Tcl ;

ð2:14Þ

and

pbðTclÞ ¼ pðoÞ
b eTclðe−Tcl − 1Þ1=2; pcðTclÞ ¼ pðoÞ

c e2Tcl :

ð2:15Þ

In writing these solutions, we have fixed one of the
integration constants so that, in the spacetime picture,
the black hole horizon lies at Tcl ¼ 0. The singularity
now occurs at Tcl ¼ −∞ so that the Schwarzschild
interior corresponds to −∞ < Tcl < 0. The remaining three

integration constants, co, p
ðoÞ
b and pðoÞ

c are subject to one
condition coming from the Hamiltonian constraint
Hcl½Ncl� ¼ 0 and can, therefore, be parametrized by two

constants, m;L0 [4,10]: co ¼ γLo=4m;pðoÞ
b ¼ −2mL0;

pðoÞ
c ¼ 4m2. Here, and in what follows we fix the orienta-

tion of the spatial triad [see (2.7)] and restrict ourselves to
pc ≥ 0; c > 0; b > 0 and pb ≤ 0.

5We have used the notation that is tailored to the Schwarzschild
interior. The standard Schwarzschild form is obtained by sub-
stitutions τ → r and x → t.
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The form of the solutions immediately implies that
cpc=ðLoγÞ is a Dirac observable–i.e., a constant of
motion–that equals m ¼ GM in the spacetime metric
defined by the dynamical trajectory:

cpc

Loγ
¼ m along any classical dynamical trajectory:

ð2:16Þ

Finally, to display the standard form (2.9) of the metric,
it suffices to change the time coordinate and set
τ ≔ 2meTcl . At the horizon, identified by τ ¼ 2m, or
Tcl ¼ 0, we have b ¼ 0 and pb ¼ 0 and c and pc take
the values, cð0Þ ¼ γLo=4m and pcð0Þ ¼ 4m2. The central
singularity occurs at τ ¼ 0 or Tcl → −∞. Here the
connection components diverge and both of the triad
components vanish.

B. Effective dynamics

Effective equations are formulated on the same phase
space as the one used in the classical theory but they
incorporate leading order quantum corrections through
‘quantum parameters’ δb, δc. As mentioned in Sec. I, we
will assume that: (1) δb and δc are judiciously chosen
Dirac observables (and, thus, commute with the
Hamiltonian constraint); and, (2) go to zero in the limit
in which the area gap Δ is sent to zero. Condition (1) is a
subtle requirement because HeffðNÞ itself depends on δb,
δc [see Eq. (2.18)]. However, as our discussion in
Appendix A (and Sec. IVA) shows, a large family of
consistent choices does exist. Thus, δb, δc will be ℏ-
dependent phase space functions which remain constant
along dynamical trajectories. A specific choice will be
made in Sec. III, and it will ensure δb ≪ 1 and δc ≪ 1
for macroscopic black holes.
Now, as mentioned in Sec. II A, a convenient choice of

lapse considerably simplifies the analysis of effective
dynamics and enables one to write solutions in a closed
analytic form. Therefore, following [10], we will set6

N ¼ γsgnðpcÞjpcj1=2δb
sinðδbbÞ

; ð2:17Þ

and we will denote the corresponding time variable by T.
(Just as Tcl < 0 in the Schwarzschild ‘interior’, we will
see that T < 0 in the ‘extended Schwarzschild interior’
because as in the classical theory N blows up at T ¼ 0.)
The resulting effective Hamiltonian is given by

Heff ½N� ¼ −
1

2Gγ

�
2
sinðδccÞ

δc
jpcj

þ
�
sinðδbbÞ

δb
þ γ2δb
sinðδbbÞ

�
pb

�
: ð2:18Þ

It is easy to see that in the classical limit δb → 0 and
δc → 0, the lapse N in the effective theory agrees with
the lapse Ncl in the classical theory [see Eqs. (2.17) and
(2.10)], and the effective Hamiltonian Heff ½N� reduces to
the classical Hamiltonian (2.11). As shown in
Appendix A, there exists a class of quantum parameters
δb, δc which lead to the following dynamical equations
for connection and triad components:

_b ¼ −
1

2

�
sinðδbbÞ

δb
þ γ2δb
sinðδbbÞ

�
; _c ¼ −2

sinðδccÞ
δc

;

ð2:19Þ

and

_pb ¼
pb

2
cosðδbbÞ

�
1 −

γ2δ2b
sin2ðδbbÞ

�
; _pc ¼ 2pc cosðδccÞ;

ð2:20Þ

where the ‘dot’ denotes derivative with respect to T.
An interesting feature of the above set of equations is that

dynamics of b and pb decouples from that of c and pc.
Thus, the trajectories for the ðb; pbÞ sector in the effective
phase space can be obtained independently from the
trajectories for the ðc; pcÞ sector. This feature, which is
shared with the classical theory, is tied to δb and δc being
Dirac observables and plays a crucial role in obtaining
closed form solutions in the effective theory. If δb and δc
had been general phase space functions dynamical equa-
tions would become intricately coupled and have to be
solved numerically as in [6,7,11,21].
It is straightforward to integrate these Hamilton’s equa-

tions for b, c and pc variables. The strategy is to solve the
ðc; pcÞ sector first, then the dynamical equation for b and
finally obtain the solution for pb using the vanishing of the
effective Hamiltonian constraint Heff ≈ 0. The general
solution is:

tan

�
δccðTÞ

2

�
¼ ∓ γLoδc

8m
e−2T; ð2:21Þ

pcðTÞ ¼ 4m2

�
e2T þ γ2L2

oδ
2
c

64m2
e−2T

�
; ð2:22Þ

cosðδbbðTÞÞ ¼ bo tanh

�
1

2

�
boT þ 2tanh−1

�
1

bo

���
;

ð2:23Þ

6In the quantum theory, only holonomies defined by the
connection are well defined; not the connections themselves.
As in LQC, holonomies are almost periodic functions of con-
nections and we are led to restrict the phase space to the sector
δbb ∈ ð0; πÞ; δcc ∈ ð0; πÞ;pb < 0 and pc > 0, where the last two
conditions are the same as in the classical theory.
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where

bo ¼ ð1þ γ2δ2bÞ1=2; ð2:24Þ

and,

pbðTÞ ¼ −2
sinðδccðTÞÞ

δc

sinðδbbðTÞÞ
δb

pcðTÞ
sin2ðδbbðTÞÞ

δ2b
þ γ2

:

ð2:25Þ

Note that in the classical limit δb → 0 and δc → 0, these
solutions reduce to (2.14) and (2.15). Next, (2.21) and
(2.22) immediately imply that pc sinðδccÞ=ðγLoδcÞ is a
Dirac observable which, in the classical limit, has the
interpretation of the mass m of the black hole. Since, as we
will see, our effective theory agrees with the classical
theory in the low curvature region (e.g., near the black hole
horizon for macroscopic black holes) and since Dirac
observables are constants of motion, we will denote it
again by m. Thus, in our effective theory:

m ≔
�
sin δcc
γLoδc

�
pc; ð2:26Þ

which can also be expressed using only b; pb on the
constraint surface [see Eq. (2.18)]:

m ≔ −
1

2γ

�
sin δbb
δb

þ γ2δb
sin δbb

�
pb

Lo
: ð2:27Þ

One can pass from the phase space to the spacetime
description following the same procedure as in the classical
theory. Thus, the quantum corrected spacetime metric is
given by substituting the lapse N of (2.17) and solutions
(2.22) and (2.25) for triads pc, pb in the expression (2.8).
An important feature of the effective dynamics is that the

solutions are nonsingular so long as the appropriately
chosen quantum parameters δb and δc are nonzero. In
the classical theory, the connection components diverge
and the triad components go to zero at the singularity. This
does not occur anywhere in the effective spacetime metric.
In particular, pc takes a minimum value pcjmin ¼ mγLoδc
in every effective spacetime. In the phase space picture, the
triad pc bounces avoiding the central singularity. This
singularity resolution is a direct manifestation of the
nonperturbative quantum gravitational effects encoded in
the effective Hamiltonian via quantum parameters δb
and δc.
To summarize, there is a large class of judiciously chosen

quantum parameters δb, δc (discussed in Appendix A) that
lead to the quantum corrected, effective spacetime geom-
etry given by Eqs. (2.8), (2.2), (2.25). To make a more
detailed investigation of properties of the quantum

corrected, effective spacetime one has to specify δb and
δc. We will do this in Sec. IV.

III. CAUSAL STRUCTURE OF THE EFFECTIVE
SPACETIME GEOMETRY

As we remarked in Sec. I, previous discussions of
singularity resolution treated Schwarzschild interior as a
cosmological model and focused on issues that are at
forefront in anisotropic models, such as bounces of scale
factors. Our focus, by contrast, is on black hole aspects.
Therefore, we will now investigate the consequences of the
phase space dynamics of Sec. II B on the spacetime
geometry. Specifically, we will analyze the causal structure
in the extension of Schwarzschild interior provided by the
effective metric and show that it is divided by a trapped and
antitrapped regions, separated by a three-dimensional
spacelike transition surface T that replaces the classical
singularity. Results of this section are general in the sense
that they are not tied to the specific choice of the quantum
parameters introduced in Sec. IV; they are consequences of
equations of motion (2.21)–(2.25) that hold for any δb, δc in
the large family discussed in Appendix A.
Let us begin by recalling the situation in the classical

theory. There, the spacetime metric (2.9) corresponding to
every dynamical trajectory (with nonzerom) admits a black
hole (BH) horizon at time τ ¼ 2m, or T ¼ 0, where the
translational Killing vector field Xa (with Xa∂a ¼ ∂=∂x)
becomes null and the spatial 3-metric becomes degenerate.
In the phase space description, the horizon is characterized
by conditions b ¼ 0; pb ¼ 0 [see Eqs. (2.14) and (2.15)].
At these points, the lapse Ncl of Eq. (2.10) diverges and so
the interpretation in terms of spacetime geometry breaks
down. Therefore, the horizon represents the past boundary
of the interior region. Each dynamical trajectory also has a
future end point at which pc vanishes (τ ¼ 0 or T ¼ −∞)
[see Eq. (2.15)]. In terms of spacetime geometry, these
points represent the future singularity at which b, c and the
Kretschmann scalar diverge.
Let us now examine how this situation changes in the

quantum corrected, effective spacetime geometry. By con-
struction, the effective metric (2.8) is again spherically
symmetric and has a spacelike translational Killing vector
field Xa. Thus, as in the classical theory, the spacetime
under consideration is foliated by homogeneous, spacelike
Cauchy surfaces. The past boundary is again represented by
the phase space points b ¼ 0; pb ¼ 0 at which the lapse N
of Eq. (2.17) diverges. (Note that, as in the classical theory,
along dynamical trajectories vanishing of b implies vanish-
ing of pb and divergence of N. See Eqs. (2.25) and (2.17).)
The form (2.8) of the metric implies that the Killing vector
field Xa becomes null there.
However, as we already noted in Sec. II B, Eq. (2.22)

implies that pc now admits a nonzero minimum value,
pmin
c ¼ 1

2
γðLoδcÞm along every dynamical trajectory.

(Recall that pc and Loδc are both invariant under the
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rescalings of the fiducial cell and the fiducial metric.) As a
consequence, none of the curvature scalars diverges: the
spacetime metric defined by the effective dynamical
trajectory is smooth. In the spacetime picture, the 3-surface
T on which pc achieves its minimum replaces the classical
singularity in the quantum corrected geometry. To discuss
geometrical properties of T , let us begin by introducing the
two future pointing null normals la

� to the metric 2-spheres
x ¼ const and T ¼ const:

l�
a ¼ α�∇aT � β�∇ax: ð3:1Þ

The standard normalization conditions

gabl�
a l�

a ¼ 0; gablþ
a l−

a ¼ −1; ð3:2Þ

with α� > 0 and β� > 0, fix three of the parameters α� and
β� and we will fix the remaining freedom by setting
αþ ¼ 1. The expansions of these null vectors can be
expressed in terms of phase space variables as

θ� ¼ Sab∇al�
b ¼ N2 _pc; ð3:3Þ

where Sab is the projection operator on the metric
2-spheres. Since N cannot vanish [see Eq. (2.17)], either
of the two expansions θ� vanishes if and only if _pc ¼ 0,
and then they both vanish. It follows from (2.22) that each
effective trajectory in the phase space admits one and only
one point at which this occurs, and the corresponding time
coordinate in the spacetime description is given by

TT ¼ 1

2
ln

�
γLoδc
8m

�
: ð3:4Þ

To the past of the 3-surface T ¼ TT —i.e., in the region
0 > T > TT —both expansions θ� are negative; i.e., the
metric 2-spheres are all trapped. To the future of this
surface–i.e., for TT > T, both expansions θ� are positive;
i.e., the metric 2-spheres are all antitrapped. (Recall that, by
its definition, the coordinate T decreases from T ¼ 0 as we
go to the future in the spacetime picture and is, thus,
negative in the entire spacetime region of interest.)
Therefore, T is the transition surface from trapped region
to antitrapped region of the spacetime metric (2.8).7 Since
_pc has precisely one zero along each dynamical trajectory,
each solution admits one and only one transition surface.
What happens to T in the classical limit δb → 0 and

δc → 0? In that case TT → −∞ which corresponds to the
classical black hole singularity. In his precise sense, in the
effective description T replaces the classical singularity.
What is the nature of the spacetime geometry to the

future of the transition surface T ? Since both expansions
θ� are now positive, the causal structure is completely
analogous to the white hole region of Kruskal spacetime. In
this sense, one can say that T marks a transition from a
black hole interior to the white hole interior. However, we
will refrain from using this terminology because to some it
suggests that the black hole singularity still persists and the
extension corresponds to attaching a white hole geometry
to the future of the singularity. We emphasize that the entire
geometry is smooth and T is invariantly defined as the
boundary between a trapped region in the past to an
antitrapped region to the future.
As we saw, the past boundary of the spacetime region

defined by effective trajectories in our phase space has the
interpretation of the black hole horizon since the Killing
field Xa becomes null there. Since the future of T
represents an antitrapped region, it is natural to ask if
this region also admits a boundary that can be interpreted
as the white hole horizon. It follows from the form of the
metric (2.8) that, as in the classical theory, if pbðT0Þ
vanishes, then the surface T ¼ T0 would represent a
Killing horizon. Equation (2.25) implies that this occurs
at T0 ¼ −ð4=boÞ × tanh−1ð1=boÞ because then δbbðT0Þ ¼
π whence pb ¼ 0. We will see in Sec. IV that for
macroscopic black holes this occurs in a low curvature
region with our choice of the quantum parameters δb, δc.
Thus, in our effective theory, the extended Schwarzschild
interior is the smooth spacetime region T0 < T < 0 with a
black hole–type horizon at T ¼ 0 as its past boundary and
a white hole–type horizon at T ¼ T0 as its future
boundary. This portion of the effective spacetime is
divided into a trapped region to the past of T and an
antitrapped region to the future of T .
Remarks: 1. Recall that the transition surface T in

spacetime corresponds to the phase space point at which
pc bounces in the corresponding dynamical trajectory.
The other phase space momentum variable pb appears
only in the expression of the norm of the translational
Killing field Xa in spacetime. It also undergo bounces
and this generically occurs away from T . We did not
discuss these bounces since these are not significant for
the causal structure of the effective spacetime under
consideration.
2. The past boundary of the extended Schwarzschild

interior is a black hole–type (i.e., future) horizon of the
classical spacetime we started with, while the future
boundary is a white hole–type (i.e., past) horizon. We will
refer to them as black hole–or white hole–type rather than
future or past horizons because, in the extended spacetime,
the black hole–type future horizon lies to the past of the
white hole–type past horizon (see Fig. 4).

7T has very interesting geometry. It is a spacelike 3-manifold
that is foliated by marginally trapped surfaces. However, it is not
a dynamical horizon because both expansions θ� vanish on TT .
Similarly, although the area of all marginally trapped 2-spheres is
the same, T is not a nonexpanding horizon because it is
spacelike. These features are quite exceptional: Indeed, we are
not aware of any physically interesting spacetime in classical
general relativity which admits a surface with these interesting
properties.
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IV. QUANTUM CORRECTED SPACETIME
GEOMETRY OF THE SCHWARZSCHILD

INTERIOR

This section is organized as follows. In Sec. IVA, we
motivate and specify our choice of quantum parameters
δb, δc. In Sec. IV B, we probe the nature of quantum
corrections to Einstein’s equations that are responsible for
the singularity resolution. Even though there is no physical
matter anywhere, it is often convenient to reinterpret
nonvanishing of the Einstein tensor in terms of an effective
stress energy tensorTab induced by quantum geometry. We
present expressions of the resulting effective energy density
ρ and radial and tangential pressures px; pk, and show that
the strong energy condition is indeed violated by thisTab in
a neighborhood of the transition surface T . In this
neighborhood, then, there are large departures from
classical general relativity. In Sec. IV C, we show that
the spacetime curvature near T is of Planck scale.
Interestingly, as is common in LQC, each curvature
invariant has an absolute upper bound, i.e., one that does
not depend on how large the mass is. This is in sharp
contrast with the situation in classical general relativity,
where the Kretschmann scalar KðTÞ ¼ 48m2=p3

cðTÞ grows
with mass at any given T, making the ‘strength’ of the
central singularity proportional to m2. Finally, the effective
stress-energy tensor Tab decays away from the transition
surface T and becomes quickly negligible. Thus, for large
m, Einstein’s vacuum equations are satisfied to a high level
of accuracy near the black hole–and white hole–type
horizons. The overall situation is similar to that in LQC:
quantum geometry corrections are negligible in low cur-
vature regime but grow quickly in the Planck regime,
creating an effective repulsive force that resolves the
singularity. Finally, in Sec. IV D, we compare and contrast
our strategy of fixing δb, δc and the results that follow with
previous work on the singularity resolution in loop quan-
tization of Kantowski-Sachs model [4–13,20,21].

A. Transition surface, area gap and δb, δc
As indicated in Sec. I, several different choices of

quantum parameters δb, δc have been made in the literature
[4–13], including those where δb and δc are not constants
[6,7,9,11,13], leading to quite different effective descrip-
tions of Schwarzschild interior. In this subsection, we will
first motivate and then specify our choice. In Sec. IV D, we
will compare and contrast the physical predictions that
result from different choices.
Recall from Sec. II that the gravitational connection Ai

aτi
enters in the Hamiltonian constraint via its curvature Fi

abτi.
In the passage to quantum theory, there is a surprising
result: the requirement of background independence selects
a unique representation of the canonical commutation
relations (in full LQG [32,33], as well as in LQC
[34,35]). In this representation, there is no operator

corresponding to the connection Ai
aτi itself; only the

operators corresponding to the holonomies hl defined by
Ai
aτi along links l are well defined. Therefore, in the

quantum theory components of the curvature Fi
abτi have to

be expressed using holonomies (see, e.g., [1,36]). In the
classical theory, one can calculate, say, Fi

θ;ϕτi as follows:
first evaluate the ratio ðh□ðθ;ϕÞ − 1Þ=ðArð□ðθ;ϕÞÞÞ—where
h□ðθ;ϕÞ is the holonomy around a closed rectangular
plaquette □ðθ;ϕÞ within the θ-ϕ 2-sphere enclosing an
area Arð□ðθ;ϕÞÞ—and then take the limit as the plaquette
□ðθ;ϕÞ shrinks to a point. The idea is to use this procedure
also in the quantum theory. However, the area operator has
a discrete spectrum in LQG and there is a minimum
nonzero area eigenvalue–the area gap Δ. Therefore, the
strategy is to obtain the quantum operator corresponding to
the classical curvature component Fi

θ;ϕτi by shrinking the
plaquette□ðθ;ϕÞ only till its area Arð□ðθ;ϕÞÞ equalsΔ. In
the same manner, operators corresponding to the other two
curvature components Fi

ϕ;xτi and Fi
θ;xτi are defined as

holonomies along plaquettes □ðϕ; xÞ and □ðθ; xÞ in the
ϕ-x and θ-x planes enclosing area Δ. Therefore, we have:

F̂i
abτi ¼

1

Δ
ðh□ab

− 1Þ; ð4:1Þ

where the appropriately chosen plaquette □ab lies in the
a-b plane, enclosing area Δ. Consequently the operator
corresponding to curvature now acquires a Planck scale
nonlocality which lies at the heart of quantum corrections
to dynamics that naturally resolve singularities.
The quantum parameter δb has the interpretation of the

length of each link constituting the plaquette within the θ-ϕ
2-spheres, and δc, of the length of the links in the x
direction within the plaquettes in the θ-x and ϕ-x planes in
the fiducial cell C. First investigations [4,5] of the
Schwarzschild interior followed the procedure initially
used in FLRW models [37]–known as the μo-scheme–
and set δb, δc to a constant, δ [see footnote 1)]. Later
investigations revealed that the resulting quantum dynam-
ics has several limitations [10,21]. (For example, its
physical predictions depend on the choice of fiducial
structures.) These were overcome in an ‘improved dynam-
ics’ scheme in Ref. [6] (and a variant in Ref. [7]) by
mimicking the successful ‘μ̄-scheme’ introduced for the
FLRW models in Ref. [28] (see Ref. [38] for a discussion
about these two schemes). Then, δb, δc turn out to be
specific functions on the phase space whose values evolve
along the effective dynamical trajectories. However, as we
discuss in Sec. IV D, effective theories based on all of these
choices of δb, δc have physically unacceptable features.
We, therefore, follow a procedure that straddles between
the μo and μ̄ schemes: As mentioned before, our δb, δc will
not be constants all over the phase space, but they will be
constants along dynamical trajectories (as in [10]). That is,

ASHTEKAR, OLMEDO, and SINGH PHYS. REV. D 98, 126003 (2018)

126003-8



they will Poisson-commute with the effective Hamiltonian
constraint.
Our strategy is to fix the Dirac observables δb, δc by

demanding that the plaquette □ðθ;ϕÞ and □ðϕ; xÞ should
enclose a minimum area when evaluated on T . (By
spherical symmetry, the condition is then satisfied also
for the plaquette □ðθ; xÞ.) Our δb, δc will then be well
defined Dirac observables because each effective trajectory
admits one and only one point at which _pc ¼ 0 [which, in
the effective spacetime geometry defines the transition
surface T ; see Eq. (3.3)]. Now, since the parameters δb,
δc used in the μo-type scheme [4,5] are constants on the
entire phase space, they are also (trivially) Dirac observ-
ables. Our procedures differs from the μo scheme because
we evaluate the area using the physical effective metric—
rather than the fixed fiducial metric used in [4,5]—making
crucial use of the transition surface T . Therefore, our δb, δc
are not constants on the phase space but vary from one
effective dynamical trajectory to another.
Let us begin with an infinitesimal rectangular plaquette

□ðϕ; xÞ in the θ ¼ π=2 plane of our fiducial cell. The
plaquette has two parallel links along the x axis and two
parallel links along θ ¼ π=2. Let δc denote the fractional
length of the link along the x axis. Note that fractional
lengths are metric independent. For example, with respect

to the fiducial metric q
∘
ab of Eq. (2.1), the total length of the

fiducial cell C along the x direction is Lo, and the length of
our link will be δcLo. Similarly, with respect to the physical
metric, the total length of the fiducial cell along the x
direction is ðjpbj= ffiffiffiffiffi

pc
p Þ and the length of our link will be

ðjpbj= ffiffiffiffiffi
pc

p Þδc. Likewise, let the fractional length of the link
along the equator be δb. Then, from the form (2.8) of the
physical metric, we conclude that the physical area
enclosed by the plaquette □ðϕ; xÞ at the transition surface
T is:

Arð□ðϕ; xÞÞ ¼ δbδcð2πjpbjjT Þ: ð4:2Þ

Since the total area Aϕ;x of the ϕ-x plane in the fiducial cell
is 2πjpbjT , as expected δbδc has the invariant interpretation
as the ratio of the area Arð□ðϕ; xÞÞ enclosed by the
plaquette □ðϕ; xÞ and the total area of the ϕ; x-plane
within the fiducial cell. We discussed these geometric
properties in some detail to distinguish the present scheme
from others in the literature. There, δb, δc are generally
taken as coordinate lengths using θ;ϕ; x and so their
invariant geometrical meaning remains unclear.8

Next, let us consider the plaquette □ðθ;ϕÞ in any x ¼
const 2-sphere on the transition surface T . Because the
2-spheres are round, we are led to use the same fractional
length δb along the two orthogonal directions of the
plaquette. Then it follows from the form (2.8) of the metric
that the physical area enclosed by this plaquette on the
transition surface T is

Arð□ðϕ; xÞÞ ¼ ðδbÞ2ð4πpcjT Þ; ð4:3Þ
so that now ðδbÞ2 has the interpretation of the ratio of the
area enclosed by the plaquette to the total area of the
2-sphere.
We can now implement the main strategy: We will

constrain δb, δc by requiring that the areas enclosed by the
two plaquettes on the transition surface T be equal to the
area gap:

2πδcδbjpbjjT ¼ Δ; ð4:4Þ

and

4πδ2bpcjT ¼ Δ: ð4:5Þ

Since on each dynamical trajectory pb and pc have fixed
values on the transition surface, it is intuitively clear that the
two equations would determine the values of δb, δc. This is
indeed the case under the well-motivated assumptions
δb ≪ 1, δc ≪ 1 and m ≫ lPl [where m is the phase space
function defined in Eq. (2.26)]. Since the proof of this result
is rather technical and requires a significant detour, to
maintain the flow of the argument, we present it in
Appendix B. The final result is that in the large m limit,
we have

δb ¼
� ffiffiffiffi

Δ
pffiffiffiffiffiffi
2π

p
γ2m

�
1=3

; Loδc ¼
1

2

�
γΔ2

4π2m

�
1=3

: ð4:6Þ

(Recall that it is only Loδc that has invariant meaning in the
sense of being independent of the choice of the fiducial
metric and cell). Note that both parameters depend on mass
and go as m−1

3. This property is important for physical
properties of the resulting effective metric.

B. Quantum corrections to Einstein’s equations

From the perspective of classical general relativity it is
natural to investigate how the effective theory manages to
resolve the Schwarzschild singularity. The effective stress
energy tensor induced by quantum corrections,

Tab ≔
1

8πG
Gab; ð4:7Þ

must violate standard energy conditions. It is natural to ask:
How large are the violations? and, Where do they occur?
We will now discuss these issues.

8Also, this careful analysis is essential to get the correct 2π-
and 4π-type numerical factors in the expressions of δb, δc in
Eq. (4.6). Some of the physical properties depend on these
factors. For example, in a less careful treatment that ignores these
factors, the mass m changes as one moves from one asymptotic
region to another one to its future (e.g., from region I to III in
Fig. 4), even in the large mass limit.
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Let us begin by noting that Tab can be interpreted as the
stress energy tensor of an anisotropic perfect fluid with
effective energy density

ρ ¼ −T0
0 ¼

1

8πG

�
1

pc
þ 1

N2

_pb _pc

pbpc
−

1

N2

_p2
c

4p2
c

�
; ð4:8Þ

and radial and tangential pressures

px ¼ T1
1 ¼

1

8πG

�
−

1

pc
þ 1

N2

_p2
c

4p2
c
−

1

N2

p̈c

pc
þ

_N
N3

_pc

pc

�
;

ð4:9Þ

pk ¼ T2
2 ¼

1

8πG

�
1

N2

_pb _pc

2pbpc
−

1

N2

_p2
c

4p2
c
−

1

N2

p̈b

pb
þ

_N
N3

_pb

pb

�
:

ð4:10Þ

Since _pc ¼ 0 at the transition surface T , we have�
Tab −

1

2
gabT

�
TaTb

���
T

¼ ðρþ px þ 2pkÞjT
¼ 1

8πG

�
_N
N3

2 _pb

pb
−

1

N2

2p̈b

pb
−

1

N2

p̈c

pc

����
T
; ð4:11Þ

Note that the right-hand sides of (4.8)–(4.10) hold for any
choice of lapse. Therefore, one can evaluate them using
our choice (2.17) [using δb, δc as in (4.6)]. We find
p̈c > 0; ðp̈b=pbÞ > 0, and _pb is much smaller than other
terms in the expression, making the right side of (4.11)
negative. (Indeed, as the plots in Figs. 2 show, ρ; px and pk
are all negative at the transition surface for our choice of
δb, δc, whence the middle term is manifestly negative.)
Therefore, we conclude that�

Tab −
1

2
gabT

�
TaTb

���
T
< 0: ð4:12Þ

Thus, for macroscopic black holes considered in this paper,
the strong energy condition is violated at (and, therefore, in
a neighborhood of) T , just as one would expect.

C. Universal upper bounds on curvature invariants

The explicit solutions to Hamilton’s equations given in
Sec. II B show that the phase space variables are manifestly
finite along effective dynamical trajectories. Therefore, it is
clear that the spacetime metric (2.8) is smooth throughout
the open interior region bounded by the two horizons.
Therefore, in any one effective solution, curvature scalars
are all finite and, therefore, bounded above. However, these
upper bounds could well diverge in the limit m → ∞.
Interestingly, this does not happen: each curvature invariant
has an absolute, finite upper bound in this limit. Existence

of such uniform upper bounds appears to be a general
occurrence in LQG. It could be a reflection of a deeper
property of quantum geometry effects at the heart of the
mechanism that leads to the resolution of strong, spacelike
singularities in LQG [2,22].
Since we know the explicit time dependence of the phase

space variables from Eqs. (2.21)–(2.25), using the form
(2.8) of the spacetime metric we can calculate various
curvature scalars at the transition surface. We used
MATHEMATICA to simplify these expressions in the large
m limit. The results can be summarized as follows: At the
transition surface T ,

(i) the (square of the) Ricci scalar has the asymptotic
form:

R2jT ¼ 256π2

γ4Δ2
þO

��
lPl

m

�2
3

ln
m
lPl

�
; ð4:13Þ

(ii) the square of the Ricci tensor has the asymptotic
form

RabRabjT ¼ 256π2

γ4Δ2
þO

��
lPl

m

�2
3

ln
m
lPl

�
; ð4:14Þ

(iii) the square of the Weyl tensor has the asymptotic
form

CabcdCabcdjT ¼ 1024π2

3γ4Δ2
þO

��
lPl

m

�2
3

ln
m
lPl

�
;

ð4:15Þ
(iv) and, consequently, the Kretschmann scalar K ¼

RabcdRabcd has the asymptotic form

KjT ¼ 768π2

γ4Δ2
þO

��
lPl

m

�2
3

ln
m
lPl

�
: ð4:16Þ

These expressions have two notable features. First, the
area gapΔ appears in the denominator, bringing out the fact
the finiteness of all upper bounds can be directly traced
back to quantum geometry. Second, the leading terms are
mass independent and their denominator is quadratic in γ2Δ
[which, by footnote 4, equals Δ3=ð48π2l4

PlÞ]. However, the
numerical coefficients vary. (The same pattern is encoun-
tered in LQC of the FLRW models.)
Note that these asymptotic forms refer to the transition

surface T . Since there is a precise sense in which the
classical singularity is replaced by T in the effective theory,
intuitively it is clear that these values would also be the
upper bounds on curvature scalars of the effective metric
throughout the spacetime region under consideration.
However, since the expressions of these scalars at a general
time are much more intricate, it is difficult to verify the
validity of this expectation analytically. (For example,
while the expression of the Kretschmann K scalar is simply
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48m2=p3
c in classical general relativity, it has more than

twenty complicated terms in the effective theory.)
Therefore, we carried out numerical evaluations for several
values of the mass parameter M ¼ m=G. Figures 1 and 2
illustrate the situation for m ¼ 106lPl. The Ricci tensor
Rab, the energy density ρ and the effective pressures px; pk

are all zero in classical general relativity. But they acquire
large Planck scale values near the transition surface T
which, however, decay very rapidly as we move away
from T . Near the two horizons, their values are ∼10−20 or
less, while K1=2—the square-root of the Kretschmann
scalar which has the same dimensions—is of the order

−25 −20 −15 −10 −5 0

T

10−36

10−33

10−30

10−27

10−24

10−21

10−18

10−15

10−12

10−9

10−6

10−3

100

103
R

a
bR

a
b

FIG. 1. Time evolution of curvature scalars in the quantum corrected Schwarzschild interior for m ¼ 106 (in Planck units). (The time
parameter T is negative in the spacetime region under consideration and decreases as we move to the future.) The black hole–type
horizon occurs to T ¼ 0, the transition surface T lies at T ¼ −11.62 and the white hole–type at T ¼ −23.24. Spacetime region to the
past of T is trapped and to the future of T is antitrapped. Curvature scalars are bounded throughout this evolution and attain their only
maximum on T that replaces the classical singularity. Left panel: The invariant RabRab. The Ricci curvature is induced by quantum
corrections and responsible for the singularity resolution. Although it is of Planck scale near T , it decays rapidly away from T and is of
the order of 10−35 in Planck units near the two horizons. Right panel: The Kretschmann scalar RabcdRabcd. It also has a single maximum
at T , decreases as we move away from T and is extremely close to the classical value 3=ð4m4Þ ≈ 10−24 in Planck units near the two
horizons. Thus, the ratio RabRab=Kclass is very small,∼10−13 near the horizon even when the black hole has as small a mass as 106MPl
and it becomes much smaller for truly macroscopic black holes.

FIG. 2. Time evolution in the quantum corrected Schwarzschild interior for the same mass as in Fig. 1 (m ¼ 106). All quantities
plotted are identically zero in classical general relativity and have their origin in quantum geometry. They attain their only maximum at
the transition surface and decay rapidly away from T . Left panel: energy density ρ is negative almost everywhere (solid line) in the
interior region except in small neighborhoods of the two horizons (dotted lines). Right panel: radial pressure px (dashed line) and
tangential pressure pk (solid line) are both negative almost everywhere in the interior region, but the tangential pressure pk becomes
positive in small neighborhoods of the two horizons (dotted lines).
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10−12 there. Thus, the contribution of the Ricci tensor to the
total curvature is completely negligible near the horizon
already for black holes whose Schwarzschild radius is as
small as 106lPl and they become even more negligible for
truly macroscopic black holes. Thus, just as in LQC,
although the quantum geometry corrections are sufficiently
large in the Planck regime to resolve the singularity, they
decay rapidly as spacetime curvature becomes a few orders
of magnitude smaller. In this precise sense, quantum
gravity corrections play no role near horizons of large
black holes in our model, contrary to what is sometimes
suggested in other programs (see, e.g., [39]). Finally, Fig. 2
shows that ρ; px; pk are all negative in a large neighborhood
of T , whence the strong energy condition is violated there,
just as one would expect from the singularity resolution.

D. Comparison with prior LQG investigations

As mentioned in Sec. I, previous LQG investigations of
the Schwarzschild interior using Kantowski-Sachs cosmol-
ogy can be naturally divided into three classes. We will
compare and contrast our strategy and results with those
used in these three types of schemes. Some key differences
predicted by various approaches are shown in the dynamics
of pc and pb in Fig. 3.

1. μo-type approaches

Reference [37] used quantum kinematics that descends
from full LQG and showed that the big-bang singularity in
FLRW models is naturally resolved, thanks to the area gap
in LQG. This strategy has since come to be known as the μo
scheme. The underlying ideas were carried over to the
analysis of the Schwarzschild singularity in Refs. [4,5]. The
kinematical framework introduced in [4,37] and the idea of
incorporating quantum gravity corrections to dynamics by
representing curvature in terms of holonomies around
‘elementary plaquettes’ continue to be widely used in
the analysis of cosmological and black hole singularities.
However, subsequent investigations of detailed predictions
brought out the fact that the specific implementation of this
strategy in [4,5] has several important drawbacks (see, e.g.,
[10,21,28,40]). In this sense, while investigations like those
in Refs. [4,37] served to open a fruitful avenue, they have to
be suitably modified for physical viability.
In the Schwarzschild case, the situation can be summa-

rized as follows. In Refs. [4,5,8], the new quantum
parameters δb, δc are assumed to be constants: the ‘area-
gap argument’ was used to set their values to

δb ¼ δc ¼ 2
ffiffiffi
3

p
≕ δ: ð4:17Þ

FIG. 3. Comparison between the dynamical behavior of the triad components pc and pb in various LQG approaches for m ¼ 104. In
the effective spacetime geometry, transition surfaces T occur each time pc undergoes a bounce. They separate trapped and antitrapped
regions. (As in previous figures, the black hole–type horizon lies at T ¼ 0 and T becomes more and more negative as time evolves.) The
label “Class” refers to classical dynamics in which there is no bounce; the label “CS” refers to the generalized μo scheme [10] discussed
in Sec. IV D 3; “AOS” refers to the dynamics in our approach discussed in Secs. III and IVA–IV C; and “BV” refers to dynamics in the
μ̄-type scheme [6] discussed in Sec. IV D 2. Left panel: Evolution of pc. In the classical theory pc decreases steadily corresponding to
the monotonic decrease in the radius of the round 2-spheres. In CS and AOS, it undergoes precisely one bounce, with trapped region to
the past of the bounce and antitrapped to the future. In BV, it undergoes several bounces. The antitrapped region after the first bounce is
very short lived. After the second bounce this μ̄ scheme cannot be trusted because its underlying assumptions are violated. Right panel:
Evolution of pb. This triad component does not play a direct role in determining the trapped and antitrapped regions. But it enters in the
expression of the norm of the translational Killing field Xa and its vanishing signals the emergence of a black hole–or white hole–type
horizon. The white hole–type horizon emerges much later in the CS approach [10] than in AOS reflecting the fact that there is a large
mass amplification in the CS approach while there is no amplification in the AOS approach (in the large m limit). The BVapproach [6]
becomes unreliable after T ∼ −12. The zooms shows another limitation of the BVapproach: very near the black hole–type horizon, the
BV dynamics deviates from the classical theory even though spacetime curvature is still small. The AOS dynamics is indistinguishable
from classical dynamics near this horizon.
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(More precisely, the fractional length of the link in the x
direction was taken to be δ and the coordinate lengths in the
θ and ϕ direction were taken to be δ.) Constancy of these
parameters simplifies the analysis considerably and it is
possible to obtain the explicit action of the Hamiltonian
constraint operator on the kinematical Hilbert space. In the
classical theory, pc can be interpreted as an internal time.
This choice is viable since (up to a factor of 4π) it
determines the area of 2-spheres, which in the spacetime
language equals τ2. The form of the constraint operator is
such that the quantum constraint equation can be thought of
as providing an evolution along the ‘internal time variable’
provided by eigenvalues of p̂c. One can then verify that the
singularity is absent in the quantum evolution.
To understand this prediction in detail, dynamics of this

model was analyzed in detail in [10] using effective field
equations.9 The key result on singularity resolution holds
also in the effective theory and, furthermore, one now has a
detailed understanding of the quantum corrections to
Einstein’s equations that are responsible for this resolution.
In particular, the area of the round 2-spheres—encoded in
pc—decreases to a minimum nonzero value and then
increases again till one arrives at a white hole–type horizon.
However, the analysis also revealed a key limitation of the
way in which the main ideas are implemented in [4,5]. It
turns out that physical quantities such as values of
expansion and shear (of the normal to the homogeneous
slices), as well as the minimum value of pc depend on the
value of Lo used to construct the fiducial cell C. Another
key observable is the radius of the white hole–type horizon
that determines as the ADM mass in the corresponding
asymptotic region. This too depends on Lo. Thus, while the
qualitative features such as singularity resolution because
of a transition surface and the subsequent emergence of
antitrapped region are robust, quantitative predictions for
spacetime geometry emerging from this dynamics can not
be trusted because those numbers have no ‘gauge-invariant’
meaning. The origin of this Lo dependence can be traced
back directly to the choice of δc in (4.17). Since the
effective equations contain (trigonometric) functions of cδc
and, as we saw in Sec. II, it is only c=Lo that is invariant
under the rescaling Lo → αLo of the fiducial cell, con-
stancy of δc implies that the solutions to effective equations
can carry an Lo dependence.
Our systematic numerical investigation revealed another

limitation that is more subtle but conceptually equally
important. If δb, δc are assumed to be constant, then quantum
effects can become important even in low curvature regime.

For large black holes, the Kretschmann scalar K at and near
the black hole horizon is very small. Already for m ¼ 105,
we have K ¼ 7.5 × 10−21 at the horizon. In this approach,
the effective spacetime metric agrees with the classical
metric to an excellent approximation till the curvature grows
to K ∼ 10−19 but then coefficients of the two metrics start
deviating and by the time the curvature becomes K ∼ 10−18

they are quite different from one another.
Remark: The μo-type approach is used also in [8] where,

however, a deparametrization is carried out using the
phase space variable c as the internal time and a quantum
corrected effective description is obtained using an
eikonal approximation. Qualitatively the results are similar
to those of the effective description summarized above. In
particular, pc undergoes a bounce. In our terminology, the
parameters δb, δc are set equal to a numerical value as in
[4]. Therefore, the detailed predictions are again sensitive
to the choice of Lo.

2. μ̄-type approaches

In FLRW models, limitations of the μo scheme were
overcome through the so-called μ̄ scheme [28]. Soon
thereafter, the technical ideas behind the μ̄ scheme were
applied to the Schwarzschild interior in Refs. [6,7] in the
framework of effective theories. The key difference from
[4,5] is that δb, δc are no longer constants on the phase
space: they are now phase space-functions

ðδbÞ2 ¼
Δ
pc

and L2
oðδcÞ2 ¼ pcΔ

L2
o

p2
b

: ð4:18Þ

(Note that, as needed, δb, Loδc are invariant under the
rescaling L0 → αLo of the fiducial cell because pb=Lo is
invariant.) Since δc depends on both pc and pb, now the
dynamical equations in the b; pb sector no longer decouple
from those in the c; pc sector. As a consequence, it has not
been possible to write down analytical solutions; all
explorations of the Schwarzschild interior in this approach
have, therefore, been numerical [6,7,20,21].
In FLRW models, while physical results can depend on

choices of fiducial structures in the μo scheme, this is no
longer the case in the μ̄ scheme [28]. Similarly, while
quantum corrections can become important in low curva-
ture regions in the μo scheme, this does not occur in the μ̄
scheme. Therefore, initially it was hoped that these limi-
tations of [4,5] would be absent in [6,7]. This expectation
was borne out in part: The dependence on fiducial
structures is indeed removed. However, the effective theory
still has the second problem: there can be large quantum
corrections in the low curvature region near the black hole
horizon. This can be most readily seen as follows. In the
classical theory, since the spacelike τ ¼ const surfaces
become null in the limit τ → 2m, and in the Kantowski-
Sachs model, the expansion and anisotropic shears are
calculated using the unit timelike normal to the τ ¼ const

9Although the effective equations are yet to be systematically
derived from the quantum evolution in this model, experience
with anisotropic cosmological models [31] suggests that for
macroscopic black holes they will approximate the exact evolu-
tion quite accurately if the quantum state is chosen to be sharply
peaked along the classical dynamical trajectory initially, i.e., in
the weak curvature region.
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surfaces. Therefore, they diverge in the limit τ → 0 even
though curvature at the horizon is very small for large black
holes. The μ̄-type scheme does not distinguish between
these harmless divergences and genuine singularities where
spacetime curvature diverges. μ̄-type schemes trigger large
quantum corrections that make expansion and shears finite
[21] even at the horizon. Consequently, there are large
departures from the classical theory very near the horizon.
In terms of spacetime metric, our numerical evaluations
show the same phenomenon in the dynamical behavior of
b; pb, both of which vanish classically at the horizon. In the
phase space, the classical and the effective trajectories
differ significantly from each other, but only when one is
very close to the horizon.
Remark: Had we been interested in Kantowski-Sachs

cosmologies rather than the Schwarzschild interior, we
would introduce matter fields in the form of a perfect fluid.
Then, in classical general relativity the horizon is replaced
by a (pancake-type) curvature singularity. The large quan-
tum corrections unleashed by the μ̄ scheme would then be
physically appropriate.
If one moves away slightly from the horizon but remains

in the low curvature region, the effective trajectories of the
scheme proposed in Ref. [6] agree with the classical
trajectories. When the curvature reaches Planck scale, pc
reaches a minimum and bounces, giving rise to a transition
surface T . (Interestingly, T emerges somewhat before it
does in the scheme proposed in this paper, i.e., when the
curvature is smaller.) As in Sec. II, to the past of T we have
a trapped region and to the future an antitrapped region
in which pc increases. However, the later evolution is
qualitatively different from that in Secs. IV B and IV C (see
Fig. 3). Now, the untrapped region is very small because
pc undergoes another bounce and starts decreasing.
Consequently, there is a new transition surface to the future
of which we now have a trapped region. In this region, pc
decreases. But the model becomes self-inconsistent
because very soon pc has decreased so much that the
round 2-spheres have an area smaller than Δ whence the
required plaquette□ðθ;ϕÞ cannot be fitted on the 2-sphere.
That is, the requirements of the μ̄-scheme can no longer be
implemented, whence its dynamical predictions cease to be
meaningful. If one nonetheless continues the evolution as a
mathematical exercise, one finds that the spacetime geom-
etry asymptotically approaches that of the Nariai-type
solution [6,11]. However, conceptually this last prediction
is not meaningful because, strictly speaking, the μ̄ scheme
stops being applicable long before this stage is reached.
Physically, the scheme is not useful to explore the
Schwarzschild interior because it sends the dynamical
trajectory to phase space points where it ceases to be
applicable. In this sense, it fails by its own criteria.
Remark: Whereas Ref. [6] considers vacuumKantowski-

Sachs spacetimes that are directly relevant for the analysis
of Schwarzschild interior, Refs. [7,21] introduce matter
sources. Similarly, in Refs. [9,11], Kantowski-Sachs mod-
els with cosmological constant were studied along with a

parallel treatment of locally rotationally symmetric (LRS)
Bianchi-III spacetimes. These analyses used the μ̄ pre-
scription but their results are not directly relevant to the
Schwarzschild interior studied here. Indeed, the focus there
was to probe issues related to the Kantowski-Sachs
cosmology such as whether the singularity is resolved
for general matter fields, whether it is possible to single out
preferred quantization schemes in these cosmologies, e.g.,
by requiring that expansion and shears remain bounded,
and other issues that had not been studied in LQC.

3. Generalization of the μo-type approach
allowing mass dependence

To improve upon this situation, one can make a
different choice of the quantum parameters δb, δc
[10,12]. Reference [10] modified the earlier μo-type
prescription using dimensional considerations and made
it free of choice of fiducial structures, while choices made
in Ref. [12] were catered to obtain a symmetric bounce by
phenomenologically modifying the scheme in Ref. [10].
These choices can be viewed as lying ‘in between’ the μo
and μ̄ schemes because they ask that δb, δc be phase space
functions that are constant along any given dynamical
trajectory, but allow them to vary from one dynamical
trajectory to another. Then, as we discussed in Sec. II B,
the effective equations in the b; δb sector decouple from
those in the c; δc sector and the solutions are given by
(2.21)–(2.25).
Recall that under the rescaling Lo → αLo, the connec-

tion component b is invariant but c changes via c → c=α.
Since b and c enter the effective equations only via
(trigonometric) functions of bδb and cδc, to ensure cell
independence of their solutions one needs to specify δb and
Loδc in a way that they do not make reference to fiducial
structures. Since m ≔ sinðδccÞpc=ðδcLoγÞ is a constant
of motion [see (2.26)], using dimensional considerations
δb, δc were set to

ðδbÞ2 ¼
Δ

ð2mÞ2 and L2
oðδcÞ2 ¼ Δ: ð4:19Þ

Thus, as in the μo scheme, δc is constant on the entire
phase space, but δb now depends on m and, thus, varies
from one dynamical trajectory to another. Although the
area gap Δ features in the expressions, the ansatz is
motivated by phenomenological rather than fundamental
considerations because one does not specify how the
plaquettes □ðθ;ϕÞ;□ðx; θÞ;□ðx;ϕÞ enclosing area Δ are
to be chosen. Rather, the prescription (4.19) was made
because it is the simplest one that is dimensionally
consistent and meets the ‘cell-independence’ requirement.
Physical predictions of the effective dynamics resulting

from this modified μo scheme have several attractive
features [10]. First, by design they are all insensitive to
the choice of Lo. Second, it again follows from (2.22) that
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pc has one and only one minimum. In the spacetime
picture, this again implies that the extended effective
spacetime is divided into a trapped and an antitrapped
region, separated by the transition surface T (which
corresponds to the absolute minimum of pc). Third, the
antitrapped region has a future boundary that corresponds
to a white hole–type horizon. Finally, unlike in the μ̄
scheme, the expansion and shear grow unboundedly near
the black hole horizon; for large black holes, the spacetime
geometry near horizons is well approximated by general
relativity. Thus, the spacetime picture is qualitatively
similar to that in Secs. III, IV B and IV C.
However, there are two major differences. First, for large

black holes, while the trapping surface T always emerges
in the Planck regime in our approach, in this generalized μo
scheme, it can emerge in low curvature regime. In fact, the
curvature at T goes to zero in the limit m → ∞. Thus, for
astrophysical black holes very large quantum effects arise
in low curvature regions. This feature can be qualitatively
understood as follows. Equation (2.22) implies that at the
transition surface T , we have pcjT ¼ mðγLoδcÞ. Since in
this approach Loδc¼

ffiffiffiffi
Δ

p
, we have: pcjT ¼ðγ ffiffiffiffi

Δ
p Þm. Now,

in classical general relativity the Kretschmann scalar10 is
given by Kcl ¼ 48m2=p3

c. Therefore, at the bounce surface
Kcl ¼ 48=ðγ3Δ3=2mÞ; it decreases as 1=m. This depend-
ence is borne out in numerical simulations.
Remark: The requirements of cell dependence and

dimensional consistency criteria do restrict the choice
of δb, δc, but they still leave considerable freedom
because m2=Δ is dimension free. Our proposal for δb, δc
of Sec. IVA also satisfies these criteria. However, now the
transition surface T always emerges in the Planck regime,
and, furthermore, curvature scalars have an absolute, mass
independent upper bounds. These features can also be
understood using the same general considerations. As
noted above, if δb, δc are Dirac observables, then at the
transition surface pc is given by pcjT ¼ mðγLoδcÞ. In our
choice (4.6), we have Loδc ¼ Cm−1=3Δ2=3 where C is a
dimensionless constant. Therefore, it follows that the
classical Kretschmann scalar is now a Planck scale, mass
independent constant: Kcl ¼ ð48=γ3C3ΔÞ. While the
Kretschmann scalar of the effective metric has a much
more complicated form, as we showed in Sec. IV C, its
leading term is also mass independent and of Planck scale
for the macroscopic black holes we are interested in.
The second major difference between this generalized μo

scheme and the one introduced in this paper is the

following. In our approach, the radius of the white hole–
type horizon is the same as that of the initial black hole
horizon in the large m limit. As we will see in Sec. V, this
implies that the ADM mass in asymptotic region III
associated with the white hole horizon agrees with that
in the asymptotic region I associated with the initial black
hole horizon:

mWH ¼ mBH

�
1þO

��
lPl

m

�2
3

ln

�
m
lPl

���
: ð4:20Þ

In the generalized μo scheme, on the other hand, there
is a tremendous mass amplification, approximately given
by [10]

mWH ≈ ðmBHÞ
�
mBH

lPl

�
3

: ð4:21Þ

For a solar mass black hole this would be an increase by a
factor ∼10114! The physical origin of this huge increase has
remained unclear.
Finally, Ref. [12] studied the possibility of removing

the mass amplification within the broad idea of using a
generalized μo-scheme but modifying the ansatz (4.19) to

ðδbÞ2 ¼ α2
Δ

ð2mÞ2 and L2
oðδcÞ2 ¼ β2Δ; ð4:22Þ

where α, β are dimensionless constants. Again, the
approach is phenomenological in the sense that there is
no prescription to choose the plaquettes that are to enclose
the area Δ. Rather, the idea was to first stipulate conditions
on α and β to reduce the freedom to a single constant and
fix that remaining freedom by imposing the requirement
that the mass amplification factor be 1. Three possibilities
were explored: (i) β ¼ 1; (ii) α ¼ 1 and (iii) αβ ¼ 1.
Because the final goal of arriving at the mass amplification
factor of 1 is also realized in our approach in the large m
limit, there is some similarity between the two. However,
there are also differences. At the conceptual level, our
choice (4.6) of Dirac observables δb, δc was arrived at by
specifying the plaquettes. At a practical level, none of the
three choices of [12] is compatible with our choice (4.6).
For example, with choices (i) and (iii), the forms of δb, δc
are not known analytically even for the large m, while in
our approach they are given simply by (4.6). For choice (ii),
the asymptotic forms for largem are given in [12], and they
imply pcjT ≈ ðγΔ2Þ=m2 at the transition surface. Hence
now the classical expression of the Kretschmann scalar
Kcl ¼ 48m2=p3

c ¼ Cm8=Δ4 (where C is a dimensionless
constant) grows unbounded with m. In our approach, it has
a mass independent upper bound.

V. QUANTUM EXTENDED
KRUSKAL SPACETIME

This section is divided into two parts. In the first, we
introduce a new approach to obtain the quantum corrected

10In the effective theory, the expression of the Kretschmann
scalar is much more complicated. However, for large m, the
effective trajectory is well approximated by the classical one until
it reaches close to the pc-bounce. (For example, even for a rather
low value of mass, m ¼ 105, the transition surface emerges at
T ¼ −7.1 while the two trajectories are indistinguishable be-
tween T ¼ 0 and T ¼ −6.) Therefore, the classical expression of
K provides a very good approximation to the actual value.
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effective metric in the exterior region between the horizon
and infinity using LQG techniques as in Sec. II. In the
second, we show that the effective metric in the interior and
the exterior regions match seamlessly and investigate
properties of the resulting quantum extension of Kruskal
spacetime.

A. The Schwarzschild exterior

1. Phase space for the exterior region

As we saw in Sec. II, a finite dimensional phase space
can be constructed for the interior region using the fact
that it is foliated by spatially homogeneous spacelike 3-
manifolds Σ. Since phase spaces are normally constructed
using Cauchy surfaces and since none in the exterior
region are homogeneous, Hamiltonian descriptions of the
exterior have been qualitatively different. On the one hand,
they are much more complicated because the inhomoge-
neity of the spatial metric makes these standard phase
spaces infinite dimensional. On the other hand, since the
exterior is static, discussion of dynamics is somewhat
vacuous.
Our new observation that changes this status quo is

rather simple. While the exterior cannot be foliated by
spacelike homogeneous surfaces, it is foliated by timelike
homogeneous surfaces (r ¼ const in the standard
Schwarzschild coordinates) whose isometry group is
again R × SOð3Þ. Therefore, the phase space based on
these slices is again finite dimensional and there is now
nontrivial dynamics as one evolves from one timelike
homogeneous surface to another in the radial direction.
While this is somewhat counter-intuitive at first because
this evolution is in a spacelike direction, there is nothing
unusual about the setup from the Hamiltonian perspective
even for full general relativity: One again has constraint
equations on the canonical variables, and ‘dynamics’ is
again be generated by a Hamiltonian constraint. Indeed,
such evolutions in spatial directions are already used
extensively in LQG in the context of Euclidean/
Riemannian frameworks. Of course, considerable work
is needed to extend the LQG framework to cover this
situation and it is far from being clear that all potential
problems can be handled satisfactorily.11

In the Kruskal spacetime now under consideration,
not only will the ‘dynamics’ again be generated by a

Hamiltonian constraint, but the evolution equations will
again be ODEs as in Sec. II. The only difference from the
situation in Sec. II is that now the intrinsic metric qab has
signature −;þ;þ (rather than þ;þ;þ) and, therefore, the
internal space for the gravitational connection and triads
also has signature −;þ;þ (rather than þ;þ;þ). This
means that the gauge group of internal rotations for the
gravitational connection is now SU(1, 1) [rather than
SU(2)]. While a convenient basis in the Lie algebra
of SU(2) is given by τi used in Eqs. (2.6) and (2.7), for
SU (1, 1) it is given by τ̃i, related to τi via:

τ̃1 ¼ iτ1; τ̃2 ¼ iτ2; τ̃3 ¼ τ3. ð5:1Þ

Keeping this difference in mind, we can simply follow
the procedure used in Sec. II step by step. Let us,
therefore, consider a 3-manifold Σ̃ again with topology
R × S2 and introduce on it a fiducial metric

q̃
∘
abdxadxb ¼ −dx2 þ r2oðdθ2 þ sin2dϕ2Þ ð5:2Þ

where, again, x ∈ ð−∞;∞Þ, θ and ϕ are 2-sphere
coordinates and ro is a constant. (Note that x is now
a timelike coordinate, ∂=∂x being the time translation
Killing field in the exterior region.) Then, thanks to the
underlying homogeneity we can solve the spatial diffeo-
morphism constraint and perform a partial gauge fixing
to satisfy the Gauss constraint. As a result, the gravita-
tional connection and the conjugate densitized triad can
be expressed as in equations (2.6) and (2.7) simply by
replacing τi by τ̃i and using the relation (5.1) between the
two:

Ai
aτ̃idxa ¼

c̃
Lo

τ3dxþ ib̃τ2dθ − ib̃τ1 sin θdϕþ τ3 cos θdϕ;

ð5:3Þ

and

Ea
i τ̃

i∂a ¼ p̃cτ3 sin θ∂x þ
ip̃b

Lo
τ2 sin θ∂θ −

ip̃b

Lo
τ1∂ϕ: ð5:4Þ

Comparing these equations with (2.6) and (2.7), it is clear
that the phase space for the exterior region can be
obtained simply by making the substitutions

b → ib̃; pb → ip̃b; c → c̃; pc → p̃c ð5:5Þ

in equations of Sec. II. In particular, the Poisson brackets
are now given by:

fc̃; p̃cg ¼ 2Gγ; fb̃; p̃bg ¼ −Gγ: ð5:6Þ

11Several months after the first version of this paper was posted
on the arXiv, we became aware that this basic idea was already
put forward by Liu and Noui in 2017 [41]. Note, however, that in
this paper we have restricted ourselves to the homogeneous
context, where some of the key difficulties (associated with
cylindrical-consistency in presence of noncompact internal
groups) are bypassed. Note also that our prescription to select
δb, δc (spelled out in Sec. IVA) requires quantum geometry
considerations only at the transition surface T which lies in the
interior region where homogeneous slices are spacelike.
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2. Classical dynamics of the exterior region

Let us now turn to dynamics. From spacetime perspec-
tive, since the radial coordinate τ satisfies τ > 2m in the
exterior region, the Hamiltonian dynamics simply ‘evolves’
the geometry in radial directions filling out the exterior
region 2m < τ < ∞, starting from the data at some
τ0 > 2m. However, it is instructive to examine this evolu-
tion as a dynamical trajectory in phase space as a prelude to
the investigation of the effective dynamics.
We begin by writing the Hamiltonian constraint for the

exterior region, obtained simply by using the substitutions
(5.5) in (2.11):

H̃cl½Ñcl� ¼ −
1

2Gγ

�
2c̃p̃c þ

�
−b̃þ γ2

b̃

�
p̃b

�
: ð5:7Þ

As one would expect, evolution equations for connection
and triad variables obtained using (5.6) and (5.7) are the
same as those that result if one uses the substitutions (5.5)
in (2.12) and (2.13). One can easily integrate these
equations and use (5.7) to simplify the solutions. The
result is:

b̃ðTclÞ ¼ �γð1 − e−TclÞ1=2; c̃ðTclÞ ¼ c̃oe−2Tcl ; ð5:8Þ

and

p̃bðTclÞ ¼ p̃ðoÞ
b eTclð1 − e−TclÞ1=2; p̃cðTclÞ ¼ p̃ðoÞ

c e2Tcl ;

ð5:9Þ

where Tcl is the affine parameter along the Hamiltonian
vector field generated by (5.7). The form of the solutions
(5.8) and (5.9) immediately implies that c̃p̃c=ðLoγÞ is a
Dirac observable, i.e., it is a constant of motion. As we will
see, in the spacetime metric associated with any dynamical
trajectory, it again coincides with m ¼ GM.
As in Sec. II A, we have fixed one of the integration

constants so that the black hole horizon lies at Tcl ¼ 0 in
the spacetime picture. The remaining integration constants

c̃o, p̃
ðoÞ
b and p̃ðoÞ

c can also be fixed as in Sec. II A to match
the phase space variables with the corresponding spacetime
geometry in the Schwarzschild exterior:

ds̃2 ¼ −
�
1 −

2m
τ

�
dx2 þ

�
1 −

2m
τ

�
−1
dτ2

þ τ2ðdθ2 þ sin2θdϕ2Þ: ð5:10Þ

To set this correspondence, we first note that for any choice
of the radial coordinate τ and the associated “lapse-
squared” Ñ2

τ , each point in the phase space defines a
spacetime metric admitting a foliation by homogeneous
timelike slices:

g̃abdxadxb ≡ ds̃2 ¼ −
p̃2
b

jp̃cjL2
o
dx2 − Ñ2

τdτ2

þ jp̃cjðdθ2 þ sin2θdϕ2Þ: ð5:11Þ

(See Eq. (2.8). As we will see below, Ñ2
τ is negative,

reflecting the fact that τ is a spacelike rather than a timelike
coordinate.) Our solutions (5.8) and (5.9) are written for a
specific choice Tcl of the radial coordinate in the exterior.
As in Sec. II A, the transformation relating Tcl to the radial
coordinate τ in (5.10) is: τ ≔ 2meTcl . With this information
at hand, we can now use (5.8) and (5.9) in (5.11) and set up
the desired dictionary by comparing the resulting expres-
sion with (5.10). Comparing the first and the last terms in
these two expressions of the metric we obtain jp̃cj ¼ τ2 and
p̃2
b ¼ L2

oð1 − 2m
τ Þτ2. With this choice of τ, the lapse takes

the form Ñ2
τ ¼−ð1− 2m

τ Þ−1. Therefore, the remaining con-

stants are given by: c̃o¼ γLo=4m;p̃ðoÞ
b ¼2mL0;p̃

ðoÞ
c ¼4m2.

As in footnote 5, the more familiar Schwarzschild form is
obtained by the obvious substitutions x → t and τ → r.
Finally we note that at the horizon we have τ ¼ 2m,

whence as in the interior solution Tcl vanishes there and
so do p̃b and b̃. Thus, in the phase space picture the horizon
is characterized by the same conditions in both interior
and exterior regions. We will see in Sec. V B 1 that the
matching is seamless both in the phase space and spacetime
pictures.

3. Effective dynamics of the exterior region

Let us now turn to effective dynamics on the phase space
of Sec. VA 1 associated with the exterior region. We can
now just follow the analysis of Sec. II B step by step.
Substitutions (5.5) imply that the effective Hamiltonian
constraint is given by:

H̃eff ½Ñ� ¼ −
1

2Gγ

�
2
sinðδc̃c̃Þ

δc̃
jp̃cj

þ
�
−
sinhðδb̃b̃Þ

δb̃
þ γ2δb̃
sinhðδb̃b̃Þ

�
p̃b

�
: ð5:12Þ

where δb̃ ¼ δb; δc̃ ¼ δc continue to be given by (4.6). Thus,
the same principle determines these quantum parameters
both in the interior and the exterior. Note that the expres-
sion on the right side now involves trigonometric functions
of δc̃c̃ but hyperbolic functions of δb̃b̃, reflecting the fact
that the x direction is now timelike rather than spacelike
while θ;ϕ directions continue to be spacelike. One can
obtain the equations of motion using this Hamiltonian
constraint and Poisson brackets (5.6) and find their
solutions.
As one would expect, the solutions are the same as

those resulting from substitutions (5.5) in the interior
solution (2.21)–(2.25):
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tan

�
δc̃c̃ðTÞ

2

�
¼ ∓ γLoδc̃

8m
e−2T; ð5:13Þ

p̃cðTÞ ¼ 4m2

�
e2T þ γ2L2

oδ
2
c̃

64m2
e−2T

�
; ð5:14Þ

coshðδb̃b̃ðTÞÞ ¼ b̃o tanh

�
1

2

�
b̃oT þ 2tanh−1

�
1

b̃o

���
;

ð5:15Þ

where

b̃o ¼ ð1þ γ2δ2
b̃
Þ1=2; ð5:16Þ

and,

p̃bðTÞ ¼ −2
sinðδc̃c̃ðTÞÞ

δc̃

sinhðδb̃b̃ðTÞÞ
δb̃

jp̃cðTÞj
γ2 − sinh2ðδb̃b̃ðTÞÞ

δ2
b̃

;

ð5:17Þ

where T is now the affine parameter along the Hamiltonian
vector field generated by H̃eff ½Ñ�. Note that, just as the
b; pb and c; pc sectors decouple dynamically in the
Schwarzschild interior, the b̃; p̃b and c̃; p̃c sectors also
decouple in the exterior. The form of solutions in the c̃; p̃c
sector is the same as that in the c; pc sector, while in the
b̃; p̃b sector, up to some changes in signs, trigonometric
functions [such as sinðδbbÞ] are replaced by hyperbolic
functions [such as sinhðδb̃b̃Þ]. Because of the agreement of
dynamics in the c̃; p̃c and c; pc sectors, sinðδc̃c̃Þp̃c=
ðδc̃LoγÞ continues to be a Dirac observable which in the
classical regime has the interpretation of m ¼ GM of
the black hole. Since our effective theory agrees with
the classical theory in the low curvature region near the
black hole horizon and since Dirac observables are con-
stants of motion, as in Sec. II B, we will again denote it
by m.
Finally, one can pass from the phase space to the

spacetime description following the same procedure as
in the classical theory, sketched in Sec. VA 2. The
spacetime metric g̃ab is of the form (5.11)

g̃abdxadxb ¼ −
p̃2
b

jp̃cjL2
o
dx2 þ γ2jp̃cjδ2b̃

sinh2ðδb̃b̃Þ
dT2

þ jp̃cjðdθ2 þ sin2θdϕ2Þ: ð5:18Þ

since Ñ2 now has the form

Ñ2 ¼ −
γ2jp̃cjδ2b̃
sinh2ðδb̃b̃Þ

: ð5:19Þ

Explicit expressions of p̃c; p̃b are given by (5.14)
and (5.17).

B. Properties of the quantum extension
of the Kruskal spacetime

From the Hamiltonian perspective, we have two distinct
phase spaces, one spanned by b; pb; c; pc and another
by b̃; p̃b; c̃; p̃c, with Poisson brackets given by (2.5) and
(5.6). Dynamics is generated by distinct Hamiltonian
constraints—(2.11) and (5.7) in the classical theory and
(2.18) and (5.12) in the effective theory. Nonetheless,
as we show in Sec. V B 1 the spacetime geometries
defined in the exterior and interior regions match smoothly
across horizons. In Sec. V B 2, we investigate pro-
perties of the resulting quantum extension of the Kruskal
spacetime.

1. Matching of interior and exterior geometries

Let us begin with the classical theory where the situation
is straightforward. Dynamical trajectories in the interior
phase space correspond to time Tcl < 0 while those in the
exterior phase space correspond to Tcl > 0. In the space-
time interpretation, the Tcl ¼ 0 surface is excluded in both
descriptions since it is null. However, one can regard it as a
limit of spacelike Tcl ¼ const < 0 surfaces in the interior
region and timelike Tcl ¼ const > 0 surfaces in the exterior
region and in both regions the limit represents a black hole–
type horizon. Therefore, we can ask whether the geometry
is smooth across this horizon. The triad variables are given,
respectively, by

Tcl < 0∶ pbðTclÞ ¼ pðoÞ
b eTclðe−Tcl − 1Þ1=2;

pcðTclÞ ¼ pðoÞ
c e2Tcl ð5:20Þ

and

Tcl > 0∶ p̃bðTclÞ ¼ p̃ðoÞ
b eTclð1 − e−TclÞ1=2;

p̃cðTclÞ ¼ p̃ðoÞ
c e2Tcl ; ð5:21Þ

where po
b ¼ p̃o

b ¼ 2mL0 and po
c ¼ p̃o

c ¼ 4m2. Therefore, it
is evident that the triad variables are smooth across the
boundary Tcl ¼ 0. Thus, the dynamical trajectory in the
Schwarzschild interior can be joined smoothly with that in
the exterior provided, of course, they both correspond to the
same mass.
As one would expect, the situation for the spacetime

metric is a bit more complicated simply because the
constant Tcl surfaces are spacelike for Tcl < 0, timelike
for Tcl > 0 and null at Tcl ¼ 0. So, we have:
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Tcl < 0∶ gabdxadxb ¼ −
4m2e2Tcl

ðe−Tcl − 1Þ dT
2
cl þ ðe−Tcl − 1Þdx2 þ 4m2e2Tclðdθ2 þ sin2θdϕ2Þ

Tcl > 0∶ g̃abdxadxb ¼ −ð1 − e−TclÞdx2 þ 4m2e2Tcl

ð1 − e−TclÞ dT
2
cl þ 4m2e2Tclðdθ2 þ sin2θdϕ2Þ; ð5:22Þ

where we have used the explicit form of the lapse N2
cl and

Ñ2
cl in the interior and the exterior regions [see Eq. (2.10)].
In both regions, the 4-metric is ill defined in the limit

Tcl → 0. However, this is the standard coordinate singular-
ity; spacetime geometry is in fact smooth there. As is well
known, because the 2-sphere metric is smooth and non-
degenerate at Tcl ¼ 0 and the determinant gxxgTclTcl

of the
2-metric in the x-Tcl plane is smooth and nonvanishing there,
one can introduce the standard Eddington-Finkelstein coor-
dinates to show explicitly that the 4-metric is manifestly
smooth across the horizon Tcl ¼ 0. This statement in terms
of spacetime geometry is trivial. For the effective theory
discussed below, the important observation is that smooth-
ness of spacetime geometry across the horizon is guaranteed
by the following properties of the dynamical trajectories in
the phase space: at Tcl ¼ 0, (1) the pairs pb, p̃b and pc, p̃c

admit smooth limits; (2) N2
cl ¼ −Ñ2

cl, reflecting the fact that
while N2

cl refers to time-evolution in the interior region, Ñ2
cl

refers to radial evolution in the exterior region; and,
(3) ðN2

clp
2
bÞ=ðpcL2

oÞ in the interior and its counterpart
ð−Ñ2

clp̃
2
bÞ=ðjp̃cjL2

oÞ in the exterior are smooth, nonzero
and equal. (Each of these quantities is the determinant of
the 2-metric in the x-Tcl plane).
We will now show that these properties continue to hold

also in the effective description. The expressions of triads
along dynamical trajectories in the phase space are:

T < 0∶ pcðTÞ ¼ 4m2

�
e2T þ γ2L2

oδ
2
c

64m2
e−2T

�
;

pbðTÞ ¼ −2mLo
sinðδbbðTÞÞ

δb

1
sin2ðδbbðTÞÞ

δ2b
þ γ2

;

ð5:23Þ

and

T > 0∶ p̃cðTÞ ¼ 4m2

�
e2T þ γ2L2

oδ
2
c̃

64m2
e−2T

�
;

p̃bðTÞ ¼ −2mLo
sinhðδb̃b̃ðTÞÞ

δb̃

1

γ2 − sinh2ðδb̃b̃ðTÞÞ
δ2
b̃

;

ð5:24Þ
where we have simplified the expressions of pbðTÞ and
p̃bðTÞ using the form of the Dirac observable m ¼
ðsin δccÞpc=ðδcLoγÞ ¼ ðsin δc̃c̃Þp̃c=ðδc̃LoγÞ. Note that for
matching the exterior and interior geometries, we are

interested in pairs of trajectories in the interior and exterior
phase space with the same value of m. On these pairs, at

T ¼ 0 we have: pc ¼ p̃c ¼ 4m2ð1þ γ2L2
oδ

2
c̃

64m2 Þ and pb=Lo ¼
p̃b=Lo ¼ 0. Thus, the values of the triad variables match at
T ¼ 0 and by Taylor expanding them one can check that
the matching is smooth. Therefore, condition (1) above is
satisfied. Equations (2.17) and (5.19) imply that condition
(2) is also satisfied. Finally, at T ¼ 0 we have: ðN2p2

bÞ=
ðpcL2

oÞ ¼ ð−Ñ2p̃2
bÞ=ðjp̃cjL2

oÞ ¼ 4m2 (which, incidentally
is exactly the same as in the classical theory). Thus,
condition (3) is also satisfied.
Let us conclude with a summary of the situation in the

effective theory. We have separate, four-dimensional phase
spaces describing the exterior and interior Schwarzschild
geometries, depicted in Fig. 4 by region I and the black hole
region B attached to it. They are coordinatized, respec-
tively, by pairs b̃; p̃b; c̃; p̃c with Poisson brackets (5.6), and
pairs b; pb; c; pc, with Poisson brackets (2.5). Dynamics is
governed by the Hamiltonian constraints (5.12) and (2.18)
respectively. We identified a Dirac observable m in each
phase space. The parameter T along trajectories b̃ðTÞ;
p̃bðTÞ; c̃ðTÞ; p̃cðTÞ in the exterior phase space has positive
values and along trajectories bðTÞ; pbðTÞ; cðTÞ; pcðTÞ in
the interior phase space takes negative values. Trajectories
labeled by the same value of the Dirac observable m can be
joined smoothly at T ¼ 0. In the spacetime language, the
(limiting) point T ¼ 0 along each trajectory represents the
black hole horizon. The coefficients in the spacetime metric
become singular in the Schwarzschild-like coordinates
ðT; xÞ, just as they do in the classical theory. However,
the effective metric is smooth across the horizon. The
metric coefficients are such that the determinant of the
effective 4-metric remains smooth and nonzero across
T ¼ 0 whence, as in the classical theory, one can introduce
new Eddington-Finkelstein–type coordinates to show that
the effective geometry is manifestly smooth in the entire
region I ∪ B ∪ W of Fig. 4, which encompasses the
asymptotic region I as well as the black and white hole
regions B and W that are joined at the transition surface T .
For the macroscopic black holes considered in this paper,
the asymptotic region I is ‘tame’ as in the classical theory.
However, the interior region B ∪ W includes Planck scale
curvature where quantum geometry effects resolve the
singularity.

2. Properties of the quantum extension

The procedure introduced in Sec. VA can be used again
at the left boundary of the black hole region B to extend the
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effective spacetime to the asymptotic region II. Similarly,
the procedure can be used at the future boundaries of the
white hole region W to join the spacetime smoothly to
asymptotic regions III and IV. These regions have future
boundaries representing black hole–type horizons and so
we can again repeat the procedure and extend the spacetime
to future. Thus, the procedure provides a quantum exten-
sion of the Kruskal spacetime, where the effective space-
time metric is everywhere smooth and curvature invariants
are uniformly bounded. The full extension has infinitely
many asymptotic, trapped and antitrapped regions. This
structure is shown in Fig. 4.
We will now discuss salient features of this quantum

extension of Kruskal spacetime.
(i) Effective versus classical geometry: In the interior

region, the effective geometry is very different
from the classical one because quantum geometry

corrections to Einstein’s equations become crucial.
As we saw in Sec. IV B, these corrections can be
regarded as providing an effective stress-energy
tensor that violates the strong energy condition in
the Planck regime, leading to singularity resolution.
But we also saw that in the low curvature region near
horizons, these quantum corrections become negli-
gible and Einstein’s equations provide an excellent
approximation to the effective equations (Fig. 2).
What is the situation in the exterior region? Since

the effective theory includes ℏ-dependent quantum
corrections, effective metric never agrees completely
with the classical Schwarzschild metric no matter
how far one recedes from the horizon (just as general
relativistic corrections to Newtonian theory are
never zero for any physical system). However,
quantum corrections are again negligible already
at the horizon of macroscopic black holes and
become even smaller rapidly in the asymptotic
region. For concreteness, let us consider classical
and effective solutions form ¼ 104MPl and examine
the differences in the two spacetime geometries in
the asymptotic region I. Using MATHEMATICA, one
finds the following illustrative numbers: (i) As
Eqs. (5.9) and (5.14) show the horizon radius of
the effective solution is slightly larger than that in the
classical theory. The relative difference is only
∼10−15 and the corrections fall off as m−8=3. So,
for a solar mass black hole, the relative difference in
the horizon radius is ∼10−106! (ii) In the classical
theory, the Ricci tensor is identically zero. In the
effective theory, at the horizon the square of the
Ricci scalar of the effective metric is given by R2

eff ≈
9.4 × 10−25 in Planck units (for m ¼ 104). It in-
creases slightly as one recedes from the horizon
and reaches a maximum of ðR2Þmax

eff ≈ 1.2 × 10−24 at
T ≈ 0.13 and then decays rapidly to zero. (Recall
that the horizon corresponds to T ¼ 0; in terms
of the radial coordinate r, R2

eff reaches its maxi-
mum at ≈1.14rhor.) More generally, ðR2Þmax

eff ∼
10−8ðlPl=mÞ4. These are measures of absolute
smallness of ðR2Þmax

eff . Since the classical Kretsch-
mann scalar at the horizon is Kcl ≈ 7.5 × 10−17, the
relative smallness of the departure from Einstein’s
equations is R2

eff=Kcl ≈ 10−8 at the horizon. (iii) One
can also consider the square of the Ricci tensor of the
effective metric. At the horizon it is ½RabRab�eff ≈
4.7 × 10−25 and it decays rapidly in the asymptotic
region (again for m ¼ 104MPl). Thus, for macro-
scopic black holes, the Schwarzschild solution is an
excellent approximation to the effective spacetime
metric throughout region I and the approximation
rapidly improves as one moves to the asymptotic
region. Therefore, in this approach, large quantum

FIG. 4. The Penrose digram of the extended Kruskal spacetime.
In Secs. III and IV, we began with the region B in the central
diamond corresponding to the standard Schwarzschild trapped
region. In the classical theory, spacetime ends at a horizontal line
due to curvature singularity. In the effective geometry, the
singularity is replaced by a transition surface T where _pc
vanishes. The extended region has an antitrapped region labeled
“W.” Thus, quantum geometry provides a region bounded to the
past by a black hole–type horizon and to the future by a white
hole–type region. Effective metric for asymptotic regions I, II, III
and IV is introduced in Sec. VA 3. Section V B 1 shows that it
joins on smoothly to the geometry in the trapped and antitrapped
regions B and W. As indicated by dashed lines, the same
procedure continues the spacetime to new trapped and anti-
trapped and asymptotic regions to the past and future. Arrows
denote trajectories of the translational (or static) Killing field
Xa∂a ¼ ∂x in various regions.
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corrections outside the horizons of macroscopic
black holes envisaged in some approaches (see,
e.g., [39]) do not arise.

(ii) Nonamplification of mass: The approach most
closely related to ours is the ‘generalized μo-scheme’
introduced and analyzed in detail in [10]. That
investigation explored the effective geometry only
in the interior region depicted by the central dia-
mond B ∪ W in Fig. 4. A key feature of that
effective geometry is that the radius rW of the white
hole–type horizon is very large compared the radius
rB of the black hole–type horizon in the diamond,
growing as rW ≈ rBðrB=lPlÞ3. So if we start with
rB ¼ 3 km–the Schwarzschild radius of a solar mass
black hole–we have rW ≈ 1093 Gpc! This effect was
interpreted as quantum gravity induced mass infla-
tion [see Eq. (4.21)]. However, the physical origin of
this mass inflation has remained unclear.
In our approach, by contrast, the ratio of the two

radii is very close to 1 for macroscopic black holes:

rW
rB

¼ 1þO
��

lPl

m

�2
3

ln

�
m
lPl

��
: ð5:25Þ

If we again consider a solar mass black hole, we
have rW ≈ ð3þOð10−25ÞÞ km. Since we have a
smooth effective geometry connecting the interior
and asymptotic regions, which furthermore agrees
with the Schwarzschild metric to an excellent degree
of approximation, we can calculate the ADM mass
of this solution. Since there is a time translation
Killing field in the asymptotic region we can relate
the radius of the black hole–type horizon to the
ADM mass in asymptotic region I and the white
hole–type horizon to the ADM mass of asymptotic
region III of Fig. 4 (using Komar integrals discussed
below.) Each of these two ADMmasses is extremely
well approximated by the radius of the correspond-
ing horizon (divided by 2G). Therefore, we conclude
that for macroscopic black holes the ADM mass in
all asymptotic regions are the same to an excellent
approximation which, furthermore, improves as the
mass increases.

(iii) Translational Killing vector and the Komar mass: By
construction, the effective geometry admits a trans-
lational Killing field Xa which, as in the classical
theory, is timelike in exterior regions and spacelike
in the interior. Let us focus on the interior and
calculate the Komar integrals

KX½S� ≔ −
1

8πG

I
S
ϵab

cd∇cXddSab ð5:26Þ

using various round 2-spheres S. Recall that, if S1,
S2 are joined by a 3-surface M, then

KX½S2� − KX½S1� ¼ 2

Z
M

�
Tab −

1

2
Tgab

�
XadVb;

ð5:27Þ

where dVb is the oriented volume element of the
3-surface M. If we choose S to lie on a horizon, the
Komar massKX½S� is related to the horizon radius by
2GKX½S� ¼ rhor. Let S1 lie on the black hole–type
horizon and S2 lie on the white hole–type horizon in
the central diamond of Fig. 4 and M be a three-
dimensional “tube” joining them. Then we appear to
have a paradox. On the one hand, in the interior
region there is an effective stress-energy tensor
because the quantum corrected metric is not Ricci
flat. Therefore, the integrand on the right side in
(5.27) is nonzero. Indeed, the 3-surface M must
cross the transition surface T and, as we saw in
Sec. IV B, the energy density and pressures are quite
large near the transition surface. Furthermore as
Fig. 3 shows, both these quantities are negative
almost everywhere in the interior (except near the
horizon where their positive values are quite small).
Therefore, one would expect the integral on the right
side of (5.27) to be negative and rather large. How
could the two horizons then have the same mass (to
an excellent degree of approximation)?

The solution of this puzzle is conceptually interesting.
The right-hand side of (5.27) is indeed negative and
large. But the effective geometry is such that it is
given by −2MB, where MB ¼ rB=2G. Therefore, while
KX½S1� ¼ MB, we have KX½S2� ¼ −MB (to an excellent
degree of approximation). Geometrically, the negative
sign arises simply because while the Killing vector Xa is
future directed along the black hole–type horizon (and
in the asymptotic region I), it is past directed along the
white hole–type horizon (and in asymptotic region III). As
is evident from Fig. 3, this must happen simply because
the effective metric and its Killing field Xa are smooth. On
the other hand, the ADM energy is defined at spatial
infinity in each asymptotic region using the asymptotic
Killing field which is future directed and unit at spatial
infinity and is, thus, positive. Thus, the effective solution
has the striking property it introduces just the right type of
effective stress-energy that, on the one hand, large enough
to resolve the singularity and, on the other, achieves the
fine balance that is needed to satisfy the following
relations:

MðIÞ
ADM ¼ MðIIIÞ

ADM which requires KX½S2� ¼ −KX½S1�:
ð5:28Þ

Here MðIÞ
ADM is the ADM mass in the region I and MðIIIÞ

ADM
the ADM mass in region III and KX½S1� is the Komar
integral on the black hole–type horizon and KX½S2� on the
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white hole–type horizon. It is thanks to this fine balance
that there is no mass amplification in the large m limit.

VI. DISCUSSION

The issue of the fate of black hole singularities in
quantum gravity has drawn a great deal of attention
especially over the past two decades. While there is broad
consensus that singularities are windows onto physics
beyond Einstein’s theory, there is no general agreement
on how the singularities are to be resolved and even
whether one should expect them to be resolved. For
example, in the commonly used Penrose diagram of an
evaporating black hole–first introduced by Hawking [42]
over 40 years ago–a singularity constitutes part of the future
boundary of spacetime even after the black hole has
completely disappeared. Although this scenario is not
based on a hard calculation in any approach to quantum
gravity, it continues to be widely used. There is also a
debate on whether quantum gravity effects associated with
black holes would be important at horizons of macroscopic
black holes and even in the exterior region well outside the
horizons [39].
In this paper, we focused on a specific issue by restricting

ourselves to the Kruskal spacetime: Is there a coherent,
effective description that incorporates sufficient elements of
a deeper quantum gravity theory to lead to the resolution of
singularities of this spacetime? If there is, further questions
arise. What is the nature of the resulting quantum exten-
sion? Do the large quantum gravity effects that are needed
to resolve the central singularity persist even in low
curvature regions, thereby modifying the classical geom-
etry near and outside the black hole horizon? Is the
quantum corrected effective geometry well defined both
in the interior region bounded by horizons as well as the
exterior asymptotic region? If the extension includes
antitrapped regions, are they connected to new asymptotic
regions? Is the ADM mass in these regions essentially the
same as the initial mass one starts with or there is a
significant mass inflation or deflation? We were able to
answer these questions in detail within an effective theory
that incorporates key elements of Riemannian quantum
geometry underlying LQG.
The salient features of this effective description are the

following. First, as shown in Secs. II and III, the black hole
singularity is naturally resolved due to quantum geometry
effects, i.e., because there is an area gap Δ in LQG. The
singularity is replaced by a transition surface T which
separates a trapped region to its past from the antitrapped
region to its future: Our effective description extends the
Schwarzschild interior to include a white hole–type horizon
beyond the ‘would be’ singularity. Since the effective
metric is smooth, all curvature invariants are bounded.
Furthermore–as is common in loop quantum cosmology–
each curvature invariant has an absolute upper bound that
does not grow with mass (Sec. IV C). The expressions of

these upper bounds contain inverse powers of the area
gap Δ. This is analogous to the observation—often empha-
sized by John Wheeler—that ℏ appears in the denominator
of the expression of the ground state energy of the hydro-
gen atom and the fact that it is nonzero prevents the
minimum energy from being unbounded below. Thus, there
is a precise and sharp sense in which singularity resolution
is due to quantum geometry effects that give rise to a
nonzero area gap. While quantum corrections lead to large
violations of Einstein’s equations near the transition surface
(Sec. IV B) they become negligible in the low curvature
region (Sec. IV D). In particular, for macroscopic black
holes with M ≫ MPl, classical general relativity continues
to provide an excellent approximation near and outside
their horizons. While previous works focused only on the
Schwarzschild interior, a key new feature of our analysis is
that we were able to construct a Hamiltonian description
and analyze effective dynamics also in the exterior region
between the horizons and infinity (Sec. VA). These are
joined in a smooth manner to the interior regions across
horizons (Sec. V B), providing us with a quantum exten-
sion of the full Kruskal spacetime shown in Fig. 4.
There is a large body of work on the Kruskal interior

within LQG [4–13], most of which focuses on effective
dynamics as in this paper. In all these investigations, the
black hole singularity is resolved. However, as discussed in
Sec. IV D, there are also major differences from our
approach. Physical results in [4,5,8] can depend on fiducial
structures that are introduced in the construction of the
classical phase space, whence the details of their predic-
tions have no invariant significance. Our approach also
starts with fiducial structures to make various mathematical
expressions well defined. However, all our final results are
insensitive to these choices. The final results in approaches
introduced in [6,7,10,12] are also free of dependence on
fiducial structures. However, they lead to large quantum
effects in low curvature regions. For example, for large
black holes, the quintessentially quantum transition surface
T can emerge in regions with arbitrarily small curvature
in some approaches [10], while quantum dynamics drives
the effective trajectories to regions of phase space where
the basic underlying assumptions are violated in others
[6,7,13]. This does not occur in our approach. Indeed, this
effective description is free from all known weaknesses of
previous investigations of Kruskal spacetime within LQG.
Finally, another key difference from previous inves-

tigations is the following. They considered only the
Schwarzschild interior and treated it as a homogeneous
(Kantowski-Sachs) cosmology, emphasizing issues that are
central to anisotropic cosmological models. For example
some allowed matter [20,21] and/or a cosmological con-
stant [9,11], thereby taking the focus away from the
Schwarzschild interior. As mentioned already, our effective
theory encompasses both the interior and the asymptotic
regions and our focus is on black hole aspects such as
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trapped and antitrapped surfaces in the interior region and
properties of the ADM mass in the asymptotic region.
A striking feature of this effective description is that, in the
large mass limit, the ADM mass does not change as one
evolves from one asymptotic region to another one to its
future. This feature arises from a surprising aspect of the
specific way Einstein’s equations receive quantum correc-
tions. On the one hand, these corrections are large enough
to create a sufficiently strong repulsive behavior that is
needed to resolve the singularity. On the other hand, in the
evolution from the black hole–type horizon to the white
hole–type horizon, the violation of Einstein’s equations is
subtle: the effective stress-energy induced by quantum
geometry just flips the sign of Komar mass, keeping its
magnitude the same. This flip goes hand in hand with the
change of orientation of the translational Killing field,
which in turn assures that the ADM mass remains the same
from one asymptotic region to another one to its future
(Sec. V B 2). This is why the geometry of the interior region
is symmetric under time reflection around the transition
surface T (in the large mass limit). A symmetric behavior
has been sought after and achieved using phenomenologi-
cal inputs before [12]; it has been postulated in studies on
black hole to white hole transition [43]; and arrived at by
imposing physically motivated conditions on the black hole
evaporation time scale [44]. In our approach, it emerges
from detailed effective dynamics and is more subtle. In
particular, exact symmetry holds only in the infinite
mass limit.
Our effective dynamics also provides a concrete context

to compare and contrast expectations based on the quantum
nature of Riemannian geometry a la LQG and those based
on the AdS=CFT–type arguments. Since the bulk/boundary
duality proposed in the AdS=CFT correspondence has been
verified in a large number of examples, expected physical
properties of quantum field theories on the boundary have
been used to argue that quantum gravity will/should not
resolve certain bulk singularities, including those of the
classical Schwarzschild–anti–de Sitter spacetimes [26].
Note that these conclusions on the nature of bulk geometry
are indirect in that they are arrived at starting from
physically desirable properties of theories on the boundary,
assuming the boundary/bulk correspondence. By contrast,
in LQG, one works directly with the bulk. Since our
effective theory does resolve Schwarzschild singularities
in a coherent fashion, there is tension between the two sets
of ideas. There is no contradiction since the plausibility
arguments of [26] make a strong use of asymptotically
anti–de Sitter boundary conditions and do not apply to the
asymptotically flat situation we have considered.
Therefore, it would be of interest to see if the effective
theory proposed here can be extended to the asymptotically
anti–de Sitter case. A result in either direction will provide
valuable guidance.

We will conclude by pointing out some important
limitations of our analysis. As in the previous investiga-
tions, it is straightforward to introduce the kinematical
Hilbert space of states by exploiting the underlying homo-
geneity. Furthermore, using considerations of Appendix A,
one can write down the quantum Hamiltonian constraint.
However, its explicit action is rather complicated. The
situation was initially the same with the ‘improved dynam-
ics’ scheme in LQC, where it took some effort [28] to
simplify the action of the Hamiltonian constraint suffi-
ciently to make subsequent calculations manageable. The
simplified form could then be used to arrive systematically
at the quantum corrected, effective equations [3,18,19]. For
the Kruskal black holes now under consideration, one
would similarly have to first simplify the action of the
Hamiltonian constraint significantly to ‘derive’ the effec-
tive equations proposed in this paper starting from the
quantum theory. Secondly, the question of stability of our
effective spacetimes has not been investigated. This is a
difficult issue because we do not have quantum corrected
equations for full general relativity. Nonetheless, since
significant progress has been made on cosmological
perturbations propagating on quantum FLRW geometries
[1,45,46], it may be possible to analyze this issue in detail.
A more important limitation comes from the fact that our
analysis is confined to the eternal black-white holes of
Kruskal spacetime. To address key conceptual issues such
as the possibility of information loss, one would have to
consider black holes formed by gravitational collapse.
For these situations, as in classical general relativity, only
a small part of the Penrose diagram of Fig. 4 will be
relevant. One would have dynamical horizons which are
either spacelike (in the classical phase when the black
hole grows) or timelike (during the quantum evaporation
process), rather than null as in the Kruskal picture
considered here; only a finite portion of the transition
surface will appear because of the black hole evaporation;
and there will likely be only one asymptotic region (see,
e.g., [47]). Thus, the conceptual structure of the frame-
work would be very different from the full extension of
Kruskal spacetime introduced here. Nonetheless, portion
of this extended spacetime will be relevant to the analysis
and may in fact suffice to address deep conceptual
puzzles that arise already in the semi-classical regime,
e.g., during the phase in which a solar mass black hole
shrinks to lunar mass due to evaporation [48,49].
Furthermore, just as the analysis of quantum fields on
Kruskal spacetime provided useful techniques in the
analysis of the Hawking process for physically more
realistic collapsing situations, techniques developed in
this quantum extension of Kruskal spacetime should be
helpful for the much more interesting physical problem
of the fate of black hole singularities in dynamical
processes.
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APPENDIX A: QUANTUM PARAMETERS AS
JUDICIOUSLY CHOSEN DIRAC OBSERVABLES

Given the quantum parameters δb, δc, the Hamiltonian
constraint of the effective theory is given by [see (2.18)]

Heff ¼ −
1

2Gγ

��
sinðδbbÞ

δb
þ γ2δb
sinðδbbÞ

�
pb þ 2

sinðδccÞ
δc

pc

�

≡ L0

G
½O1 −O2�: ðA1Þ

where O1 ≔ −
1

2γ

�
sin δbb
δb

þ γ2δb
sin δbb

�
pb

Lo
; and

O2 ≔
�
sin δcc
γLoδc

�
pc: ðA2Þ

The task of making δb, δc constants of motion is technically
subtle: δb, δc themselves feature in the expression (A1) of
the Hamiltonian constraint that determines the dynamical
trajectories along which δb, δc are to be constants. Thus, we
have to choose δb, δc astutely to ensure this internal
consistency. The goal of this Appendix is to show that
these goals can be achieved and that the choice (4.6) made
in Sec. IVA satisfies this subtle consistency.
To achieve this goal, we will proceed in the following

steps: (1) We will first extend the four-dimensional phase
space Γ of the main text (with canonically conjugate
variables b; pb, and c; pc) to a eight-dimensional phase
space Γext by introducing 2 additional independent canoni-
cally conjugate pairs δb, pδb and δc, pδc. Thus, in particular,
on Γext, the would-be quantum parameters δb and δc are not
functions of b; pb; c; pc, but Poisson commute with all
original phase space variables. (2) We will consider the
natural liftHext

eff of the HamiltonianHeff to Γext and examine
the Hamiltonian flow it generates. As we argue below, O1,
O2 are Dirac observables for this flow. If δb is required to be
a function only of O1 and δc of only O2 then δb, δc would
also be Dirac observables. Our goal then is to introduce
these dependences as two new constraints such that they,
together with the Hamiltonian constraint functionHext

eff form
a first class set on the extended phase space Γext. Then, in

particular, the Hamiltonian flow generated by Hext
eff on the

extended phase space Γext will be tangential to the five-
dimensional constraint surface Γ̄ext. (3) Finally, our goal is
to choose two gauge fixing conditions for the newly
introduced constraints such that the four-dimensional
reduced phase Γ̂ext corresponding to these constraints is
symplectomorphic to the original four-dimensional phase
space Γ we began with. The dynamical flow on Γ̄ext would
then be induced by the Hamiltonian Hext

eff , but with δb, δc
given by the specified functions of O1 and O2 respectively.
Assuming all requirements on the choice of new constraints
and their gauge fixing can be satisfied, the dynamical flow
on Γ̄ext will naturally descend to the constraint surface Γ̄ of
the original phase space Γ, providing us with the desired
dynamics. Conditions in the second and third step are quite
demanding and a priori it is not clear that they can be met.
However, as we show below, there is a large class of
choices of δb, δc for step (2) for they can be made. Among
them is the choice (4.6) made in Sec. IVA. We will now
carry out these three steps systematically.
The extended phase space Γext is naturally coordinatized

by four canonically conjugate pairs b; pb; c; pc; δb; pδb;
δc; pδc. Note that δb, δc are just new, independent canonical
variables that Poisson commute with the original b; pb;
c; pc and their conjugate momenta pδb ; pδc do not appear in
the expression of

Hext
eff ¼

L0

G
½O1 −O2�: ðA3Þ

Since furthermore, O1 refers only to the b-sector and O2

only to the c-sector, it follows that O1, O2 Poisson
commute and are, furthermore, Dirac observables of the
flow generated by Hext

eff on Γext. (As one would expect from
our discussion in the main text, along dynamical trajecto-
ries O2 equals O1 and they will turn out to be the mass m.
See Eq. (2.26).) To carry out steps (2) and (3) explicitly, it is
convenient to first make a detour and introduce a canonical
transformation so that O1, O2, δb, δc are the new configu-
ration variables, and their momenta are given by:

P1 ¼ −
2Lo

Gbo
tanh−1½b−1o cosðδbbÞ� −

2Lo

G
ln

���� γδb2
����; ðA4Þ

P2 ¼ −
Lo

2G
ln

����� 2pc

Loδc

�
sin δcc
γLoδc

�
tan

�
δcc
2

�����
�
; ðA5Þ

Pδb ¼ pδb −
pb

2γG

�
2

δb

�
b −

�
sinðδbbÞ

δb
þ γ2δb
sinðδbbÞ

��

þ γ

b2o sinðδbbÞ
�
2γ cosðδbbÞ

þ γ

bo
tanh−1½b−1o cosðδbbÞ�ð2b2o − 1 − cosð2δbbÞÞ

�	
;

ðA6Þ
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Pδc ¼ pδc −
pc

2γGδc

�
c −

sinðδccÞ
δc

�
: ðA7Þ

Direct calculations show that Eqs. (A4)–(A7) define a
canonical transformation on Γext from the original variables
ðb; pb; c; pc; δb; pδb ; δc; pδcÞ to ðO1; P1;O2; P2; δb; Pδb ;

δc; PδcÞ:

fOi; Pjg ¼ δij; fδb; Pδbg ¼ 1; fδc; Pδcg ¼ 1; ðA8Þ

and all remaining Poisson brackets vanish. This trans-
formation is complicated in part because we have also
ensured that it is well defined in the classical limit in which
δb → 0 and δc → 0. This transformation is invertible and
we provide the explicit inverse at the end of this Appendix.
The step (2) asks us to make δb, δc the desired functions

of other phase space variables by introducing constraints on
Γext. Since in the final picture we would like δb, δc to be
Dirac observables and since we know that O1 and O2 are
Dirac observables, we choose these constraints to be:

Φ1 ¼ O1 − FbðδbÞ ≈ 0; and Φ2 ¼ O2 − FcðδcÞ ≈ 0;

ðA9Þ

where Fb and Fc are functions of δb, δc whose functional
can be quite general, subject to suitable regularity con-
ditions. (Our final choice (4.6) of these quantum parameters
is of this form because, as noted above O1 ¼ m ¼ O2 on
dynamical trajectories.) Since O1, O2 do not depend on the
momenta Pδb ; Pδc of the quantum parameters δb, δc, it
follows immediately that the three constraints Hext

eff ≈
0;Φ1 ≈ 0;Φ2 ≈ 0 on Γext constitute a first class system.
Thus, we have met the conditions specified in step (2).
Next, consider the flow of the total Hamiltonian:

Hext
T ¼ NHext

eff þ λ1Φ1 þ λ2Φ2

¼ −
LoN
G

½O2 −O1� þ λ1½O1 − FbðδbÞ�
þ λ2½O2 − FcðδcÞ�; ðA10Þ

where N; λ1; λ2 are Lagrange multipliers. The equations of
motion defined by the Hamiltonian flow of Hext

T are

_O1 ¼ 0; _P1 ¼ −
LoN
G

− λ1; _O2 ¼ 0; _P2 ¼
LoN
G

− λ2;

ðA11Þ

_δb ¼ 0; _Pδb ¼ λ1F0
bðδbÞ; _δc ¼ 0; _Pδc ¼ λ2F0

cðδcÞ;
ðA12Þ

and, in addition, the phase space variables are subject to the
three constraints:

O1 −O2 ¼ 0; O1 − FbðδbÞ ¼ 0; O2 − FcðδcÞ ¼ 0:

ðA13Þ

The equations are, thus, very simple; this is the reason why
we introduced the new canonical variables. We know from
general arguments that the flow is tangential to the five-
dimensional constraint surface Γ̄ext in Γext. Equations of
motion make this explicit.
Remark: The explicit form of solutions implies that

δb, δc are constants along dynamical trajectories, as desired.
Furthermore, for any choice of (regular) functions Fb, Fc,
their explicit dependence on the new configuration varia-
bles O1 is known. The construction of Sec. IVA led us
to set

FbðδbÞ ¼
� ffiffiffiffi

Δ
pffiffiffiffiffiffi
2π

p
γ2δ3b

�
; FcðδcÞ ¼

1

8

�
γΔ2

4π2ðLoδcÞ3
�
;

ðA14Þ

but the main conclusions of this Appendix do not require
this specific choice. Discussion of the causal structure of
the Kruskal interior of Sec. III holds for the class of
quantum parameters that correspond to general Fb and Fc–
and these include the choices made in the generalized μo
approaches [10,12] discussed in Sec. IV D 3.
But we still need to relate the dynamical trajectories on

Γ̄ext to those on the constraint surface Γ̄ of the original
phase space Γ. This requires completion of step (3) of the
program: Introduction of gauge fixing for the new con-
straints Φ1 ≈ 0 and Φ2 ≈ 0 so that the resulting four-
dimensional reduced phase space Γ̂ext is symplectomorphic
to the original phase space Γ spanned by b; pbc; pc. This
means that the gauge fixing conditions should be such that
the terms

ðdδb ∧ dPδb þ dδc ∧ dPδcÞ ðA15Þ

in the expression of the symplectic structure on Γext should
vanish when pulled back to Γ̂ext. An examination of the
form of the constraints leads us to conditions of the form

Pδb ¼ GbðO1; O2Þ; Pδc ¼ GcðO1; O2Þ;

such that
1

F0
bðδbÞ

∂Gb

∂O2

¼ 1

F0
cðδcÞ

∂Gc

∂O1

: ðA16Þ

The form of the evolution equations implies that these
are good gauge fixing conditions in the sense that each
gauge orbit generated by the new constraint functions Φ1

and Φ2 intersects the gauge fixed surface once and only
once. Finally evolution consistent with this gauge fixing is
obtained by setting λ1 ¼ λ2 ¼ 0 in the expression (A10) of
Hext

T . Thus, we have exhibited a family of gauge conditions
satisfying conditions (3) in our prescription.
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On the four-dimensional reduced phase space Γ̂ext, then,
dynamics is generated by the Hamiltonian constraint Hext

eff
of (A3) where, now, δb, δc are determined by the constraints
Φ1 ¼ 0 and Φ2 ¼ 0. The explicit form of this evolution is
given by the restriction of (A11) and (A12) to the constraint
surfaceHext

eff ¼ 0 of the reduced phase space Γ̂ext. Evolution
of P1, P2 is extremely simple, and O1, O2; δb; δc are
constants of motion related via constraintsΦ1 ¼ 0,Φ2 ¼ 0.
Finally, one can rewrite these evolution equations in

terms of b; pb; c; pc by using the inverse of the canonical
transformations (A4)–(A7) on Γext:

cosðδbbÞ ¼ −bo tanh
�
bo
2

�
GP1

Lo
þ 2 ln

���� γδb2
����
��

; ðA17Þ

b2o
2Loγ

pb ¼ −δbO1b2o cosh

�
bo
2

�
GP1

Lo
þ 2 ln

���� γδb2
����
��

2

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2o tanh

�
bo
2

�
GP1

Lo
þ 2 ln

���� γδb2
����
��

2

s
;

ðA18Þ

tan

�
δcc
2

�
¼ �Loδc

2O2

e−2GP2=Lo ; ðA19Þ

pc ¼ γO2
2

�
e2GP2=Lo þ L2

oδ
2
c

4O2
2

e−2GP2=Lo

�
: ðA20Þ

(In the effective theory, the phase space Γext is restricted
such that c ∈ ½−π=δc; 0Þ ∪ ð0; π=δc� and b ∈ ½−π=δb; 0Þ ∪
ð0; π=δb� [see footnote 6)]. The resulting equations of
motion for b; pb; c; pc are precisely Eqs. (2.19) and
(2.20) of the main text.
Remark: The Hamiltonian constraint (A1) can be

formally promoted to an operator Ĥ on the Kinematical
Hilbert space Hkin used in the literature (see, e.g., [4,10]),
but its explicit action on the basis states normally used is
rather complicated because δb, δc depend on the phase
space variables via Eq. (4.6). A possible avenue to simplify
the action is suggested by the strategy adopted in this
Appendix. One may extend the kinematical Hilbert space
by introducing new degrees of freedom corresponding to
δb, δc (and their canonically conjugate variables) also in the
quantum theory, and then impose the three first class
constraints as operator equations on the extended kinemati-
cal Hilbert space Hext

kin. This step would be straightforward,
e.g., if one uses the representation in which pb, pc, δb, δc
are diagonal. However, further work is need to first
explicitly solve the new operator constraints Φ̂i ¼ 0 since
δb, δc also appear in the expressions of Ôi (i ¼ 1, 2). One
possibility is to first seek the generator of the canonical
transformations (A4)–(A5), promote it to an operator to
go back and forth between representations in which pb, pc,
δb, δc are diagonal and the one in which O1, O2, δb, δc

(or, P1, P2, δb, δc) are diagonal and exploit the simplicity of
constraints in terms of O1, O2, δb, δc.

APPENDIX B: DETERMINING THE QUANTUM
PARAMETERS δb AND δc

Results of Appendix A hold for a judiciously chosen but
still a large class of the quantum parameters δb, δc. In the
main body of the paper, we used a specific form (4.6). In
this Appendix, we derive this equation starting from
conditions (4.4) and (4.5) on the area enclosed by the
chosen plaquettes on the transition surface T . We will first
derive analytical expressions in the large m limit and then
discuss some subtleties associated with the exact solutions.
The strategy is to first obtain expressions of pbjT and pcjT
at the transition surface T as functions of δb, δc using
explicit solutions (2.25) and (2.22) to effective equations,
and then determine the two unknowns δb, δc using the two
area conditions (4.4) and (4.5).
The expression of pc at the transition surface is simple:

pcjT ¼ mðγLoδcÞ. By contrast, the expression of pbjT is
intricate and far more nontrivial. To gain control over
this expression, let us first consider an expansion in the
limit δb ≪ 1 and Loδc ≪

ffiffiffiffi
Δ

p
. The leading order gives

pbjT ≃ Loð2m3LoγδcÞ1=4. Then, we can solve Eqs. (4.4)
and (4.5), and obtain

δb ∝
� ffiffiffiffi

Δ
p

m

�
1=3

and
Loδcffiffiffiffi

Δ
p ∝

� ffiffiffiffi
Δ

p

m

�
1=3

: ðB1Þ

(Recall that it is the combination Loδc that is invariant
under the rescaling Lo → αLo of the fiducial cell.) These
conditions imply that δb and Loδc are Dirac observables:
they are constant on a given solution, but they can change
from one solution to another. Our initial assumption δb ≪ 1

and Loδc ≪
ffiffiffiffi
Δ

p
is automatically satisfied in the desired

large m limit, m ≫ mPl, if we set

δb ¼ A

� ffiffiffiffi
Δ

p

m

�
1=3

and
Loδcffiffiffiffi

Δ
p ¼ B

� ffiffiffiffi
Δ

p

m

�
1=3

; ðB2Þ

where A and B are some dimensionless constants (inde-
pendent of the mass m) which get determined from the
minimum area conditions.
Using Eq. (4.5) we find that A and B are related via

B ¼ 1

4πγA2
; ðB3Þ

enabling us to trade B for A. Finally, to determine A we
use the expression of pbjT and (B3). A straightforward
computation provides us with an equation for A in the large
m limit:

A3=2γ

21=4ð4πÞ3=4 þ
21=4

ð4πÞ5=4A3=2γ
¼ 1

2π
: ðB4Þ
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This equation has only one real solution given by

A ¼
�

1ffiffiffiffiffiffi
2π

p
γ2

�
1=3

ðB5Þ

which then determines B via (B3)

B ¼ 1

2

�
γ

4π2

�
1=3

: ðB6Þ

One can easily see that these values of A and B, together
with (B2) provide the expression (4.6) of δb, δc

δb ¼
� ffiffiffiffi

Δ
pffiffiffiffiffiffi
2π

p
γ2m

�
1=3

; Loδc ¼
1

2

�
γΔ2

4π2m

�
1=3

: ðB7Þ

given in the main text. Thus, in them ≫ lPl limit, solutions
to the area conditions (4.4) and (4.5) are given by (4.6) to
leading order. Finally, it is instructive to solve Eq. (4.5)
numerically, without taking the large m limit. Since we
know pcjT ¼mðγLoδcÞ, let us start by first solving Eq. (4.5)
for Loδc and use the solution in Eq. (4.4). Then the only
unknown in the solution (2.25) for pb is δb. Therefore, we
can numerically evaluate the left side pbðTT Þδbδc of (4.4)
as a function of δb. The solid curve in Fig. 5 plots this
function for m ¼ 104. The right side of (4.4) is a constant,
Δ=2π, shown by the dashed line. The two curves have four
intersections that represent four roots of our equation for δb.
(Thus, if we do not take the large m limit, the two con-
ditions (4.4) and (4.5) do not quite determine the unknowns
δb, δc uniquely; we are left with a discrete, 4-parameter
family of degeneracy.) We will refer to the four roots as the
leftmost, the two central and the rightmost. Their properties
can be summarized as follows. The two central roots are the
relevant ones for our analysis. In the large mass limit, they
approach each other and rapidly converge to a single
degenerate value, given by the analytic expression (4.6).
This root corresponds to the large m values of constants A
and B given in (B5) and (B6). For macroscopic black holes

it is these central roots that yield the effective geometries
discussed in Secs. IV B and IV C.
The leftmost and the rightmost roots, on the other hand,

are unphysical. The leftmost root gives a value for δb that
decreases rapidly as a function of the mass (faster than
m−1=3) while δc grows monotonically. In this case, the
effective dynamics results in large quantum corrections at
the black hole–type horizon. For the rightmost root, both δb
and δc decrease with the mass, however δb does it very
slowly. Although quantum corrections are small close to
the black hole–type horizon, they grow very quickly and
become important while the Kretschmann scalar is still
small. Thus, the leftmost and the rightmost roots can not
yield physically viable solutions. That is why we focused
on the limiting value of the central roots in our analysis in
the main text. Finally, for macroscopic black holes, the two
central roots are extremely close to one another, whence
corrections to the asymptotic value are negligible.
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