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Emergence of local irreversibility in complex interacting systems
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Living systems are fundamentally irreversible, breaking detailed balance and establishing an arrow of time.
But how does the evident arrow of time for a whole system arise from the interactions among its multiple
elements? We show that the local evidence for the arrow of time, which is the entropy production for thermody-
namic systems, can be decomposed. First, it can be split into two components: an independent term reflecting the
dynamics of individual elements and an interaction term driven by the dependencies among elements. Adapting
tools from nonequilibrium physics, we further decompose the interaction term into contributions from pairs of
elements, triplets, and higher-order terms. We illustrate our methods on models of cellular sensing and logical
computations, as well as on patterns of neural activity in the retina as it responds to visual inputs. We find that
neural activity can define the arrow of time even when the visual inputs do not, and that the dominant contribution
to this breaking of detailed balance comes from interactions among pairs of neurons.
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I. INTRODUCTION

Living systems consume energy in order to maintain order
and function. Being away from equilibrium, we expect that
their microscopic dynamics violate detailed balance. Macro-
scopically, their behaviors define an arrow of time. Despite
recent progress in nonequilibrium statistical physics [1–3],
there remain basic questions about how irreversibility at one
scale emerges from collective dynamics at the scale below.
To what extent does the irreversibility of a system arise from
interactions between elements, rather than the independent
dynamics of the elements themselves? Can simple dynamics
involving pairs or triplets of elements build upon one an-
other to generate large-scale irreversibility, thereby defining a
macroscopic arrow of time, or do complex biological systems
depend on higher-order combinatorial interactions?

To answer these questions, we propose a framework for
decomposing the local evidence for the arrow of time in
systems with many degrees of freedom. We demonstrate that
the local irreversibility can be divided into two nonnegative
components: one that reflects the independent irreversibili-
ties of the individual elements, and another that reflects the
irreversibility due to interactions between elements. We then
show that the interaction term can be further decomposed into
contributions from groups of elements of different sizes, from
pairs of elements to triplets to complex higher-order terms.
In this way, one can determine not only whether the arrow
of time arises from the dependencies between elements, but
also the specific types of dynamics from which it emerges [4].
This decomposition is similar in spirit to the idea of connected
correlations in the decomposition of the entropy itself [5].

We apply our methods to investigate the arrow of time in
neural activity. Our visual perception is built out of the pat-

terns of electrical activity of cells in the retina, and evidence
for the arrow of time must be found in these patterns. Recent
experiments that record the activity of many retinal neurons
simultaneously [6,7] make it possible for us to estimate all
the relevant quantities directly, without introducing any model
assumptions, in groups of up to five cells. We find that roughly
two-thirds of these groups exhibit significant irreversibility,
even when the movies shown to the retina are completely
reversible. Thus, collective neural activity can define an arrow
of time even when the visual inputs do not. Moreover, across
distinct stimulus ensembles, we consistently find that the local
irreversibility is dominated by the dynamics of neuron pairs.
Together, these results demonstrate that neuronal populations
can define an arrow of time that (1) emerges primarily from
pairwise dynamics and (2) does not merely reflect the irre-
versibility of the stimulus.

The paper is organized as follows. In Sec. II we define
the local irreversibility and multipartite dynamics. In Sec. III
we show analytically that the local irreversibility of a mul-
tipartite system can be split into two nonnegative terms, the
first stemming from the independent elements and the second
arising from the interactions between elements. In Sec. IV we
compare these independent and interaction irreversibilities in
a simple model sensing system. In Sec. V we show that the
irreversibility due to interactions can be further decomposed
into a series of contributions from pairs of elements, triplets,
and higher-order terms. In Sec. VI we illustrate this decom-
position using a minimal model of logical computations. In
Sec. VII we apply the above methods to investigate the ir-
reversibility of neuronal dynamics in the vertebrate retina.
Finally, in Sec. VIII we provide conclusions and outlook,
highlighting directions for future work.
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FIG. 1. Irreversibility and multipartite dynamics. (a, b) A simple
three-state system, with states x represented as circles and joint tran-
sition probabilities P(x → x′) as arrows. (a) In a reversible system,
there are no net fluxes of transitions between states, the dynamics
obey detailed balance, and there is no evidence for the arrow of time.
(b) Irreversible systems exhibit net fluxes between states, thereby
breaking detailed balance and establishing an arrow of time. (c) A
multipartite system composed of two binary spins. Only one spin is
allowed to change state at a time, thus disallowing the transitions
indicated by red arrows.

II. LOCAL IRREVERSIBILITY AND
MULTIPARTITE DYNAMICS

When a system is reversible, its dynamics obey detailed
balance, and there are no net fluxes between states [Fig. 1(a)].
By contrast, for an irreversible system, fluxes from one state
to another break detailed balance [Fig. 1(b)]. Critically, such
irreversible dynamics establish an arrow of time: Just by
observing the evolution of the system, one can distinguish
whether time is flowing forward or backward.

To quantify irreversibility, consider a system with joint
transition probabilities

P(x → x′) ≡ Prob[xt = x, xt+1 = x′], (1)

where xt is the state of the system at time t . In words, this is
the probability of observing the state x followed by the state
x′, and should not be confused with the conditional transition
probabilities Prob[xt+1 = x′ | xt = x]. The evidence that these
dynamics carry about the arrow of time is quantified by the
relative entropy, or Kullback-Leibler divergence, between the
forward- and reverse-time transition probabilities [8],

İ =
∑
x,x′

P(x → x′) log

[
P(x → x′)
P(x′ → x)

]
, (2)

where if we choose base two for the logarithms then the evi-
dence is measured in bits. If a system obeys detailed balance,
such that P(x → x′) = P(x′ → x) for all pairs of states x and
x′, then this local irreversibility vanishes [Fig. 1(a)]. Con-
versely, any violation of detailed balance, such that P(x →
x′) �= P(x′ → x), leads to an increase in the local irreversibil-
ity [Fig. 1(b)].

For Markov systems, the transition probabilities P(x → x′)
completely define the dynamics, and so İ captures all available
information about the arrow of time. Notably, if the states x
and x′ include all of the microscopic degrees of freedom in a
system, then, under reasonable assumptions, Eq. (2) defines
the physical rate at which the system produces entropy [9,10].
In general, if we don’t observe all the relevant degrees of
freedom then the dynamics of the observable states x will be

non-Markovian, but İ still has a precise meaning: it represents
the local evidence for the arrow of time.

We are interested in systems where the overall state x
consists of states {xi} for many interacting elements, i =
1, 2, . . . , N . Given sufficient temporal resolution, no two el-
ements will change state at exactly the same time. In this limit,
the dynamics are defined by the joint probabilities P(xi →
x′

i, x−i ) of one element i transitioning from xi to x′
i and the

rest of the system remaining in the same state, denoted x−i

[Fig. 1(c)]. Such dynamics, which are referred to as multi-
partite, exhibit a number of useful properties [11,12]. Chief
among these properties is the fact that the local irreversibility
simplifies to a sum over the individual elements:

İ =
∑
x,x′

P(x → x′) log

[
P(x → x′)
P(x′ → x)

]
(3)

=
∑

x

N∑
i=1

∑
x′

i

P(xi → x′
i, x−i ) log

[
P(xi → x′

i, x−i )

P(x′
i → xi, x−i )

]
(4)

=
N∑

i=1

∑
x−i

∑
xi,x′

i

P(xi → x′
i, x−i ) log

[
P(xi → x′

i, x−i )

P(x′
i → xi, x−i )

]
(5)

=
N∑

i=1

İi, (6)

where

İi =
∑
x−i

∑
xi,x′

i

P(xi → x′
i, x−i ) log

[
P(xi → x′

i, x−i )

P(x′
i → xi, x−i )

]
(7)

is the local irreversibility associated with element i.

III. INDEPENDENT AND INTERACTION
IRREVERSIBILITY

We are now prepared to investigate the impact of interac-
tions between elements on the irreversibility of a system. To
begin, consider a hypothetical system in which the elements
do not interact. In this case, the transitions of each element i
are completely defined by the marginal transition probabilities

P(xi → x′
i ) =

∑
x−i

P(xi → x′
i, x−i ), (8)

and thus the independent irreversibility of element i is given
by

İ ind
i =

∑
xi,x′

i

P(xi → x′
i ) log

[
P(xi → x′

i )

P(x′
i → xi )

]
. (9)

How does this independent irreversibility compare to the true
irreversibility in Eq. (7)? To answer this question, we consider
the difference İi − İ ind

i , which reflects the local irreversibility
of element i due to interactions with the rest of the system.
Notably, we find that this difference—which we refer to as the
interaction irreversibility İ int

i of element i—is itself an average
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of KL divergences,

İ int
i = İi − İ ind

i

=
∑
x−i

∑
xi,x′

i

P(xi → x′
i, x−i )

(
log

[
P(xi → x′

i, x−i )

P(x′
i → xi, x−i )

]

− log

[
P(xi → x′

i )

P(x′
i → xi )

])
(10)

=
∑
x−i

∑
xi,x′

i

P(xi → x′
i, x−i ) log

[
P(x−i | xi → x′

i )

P(x−i | x′
i → xi )

]
(11)

=
∑
xi,x′

i

P(xi → x′
i )DKL[P(x−i | xi → x′

i )||P(x−i | x′
i → xi )],

(12)

where P(x−i | xi → x′
i ) = P(xi → x′

i, x−i )/P(xi → x′
i ) is the

conditional probability of the state x−i of the rest of the system
given a transition xi → x′

i in element i.
Equation (12) immediately tells us that İ int

i � 0, thereby
establishing that the presence of interactions can only in-
crease the local irreversibility of a system. Moreover, the
interaction irreversibility İ int

i of element i admits an insight-
ful information-theoretic interpretation: it is the amount of
information that one gains about the state x−i of the rest
of the system by observing the forward-time dynamics of
element i rather than the reverse-time dynamics [8]. Thus,
if i’s forward- and reverse-time dynamics contain the same
information about the rest of the system, then interactions with
element i do not contribute to the arrow of time (İ int

i = 0), and
all of i’s local irreversibility arises from independent dynamics
(İi = İ ind

i ). Importantly, we note that Eqs. (10)–(12) require
multipartite dynamics; if multiple elements can change state
at once, then the interaction irreversibility İ int is ill-defined
(see Appendix A).

Together, Eqs. (9)–(12) establish our first result: that the lo-
cal irreversibility of a system can be split into two nonnegative
components,

İ = İ ind + İ int, (13)

where İ ind = ∑N
i=1 İ ind

i is the independent irreversibility of the
system (reflecting the local irreversibilities of the individual
elements) and İ int = ∑N

i=1 İ int
i is the interaction irreversibility

(reflecting the local irreversibility due to the dependencies
between elements).

IV. DECOMPOSING IRREVERSIBILITY
IN A SENSING SYSTEM

To illustrate the decomposition in Eq. (13), we examine
a sensing system, wherein a sensing variable y attempts to
copy an environmental variable x [Fig. 2(a)]. Such sens-
ing networks have been a topic of significant focus in
nonequilibrium statistical mechanics [3,11,13–15], revealing
the thermodynamic costs of simple computations in living
systems [3,13,15–18].

Here we consider an environmental variable x with three
states and dynamics defined by

x′

P(x′ | x) =

⎛
⎜⎜⎜⎜⎝

1
2 (1 − px ) px

1
2 (1 − px )

1
2 (1 − px ) 1

2 (1 − px ) px

px
1
2 (1 − px ) 1

2 (1 − px )

⎞
⎟⎟⎟⎟⎠ x,

(14)

where px is the probability of x increasing from one state
to the next [Fig. 2(a), left]. Meanwhile, the dynamics of the
sensing variable y are given by

y′

P(y′ | x) =

⎛
⎜⎜⎜⎜⎝

py
1
2 (1 − py) 1

2 (1 − py)

1
2 (1 − py) py

1
2 (1 − py)

1
2 (1 − py) 1

2 (1 − py) py

⎞
⎟⎟⎟⎟⎠ x,

(15)

where py is the probability that y copies x [Fig. (2(a), right].
Randomly picking one variable to update at a time, one can
solve for the joint transition probabilities of the combined
system P(x, y → x′, y′); for details see Appendix B. Notably,
since the dynamics are Markovian, İ reflects the full (not just
local) irreversibility of the system.

If px = py = 1/3, then both variables behave randomly,
and the system obeys detailed balance. By contrast, if px or
py > 1/3, then the tendencies for x to increase and y to copy x
give rise to fluxes between the states of the system [Fig. 2(b)],
thereby breaking detailed balance. Indeed, the irreversibility
İ increases with both px and py [Fig. 2(c)]. The independent
irreversibility İ ind, however, only increases with px, capturing
the quickening dynamics of x [Fig. 2(d)]. Meanwhile, the
interaction irreversibility İ int primarily increases with py, cap-
turing the strengthening dependence of y on x [Fig. 2(e)]. We
therefore find that the independent irreversibility is generated
by the individual motion of the environmental variable, while
the interaction irreversibility arises predominantly from the
dependence of the sensing variable on the environment. In
this way, the decomposition in Eq. (13) reveals the distinct
ways that the environmental and sensing variables generate
irreversibility.

V. IRREVERSIBILITY DUE TO kth-ORDER DYNAMICS

Can we tell whether the arrow of time emerges from the
dynamics of two or three elements at a time, or whether we
require higher-order information about the system as a whole?
Answering this question requires further decomposing the
local irreversibility into contributions from pairs of elements,
triplets, and so on. For now, consider the marginal dynamics
of pairs of elements i and j, namely, the marginal transition
probabilities

P(xi → x′
i, xj ) =

∑
x−{i,j}

P(xi → x′
i, x−i ), (16)

P(xj → x′
j, xi ) =

∑
x−{i,j}

P(xj → x′
j, x−j ). (17)
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FIG. 2. Independent and interaction irreversibility in a sensing system. (a) Sensing system with an environmental variable x (left) and a
sensing variable y (right), each with three states. At each point in time, one of the two variables is updated at random. With probability px , the
environmental variable x rotates clockwise, and with probability py, the sensing variable y copies x. (b) Fluxes between states of the sensing
system (for px, py > 1/3) induced by the environmental variable (blue) or the sensing variable (red). (c, d) Irreversibility İ (c), independent
irreversibility İ ind (d), and interaction irreversibility İ int (e) as functions of px and py. While İ grows with both px and py, İ ind only increases
with px , and İ int mostly increases with py, thereby distinguishing the two sources of irreversibility in the system.

Imagine a hypothetical system that matches these marginal
dynamics for all pairs i and j, but otherwise contains minimal
information about the arrow of time, so that the dynamics
are maximally reversible. This minimal irreversibility, which
we denote İ (2), sets a lower bound on the true local irre-
versibility İ , capturing all of the local irreversibility in pairs
of elements and nothing more. In this way, by casting our
decomposition as an optimization problem, we are able to di-
rectly translate knowledge about a system into a lower bound
on its irreversibility. From a practical perspective, the local
irreversibility İ is convex (see Appendix C), and so there
exist efficient algorithms for computing global minima. In
fact, the equivalent problem of minimizing entropy production
has garnered significant attention in nonequilibrium physics
[12,16,19,20], dating back to the foundational work of On-
sager and Prigogine [21,22].

In general, one can compute the minimum irreversibility
İ (k) consistent with the dynamics of k elements at a time.
Since these kth-order dynamics contain all of the information
about smaller groups of size 1, 2, . . . , k − 1, the minimum
irreversibilities İ (k) form a hierarchy of lower bounds that

increase toward the true local irreversiblity İ:

0 � İ (1) � İ (2) � · · · � İ (N−1) � İ (N ) = İ, (18)

where N is the size of the system. There are several things
to note about these inequalities. First, for thermodynamic
systems, the zeroth-order bound (İ � 0) is the second law
of thermodynamics, which follows from the fact that İ is
a KL divergence without any knowledge of the system
dynamics. Second, as one might suspect, the first-order irre-
versibility İ (1)—that is, the minimum irreversibility consistent
with individual dynamics—is equivalent to the independent
irreversibility İ ind (see Appendix D). Finally, since the N th-
order dynamics contain a full description of the transition
probabilities P(xi → x′

i, x−i ), we have İ (N ) = İ .
Inspecting the hierarchy in Eq. (18), we see that the local ir-

reversibility due to kth-order dynamics alone can be captured
captured by the difference İ (k)

int = İ (k) − İ (k−1) � 0, which we
refer to as the interaction irreversibility of order k. Indeed,
combining these contributions from İ (1)

int = İ (1) = İ ind to İ (N )
int ,
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we arrive at a full decomposition of the local irreversibility:

İ = İ (1)
int︸︷︷︸
İ ind

+ İ (2)
int + İ (3)

int + · · · + İ (N )
int︸ ︷︷ ︸

İ int

, (19)

which is our main contribution. We note that this decompo-
sition is in many ways similar to the decomposition of the
entropy itself into connected components [5].

VI. DECOMPOSING IRREVERSIBILITY OF LOGICAL
FUNCTIONS

To illustrate how irreversibility arises from dynamics of
different orders, we apply the decomposition in Eq. (19) to
a class of noisy logical functions. Specifically, we consider
binary variables x and y that change state at each time step
with probability pflip, and third binary variable z that is the
output of a logical function with a probability of error perror

[Fig. 3(a); see Appendix E for a full description]. As for the
sensing system in Fig. 2, because the dynamics are Markovian
the local irreversibility İ represents the full irreversibility of
the system.

We note that binary variables in steady state, such as
those considered here, cannot break detailed balance on their
own (Appendix F). Thus, for binary steady-state systems, the
independent irreversibility vanishes (İ ind = 0), such that the
arrow of time arises entirely from the interactions between
the elements, İ = İ int = İ (2)

int + · · · + İ (N )
int . Specifically for the

logical functions [Fig. 3(a)], there are only two contributions
to the irreversibility: that due to pairwise dynamics İ (2)

int and
that due to the full triplet dynamics İ (3)

int .
To begin, consider a simple function where z copies ei-

ther x or y while ignoring the other input [Figs. 3(b) and
3(c)]; these are binary simplifications of the sensing system
in Fig. 2. As perror increases—that is, as the accuracy of the
function decreases—we find that the irreversibility İ decreases
[Fig. 3(d)]. Indeed, as perror approaches 1/2, the output z
completely decouples from the inputs x and y, and the system
becomes reversible (İ = 0). Additionally, the arrow of time
vanishes if the inputs x and y are static (pflip = 0) and grows
as the inputs become more dynamic [that is, as pflip increases;
Fig. 3(d)]. Visualizing the fluxes between states of the system,
we see that the tendency for z to copy x (equivalently, y)
induces fluxes only in the x − z (or y − z) plane [Figs. 3(b)
and 3(c)]. Accordingly, for all values of pflip and perror, the ir-
reversibility arises entirely from pairwise dynamics (İ = İ (2)

int ),
while triplet dynamics do not contribute to the irreversibility
[İ (3)

int = 0; Fig. 3(d)].
For comparison, consider the AND and OR functions

[Figs. 4(a) and 4(b)]. Just as for the copy functions (Fig. 3),
the irreversibilities of AND and OR (which we note are iden-
tical) increase both with the accuracy of the system (as perror

decreases) and with the speed of dynamics [as pflip increases;
Fig. 4(c)]. However, in contrast to the copy functions, the full
dynamics of AND and OR cannot be deduced from pairs of vari-
ables alone. Thus, the irreversibility arises from a combination
of both pairwise and triplet dynamics [Fig. 4(c)]. Finally, for
the XOR function, the behavior of the system becomes appar-

FIG. 3. Decomposing irreversibility in noisy logical functions.
(a) System of three binary variables x, y, and z, where z performs
a noisy logical function on the inputs x and y. At each point in time,
one of the variables is updated at random. With probability pflip, the
inputs x and y change value, and with probability perror, the output z
fails to perform the specified function (see Appendix E). (b, c) Fluxes
between states of the system when z either copies x (b) or copies y (c).
(d) Irreversibilities İ (full), İ (2)

int (pairwise interaction), and İ (3)
int (triplet

interaction) vs perror for different values of pflip. For both of the
copy functions, irreversibility arises entirely from pairwise dynamics
(İ = İ (2)

int ), while triplet dynamics do not contribute (İ (3)
int = 0).

ent only when all three variables are observed simultaneously
[Fig. 4(d)]. As such, the irreversibility of XOR arises entirely
from triplet dynamics (İ = İ (3)

int ), while the pairwise dynamics
are completely reversible [İ (2)

int = 0; Fig. 4(e)]. This is consis-
tent with the status of XOR as the prototype of combinatorial
interactions.

The results of this section are summarized in Figs. 4(f)
and 4(g), where we plot the minimum irreversibilities İ (k)

[Fig. 4(f)] and interaction irreversibilities İ (k)
int [Fig. 4(g)] of the

different logical functions, normalized by the full irreversibil-
ities İ . Since the systems all consist of binary steady-state
dynamics, the first-order irreversibilities İ (1) = İ (1)

int vanish,
and therefore the independent dynamics do not define an
arrow of time (İ ind = 0). For the copy functions [Figs. 3(b)
and 3(c)], irreversibility is driven entirely by second-order
dynamics; for the AND and OR functions [Figs. 4(a) and 4(b)],
the arrow of time arises from a combination of second- and
third-order dynamics; and for the XOR function [Fig. 4(d)],
irreversibility is driven entirely by third-order dynamics [see
Fig. 4(g)]. In this way, the decomposition in Eq. (19) can
be used to uncover the order of the dynamics that generate
irreversibility in interacting systems.

034102-5



LYNN, HOLMES, BIALEK, AND SCHWAB PHYSICAL REVIEW E 106, 034102 (2022)

FIG. 4. Decomposing irreversibility in AND, OR, and XOR func-
tions. (a, b) For logical systems defined as in Fig. 3(a), we illustrate
the fluxes between states when z executes either AND (a) or OR (b).
(c) Irreversibilities İ (full), İ (2)

int (pairwise interaction), and İ (3)
int (triplet

interaction) of the AND and OR systems vs perror for different values of
pflip. Irreversibility arises from a combination of pairwise (İ (2)

int > 0)
and triplet (İ (3)

int > 0) dynamics. (d, e) Fluxes (d) and irreversibil-
ities (e) when z performs XOR. Irreversibility arises entirely from
triplet dynamics (İ = İ (3)

int ), while pairwise dynamics are reversible
(İ (2)

int = 0). (f, g) Minimum irreversibilities İ (k) (f) and interaction
irreversibilities İ (k)

int (g), normalized by the full irreversibility İ , as
functions of the order k for different logical functions. The errorbars
for AND and OR reflect the small variability in İ (k)/İ and İ (k)

int /İ over
the range of different perror and pflip values.

VII. DECOMPOSING IRREVERSIBILITY
IN NEURONAL POPULATIONS

Using the framework developed above, we are ultimately
interested in understanding how irreversibility emerges in bi-
ological systems. Here we study electrical activity in groups
of neurons at the output of the retina. These ganglion cells pro-
vide all the data that the brain has about the visual world, and
hence their state provides the ingredients out of which visual
perceptions are synthesized, including our perception of the
arrow of time. Importantly, information about visual stimuli
is encoded not just in the firing of individual neurons, but also
in the web of dependencies between neurons [7,23,24]. It re-
mains unknown, however, whether groups of neurons exhibit
fluxes between collective states—thereby breaking detailed
balance—and if so, whether such irreversibility arises from
pairs of neurons or from complicated higher-order dynamics.

Here we analyze experiments on the salamander retina
[Fig. 5(a)], where it is possible to record form many neurons
simultaneously as they respond to complex visual stimuli [6].
These experiments explored three very different kinds of vi-
sual inputs: natural movies [Fig. 5(b)], a single horizontal bar
whose vertical motion is equivalent to a Brownian particle on
a spring [Fig. 5(c)], and the Brownian bar with precise repe-
titions of the same trajectory. Although this was not the goal
of the original experiments, we note that the natural movies
violate time-reversal invariance, being easily recognized when
played forward vs backward, while the Brownian bar is an
equilibrium system and obeys detailed balance. Appendix G
gives a more detailed description of the experimental setup
and procedures from Ref [6].

A. Broken detailed balance in neuronal dynamics

The problems of detecting and quantifying irreversibility
in data have garnered significant attention in the statisti-
cal mechanics of living systems [3,20,25–28]. To detect
irreversibility, one must simply search for violations of de-
tailed balance; namely, fluxes between the states of a system
[3,25,26]. To quantify the irreversibility of a system, however,
one must estimate or bound İ from time-series measure-
ments [20,26–28]. Here, in addition to estimating the local
irreversibility İ , we further wish to decompose İ into con-
tributions from dynamics of various orders [as in Eq. (19)].
In order to do so—that is, in order to compute the minimum
irreversibilities I (k) consistent with kth-order dynamics—we
must begin by estimating the transition probabilities P(xi →
x′

i, x−i ) themselves.
We consider a neuron i active (xi = 1) if it generates an

action potential (“spike”) at least once within a time window
of width �t = 20 ms, or inactive (xi = 0) if it is silent. In
this way, the collective state of N neurons is a binary vector
x = {x1, x2, . . . , xN }. As we slide the window along the time
series, it is almost always the case that only one cell i changes
state at a time, either by having a spike enter the front of
the window [Fig. 5(d), left window] or exit the back of the
window [Fig. 5(d), center window]. Each time this occurs,
we record a new transition between states x → x′. For com-
pleteness, we remark that self-transitions can occur when a
cell spikes twice within the same window [Fig. 5(d), right
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FIG. 5. Broken detailed balance in a group of neurons. (a) Dots
mark the times of action potentials (“spikes”) from 53 neurons in the
salamander retina responding to a visual stimulus (see Appendix G
for experimental details). (b, c) The same 53 neurons are exposed
to three different stimuli: a natural movie of fish swimming (b), a
horizontal bar whose movement is defined by a Brownian particle on
a spring (c), and the same Brownian bar in panel (c) but with one
trajectory repeated multiple times. (d) To record multipartite transi-
tions [see Fig. 1(c)], we slide a window of width �t = 20 ms along
the time series. A neuron transitions to active when a spike enters the
front of the window (left), or inactive when a spike exits the back
of the window (center). Self-transitions can occur when a cell spikes
twice within the same window (right). (e–h) A random group of three
neurons responding to a natural movie. (e) Probabilities P(x → x′),
where black entries indicate transitions that are disallowed under
multipartite dynamics. (f) Changes in state probabilities �P(x) are
small relative to their standard deviations σ�P(x), indicating that the
system is in steady state. (g, h) Fluxes P(x → x′) − P(x′ → x) illus-
trated as a matrix (g) and as a directed network (h). The presence of
fluxes demonstrates that the neurons break detailed balance, defining
an arrow of time.

window]; however, we note that the all-silent state {0, . . . , 0}
cannot have self-transitions, since no spike enters or exits the
sliding window. In the rare instances when two spikes enter or
exit the window at exactly the same time (within the experi-
mental resolution of 0.1 ms), we break ties by adding small

random noise to the spike times, thus yielding multipartite
dynamics wherein only one cell changes state at a time.

For example, in Fig. 5(e) we illustrate the probabilities of
transitions between the states of N = 3 neurons responding
to a natural movie [Fig. 5(b)]. Notably, the changes in state
probabilities �P(x) = ∑

x′ P(x′ → x) − P(x → x′) are small
relative to errors [Fig. 5(f)], indicating that the group of neu-
rons is in a stochastic steady state. As discussed above (and
in Appendix F), binary steady-state variables cannot break de-
tailed balance on their own. Thus, even though neurons violate
detailed balance at the subcellular scale, at the coarse-grained
level of binary activity the individual neurons in Figs. 5(e)
and 5(f) do not define a local arrow of time. However, when
examined as a group, we find that the three cells exhibit fluxes
between collective states [Figs. 5(g)–5(h)], thereby breaking
detailed balance. In combination, these results establish that
the group of neurons operates at a nonequilibrium steady state.

B. Local irreversibility depends on stimulus

We are now prepared to estimate the collective irreversibil-
ity of groups of neurons. We note that neurons—indeed,
biological systems generally—can have long-range temporal
dependencies. Thus, in contrast to the Markov systems ex-
amined in previous sections (Figs. 2–4), here İ reflects the
local (rather than total) irreversibility of the system. As with
other information-theoretic quantities, estimating the local ir-
reversibility from data is challenging, and prone to systematic
errors due to finite data. As described in Appendix H, we find
that these can be controlled using the strategy of Ref. [23]
if we restrict our attention to groups of no more than N = 5
cells.

After correcting for finite-data effects, out of 100 ran-
dom five-cell groups, across the different stimuli we find that
60% − 68% exhibit significant local irreversibility İ , thereby
defining an arrow of time. Moreover, for all cell groups and all
stimuli, we find that the dynamics are in steady state (see Ap-
pendix J), indicating that individual cells do not break detailed
balance, and therefore that any local arrow of time arises from
the collective dynamics of multiple neurons. Surprisingly, de-
spite the fact that the Brownian bar is completely reversible,
neuronal dynamics are more irreversible when responding to
this stimulus than the natural movie [Fig. 6(a)]. Moreover, the
local irreversibility is even larger when the same Brownian
trajectory is repeated multiple times [Fig. 6(a)], suggesting
that a repeated input can induce a stronger arrow of time in
the neuronal responses. We confirm that these differences in
local irreversibility hold even after accounting for variations
in the overall rate of spiking across the stimulus ensembles
[Fig. 6(b)]. Additionally, the same ordering of stimuli holds
for all group sizes from N = 2 to N = 5 cells [Figs. 6(c)
and 6(d)]. These results demonstrate that the arrow of time in
neuronal activity does not simply reflect the irreversibility of
the stimulus. Instead, neuronal dynamics can define an arrow
of time even when the stimulus does not.

C. Local irreversibility arises from low-order dynamics

To implement the decomposition of local irreversibility
from Eq. (19), we need numerical methods to construct the
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FIG. 6. Stimulus dependence of local irreversibility. (a) Distri-
butions of local irreversibilities İ for five-cell groups responding to a
natural movie (blue), a Brownian bar (red), and a repeated Brownian
bar (green). (b) The same as panel (a), but normalized to bits per
second to account for variations in spike rates across stimuli. In
panels (a, b), out of 100 random five-cell groups, we include only
those with significant local irreversibility (see Appendix H). (c, d)
Local irreversibility (c) and after normalizing to bits per second
(d) for different stimuli as functions of the number of cells in a group.
Data points are averaged over 100 random groups.

probability distributions that minimize İ while matching the
observed kth-order dynamics. We provide one such method
for binary systems in Appendix I.

To recall, for binary steady-state systems, the independent
irreversibility İ ind vanishes, and so the local irreversibil-
ity arises entirely from the collective dynamics of two or
more variables (see Appendix F). For groups of N = 5 cells
responding to the natural movie, we find that pairwise dy-

namics account for much more of the local irreversibility
than higher-order dynamics [Fig. 7(a)]. In fact, across all
stimuli, pairwise dynamics generate 66% − 74% of the local
irreversibility [Fig. 7(b)], more than third-, fourth-, and fifth-
order dynamics combined [Fig. 7(c)]. Moreover, the fraction
of the irreversibility captured by pairwise dynamics increases
significantly with the local irreversibility itself [Fig. 7(d)],
demonstrating that groups of neurons that operate further from
detailed balance do so in an even more pairwise fashion. Per-
haps most notably, despite the fact that the magnitude of the
local irreversibility varies significantly from one stimulus to
another (Fig. 6), we find that the proportions of irreversibility
captured by different types of dynamics remain consistent
across stimuli [Figs. 7(b) and 7(c)].

In combination, the results of this section indicate that
the arrow of time in retinal neurons (1) varies depending on
the specific stimulus (Fig. 6), yet (2) does not simply reflect
the irreversibility of the stimulus, and (3) consistently arises
from the same combination of low-order dynamics, driven
primarily by pairs of neurons (Fig. 7).

VIII. CONCLUSIONS

Irreversible dynamics support a wide range of biological
functions, yet it remains unclear how macroscopic irre-
versibility arises from the microscopic dynamics of individual
components. In this study, we propose a framework to uncover
how irreversibility emerges in complex interacting systems.
To do so, we develop analytic and numerical techniques for
decomposing the information-theoretic evidence for the arrow
of time into contributions from individual elements, pairs, and
higher-order dynamics. We illustrate our methods on the ex-
amples of irreversible dynamics in models for sensing systems
(Fig. 2) and logical functions (Figs. 3 and 4). Moving to real
data, we find that the irreversibility of retinal neurons varies
from one stimulus to another, but consistently arises from
pairwise dynamics (Figs. 5–7).

These results suggest several future directions. For exam-
ple, given that the irreversibility of retinal neurons does not
simply reflect that of the stimulus, it is natural to wonder
which stimulus properties are, in fact, responsible for inducing

FIG. 7. Decomposing local irreversibility in neuronal activity. (a) Distributions of interaction irreversibilities İ (k)
int of different orders k for

five-cell groups responding to a natural movie. (b, c) Minimum irreversibilities İ (k) (b) and interaction irreversibilities İ (k)
int (c), normalized by

the true local irreversibilities İ , as functions of the order k averaged over five-cell groups. (d) The fraction of pairwise irreversibility İ (2)
int /İ

increases significantly with the local irreversibility İ for five-cell groups (Spearman coefficient r = 0.31, p < 10−3). In all panels, out of 100
random groups, we include only those with significant local irreversibility for each stimulus.
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irreversibility in groups of cells. Additionally, in the process
of decomposing the local irreversibility, one must compute
a hierarchy of minimally irreversible models consistent with
observed kth-order dynamics. Just as maximum entropy mod-
els have been successful in describing distributions over states
at single moments in time [24,29–31], might these minimum
irreversibility models provide insights into the dynamical flow
of living systems from one state to another? More gener-
ally, we remark that the proposed framework is noninvasive,
applying to any system with time-series data. Thus, the meth-
ods can be used to examine irreversible dynamics in a wide
range of other biological systems, from molecular and cellu-
lar networks [3,13,15,32–34], to large-scale recordings in the
brain [26,35], to entire populations of animals and humans
[29,31,36].

The data were collected by Marre et al. in Ref. [6] and are
additionally described in Ref. [7]. The data and code used to
perform the analyses in this paper are openly available at [37].

We report in the Supplemental Material [38] an analysis of
the gender makeup of the authors we cited.
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APPENDIX A: MULTIPARTITE DYNAMICS REQUIRED
TO DECOMPOSE IRREVERSIBILITY

In Sec. III we show that the local irreversibility İ of a
multipartite system can be decomposed into two nonnega-
tive components [Eq. (13)]: the independent irreversibility
İ ind and the interaction irreversibility İ int. Here we show that
multipartite dynamics are necessary for this decomposition.
Specifically, we establish that if multiple elements are allowed
to change state at the same time, then the decomposition in
Eq. (13) can break down and the interaction irreversibility can
become ill-defined.

Consider, for example, a system with two identical ele-
ments x and y, such that x = y at all moments in time. Given
the joint transition probabilities of one of the variables P(x →
x′), the dynamics of the combined system are given by

P(x, y → x′, y′) = P(x → x′)δx,yδx′,y′ . (A1)

For such a system, the irreversibility is given by

İ =
∑

x,x′,y,y′
P(x, y → x′, y′) log

P(x, y → x′, y′)
P(x′, y′ → x, y)

(A2)

=
∑
x,x′

P(x → x′) log
P(x → x′)
P(x′ → x)

. (A3)

To compute the independent irreversibility İ ind, we note that
the marginal dynamics of y are identical to that of x:

P(y → y′) =
∑
x,x′

P(x, y → x′, y′) (A4)

=
∑
x,x′

P(x → x′)δx,yδx′,y′ (A5)

= P(x → x′). (A6)

Thus, the independent irreversibility is given by

İ ind = İ ind
x + İ ind

y (A7)

=
∑
x,x′

P(x → x′) log
P(x → x′)
P(x′ → x)

(A8)

+
∑
y,y′

P(y → y′) log
P(y → y′)
P(y′ → y)

(A9)

= 2
∑
x,x′

P(x → x′) log
P(x → x′)
P(x′ → x)

(A10)

= 2İ. (A11)

Since İ int = İ − İ ind = −İ , we find that the interaction irre-
versibility is negative, thus violating the decomposition of the
local irreversibility into nonnegative terms.

APPENDIX B: SOLVING THE SENSING SYSTEM

Consider a sensing system composed of an environmental
variable x and a sensing variable y, each with three states. The
environmental variable x increases with probability px, and
the sensing variable y copies x with probability py, yielding
the dynamics in Eqs. (14) and (15). Randomly choosing one
variable to update at each point in time, the dynamics of the
combined system are defined by the conditional transition
probabilities

P(x′, y′ | x, y) = 1
2 (P(x′ | x)δy,y′ + P(y′ | x)δx,x′ ). (B1)

Using the stationary condition π (x, y) =∑
x′,y′ P(x, y | x′, y′)π (x′, y′), one can solve for the stationary

distribution:

π (x, y) ∝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 + 7py + px(1 + 3py + 3px )
5 − 2py + px(4 − 6py + 3px )
6 − 5py + px(1 + 3py + 3px )
6 − 5py + px(1 + 3py + 3px )
2 + 7py + px(1 + 3py + 3px )
5 − 2py + px(4 − 6py + 3px )
5 − 2py + px(4 − 6py + 3px )
6 − 5py + px(1 + 3py + 3px )
2 + 7py + px(1 + 3py + 3px )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1, 1)
(1, 2)
(1, 3)
(2, 1)
(2, 2)
(2, 3)
(3, 1)
(3, 2)
(3, 3)

. (B2)

Combining Eqs. (B1) and (B2), we arrive at the joint transition
probabilities P(x, y → x′, y′) = P(x′, y′ | x, y)π (x, y), which
are used to perform the calculations in Sec. IV.
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APPENDIX C: CONVEXITY OF LOCAL
IRREVERSIBILITY

In order to compute İ (k), one must minimize the local irre-
versibility İ subject to constraints on the kth-order dynamics
of the system. Here we show that the local irreversibility is
convex with respect to the transition probabilities P(x → x′),
and thus can be minimized using efficient techniques.

The gradient of the local irreversibility [Eq. (2)] is given by

∂ İ

∂P(x → x′)
= log

P(x → x′)
P(x′ → x)

− P(x′ → x)

P(x → x′)
+ 1, (C1)

where for simplicity log(·) is natural logarithm. Since
Eq. (C1) depends only on P(x → x′) and P(x′ → x), we see
that the Hessian of İ takes the block diagonal form

H =

⎛
⎜⎝

. . . 0 0
0 H (x, x′) 0

0 0 . . .

⎞
⎟⎠, (C2)

where

H (x, x′) =
(

∂2 İ
∂P(x→x′ )2

∂2 İ
∂P(x→x′ )∂P(x′→x)

∂2 İ
∂P(x→x′ )∂P(x′→x)

∂2 İ
∂P(x′→x)2

)
(C3)

=
( P(x→x′ )+P(x′→x)

P(x→x′ )2 −P(x→x′ )+P(x′→x)
P(x→x′ )P(x′→x)

−P(x→x′ )+P(x′→x)
P(x→x′ )P(x′→x)

P(x→x′ )+P(x′→x)
P(x′→x)2

)
(C4)

is the 2 × 2 Hessian for the pair of states (x, x′). The eigen-
values of H (x, x′) are λ1 = (P(x→x′ )+P(x′→x))(P(x→x′ )2+P(x′→x)2 )

P(x→x′ )2P(x′→x)2

and λ2 = 0. Since λ1, λ2 � 0, and since the eigenvalues of
H are simply the eigenvalues of the different blocks H (x, x′)
combined, we have established that H is positive semidefinite,
and therefore that the local irreversibility İ is convex.

APPENDIX D: EQUIVALENCE BETWEEN INDEPENDENT
AND FIRST-ORDER IRREVERSIBILITIES

Here we establish that the independent irreversibility İ ind

is equivalent to the first-order minimum irreversibility İ (1).
To do so, consider a hypothetical system Q(xi → x′

i, x−i ) that
is consistent with the observed first-order dynamics P(xi →
x′

i ) = ∑
x−i

P(xi → x′
i, x−i ). Since İ ind(Q) = İ ind(P), we have

İ (Q) = İ ind(Q) + İ int(Q) (D1)

= İ ind(P) + İ int(Q) (D2)

� İ ind(P), (D3)

where the inequality follows from that fact that İ int(Q) � 0.
Thus, the independent irreversibility İ ind(P) is a lower bound
on the local irreversibility İ (Q) of any hypothetical system
Q consistent with the observed first-order dynamics. Since
the first-order irreversibility İ (1) is just the minimum of İ (Q)
among all such systems Q, we have found that İ (1) � İ ind.

In order to establish that İ (1) = İ ind, all that remains is
to identify a hypothetical system Q that achieves the lower
bound in Eqs. (D1)–(D3). Specifically, we seek a system
Q that is consistent with the observed first-order dynamics,
yet has interaction irreversibility İ int(Q) = 0. Consider, for

example, a system Q in which the dynamics of each ele-
ment i are independent from the rest of the system, such
that Q(xi → x′

i, x−i ) ∝ Q(xi → x′
i ) = P(xi → x′

i ) for all x−i.
Using Eqs. (10)–(12), one can verify that such a system has
zero interaction irreversibility, thereby saturating the lower
bound in Eqs. (D1)–(D3). We have therefore shown that İ (1)

(the minimum local irreversibility consistent with first-order
dynamics) is equivalent to the independent irreversibility İ ind.

APPENDIX E: NOISY LOGICAL FUNCTIONS

In Sec. VI we examine a system of three binary variables:
two inputs x and y that flip with probability pflip, and an output
variable z that performs a logical function on x and y, but with
error rate perror [see Fig. 3(a)]. Specifically, the dynamics of
the input variables are defined by the conditional transition
probabilities

P(x′ | x) = P(y′ | y) =
(

1 − pflip pflip

pflip 1 − pflip

)
, (E1)

and the dynamics of the output variable are defined by

P(z′ | x, y) =
{

1 − perror, z′ = f (x, y)
perror, z′ �= f (x, y) , (E2)

where f (x, y) is the logical function performed by z. Ran-
domly picking one variable to update at each point in time,
the conditional transition probabilities for the entire system
are given by

P(x′, y′, z′ | x, y, z) = 1
3 (P(x′ | x)δy,y′δz,z′

+ P(y′ | y)δx,x′δz,z′ + P(z′ | x, y)δx,x′δy,y′ ). (E3)

Using Eq. (E3), one can solve for the stationary distribution
π (x, y, z) and then compute the joint transition probabilities
P(x, y, z → x′, y′, z′) = P(x′, y′, z′ | x, y, z)π (x, y, z).

APPENDIX F: INDEPENDENT IRREVERSIBILITY
VANISHES FOR BINARY STEADY-STATE SYSTEMS

For binary steady-state systems, such as the logical func-
tions in Sec. VI and the neurons in Sec. VII, the independent
irreversibility İ ind is zero. To see this, note that the marginal
dynamics of any binary steady-state variable are defined by
the conditional transition probabilities

P(x′
i | xi ) =

(
1 − pi pi

qi 1 − qi

)
, (F1)

where 0 � pi, qi � 1 are the probabilities of i switching be-
tween its two states. The marginal steady-state distribution
for i is π (xi ) = 1

pi+qi
(qi, pi )T , and thus the marginal joint

transition probabilities are given by

P(xi → x′
i ) = P(x′

i | xi )π (xi ) (F2)

= 1

pi + qi

(
(1 − pi )qi piqi

qi pi (1 − qi )pi

)
. (F3)

Since the above transition probabilities are symmetric, the
marginal dynamics of each element i obey detailed balance
(such that İ ind

i = 0). Thus, we find that the independent irre-
versibility of the entire system İ ind = ∑N

i=1 İ ind
i is zero. We

emphasize that this holds only for the local irreversibility; if
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we consider non-Markov effects in strings of 3, 4, or more
points in time, then binary steady-state variables can break
time-reversal symmetry and define an arrow of time [39].

APPENDIX G: NEURONAL RECORDINGS

The neuronal data examined in Sec. VII were recorded
from larval tiger salamander retina, which were dissected, per-
fused with Ringer’s solution, and pressed onto dense arrays of
252 electrodes with 30-μm spacing, as described in Ref. [7].
In the experiments, which lasted 4–6 hours, movies were
projected onto the photoreceptor layer of the retina via an
objective lens, and voltages were recorded at 10 kHz. Spikes
were sorted conservatively (as described in Ref. [6]), yielding
53 reliable cells from which groups were randomly selected
for analysis.

The stimuli were presented on a 360 × 600 display, with
pixels of size 3.81 μm on the retina and a frame rate of
60 frames per second. All stimuli were normalized to the
same average light intensity. The natural movie depicted a
fish swimming in a tank, repeated 102 times. The moving
bar was 11 pixels wide and black on a gray background,
with trajectories displayed 62 times. The trajectory of the
bar’s vertical position was generated by a stochastic process
equivalent to a Brownian particle on a spring attached to the
center of the display. Specifically, the vertical position xt and
velocity vt of the bar were updated at each time t according to
the equations of motion:

xt+τ = xt + vtτ (G1)

and

vt+τ = (1 − 	τ )vt − ω2xtτ + ξt

√
Dτ , (G2)

where τ = 1/60 s is the time step (which matches the frame
rate of the visual display), ω = 3π s−1 is the natural fre-
quency, 	 = 20 s−1 parameterizes the damping (chosen such
that the dynamics are slightly overdamped), and D = 2.7 ×
106 pixel2/s3 is chosen to allow reasonable range of motion.
For the repeated bar stimulus, the same trajectory was re-
peated 62 times.

APPENDIX H: CORRECTING FOR FINITE DATA

For time-series data, such as the neuronal spiking ex-
amined in Sec. VII, in order to estimate quantities of
interest—such as transition rates, flux rates, and changes in
state probabilities (Fig. 5); local irreversibilities İ (Fig. 6);
and interaction irreversibilities İ (k)

int (Fig. 7)—one must cor-
rect for finite-data effects [7,23,24]. To do so, for a given
stimulus and group of neurons, we begin with a list of the
observed transitions {x(t ) → x(t + 1)}. For a given set of data
fractions f , we subsample the transitions (without replace-
ment) in a hierarchical fashion, such that each subsample
of transitions is a subset of the larger subsamples. For the
neuronal data in Sec. VII, we find that data fractions f =
{1, 0.9, 0.8, 0.7, 0.6, 0.5} are sufficient.

For each data fraction f , we estimate the quantity of in-
terest. For example, for the local irreversibility, we use the

FIG. 8. Correcting for finite-data effects on local irreversibility.
(a) Estimated local irreversibility İ (black markers) vs inverse data
fraction for one group of N = 5 neurons responding to a natural
movie. Gray line indicates a linear fit, and red marker indicates the
extrapolation to infinite data. (b) Estimated local irreversibility (black
markers), linear fits (gray lines), and extrapolation to infinite data
(red marker) after repeating the process in panel (a) 100 times for the
same group of neurons. Data points and error bars reflect averages
and standard deviations over the 100 repetitions.

estimate

İ =
∑
x,x′

P̃(x → x′) log
P̃(x → x′)
P̃(x′ → x)

, (H1)

where

P̃(x → x′) = N (x → x′) + 1∑
y,y′ (N (y → y′) + 1)

(H2)

are the maximum likelihood probabilities with one pseudo-
count for each transition, and N (x → x′) is the number of
times that the transition x → x′ was observed in the data. We
include pseudocounts to avoid infinities in Eq. (H1), but we
confirm that the naïve estimator without pseudocounts yields
the same results. After estimating the quantity of interest for
all fractions f , we then extrapolate to the infinite-data limit
using a linear fit with respect to the inverse data fraction 1/ f
[Fig. 8(a)]. Repeating this process 100 times, we arrive at
both an average and standard deviation for the infinite-data
estimates of the desired quantity [Fig. 8(b)].

To check that the above procedure gives accurate estimates
for the local irreversibility İ , we note that randomizing the
timing of spikes should destroy the arrow of time. Thus,
for time-randomized data, the estimated local irreversibility
should vanish in the infinite-data limit. Consider the 100
groups of N = 5 neurons analyzed in Figs. 6 and 7. Among
these groups, after correcting for finite-data effects, we find
that 60% − 68% exhibit significant local irreversibility İ ,
depending on the stimulus [Fig. 9(a)]. By contrast, after ran-
domizing the spike times, the local irreversibility estimates
are centered around zero, with only 0% − 2% of groups ex-
hibiting significant local irreversibility [Fig. 9(b)]. Examining
different group sizes, we find that the percentage of groups
with significant local irreversibility increases from ∼10% for
N = 2 cells to ∼100% for N � 8 cells [Fig. 9(c)]. Impor-
tantly, after randomizing spike times, groups of N � 5 cells
are almost always locally reversible, as desired [Fig. 9(d)].
However, even for time-randomized data, we find that some
groups of N � 6 cells exhibit significant local irreversibility
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FIG. 9. Estimated local irreversibilities of real and time-shuffled
data. (a, b) Distributions of local irreversibility estimates İ , normal-
ized by standard deviations σİ , for real time series (a) and after
randomizing spike times (b). Distributions are over the same 100
groups of N = 5 cells analyzed in Figs. 6 and 7, and the dashed line
indicates the threshold for significance. (c, d) Fraction of cell groups
with significant local irreversibility as a function of group size N for
real time series (c) and after randomizing spike times (d). For each
size, fractions are computed over 100 random groups.

[Fig. 9(d)], demonstrating finite-data effects cannot be ade-
quately accounted for. We therefore conclude that N = 5 is the
largest number of cells for which we can consistently estimate
local irreversibility İ in our dataset.

APPENDIX I: MINIMIZING LOCAL IRREVERSIBILITY

Computing the kth-order minimum irreversibility İ (k) re-
quires finding a hypothetical system Q(xi → x′

i, x−i ) that
matches the observed kth-order marginal dynamics, but oth-
erwise has minimum local irreversibility İ (Q). We remark
that the local irreversibility İ is convex (see Appendix C),
and thus computing İ (k) is a constrained convex minimization
problem for which there exist efficient optimization methods.
From a practical perspective, there are only two main hurdles
to overcome: (1) adapting an existing convex minimization
technique for our problem and (2) specifying the constraints
on the kth-order dynamics. Here we address these challenges
for binary systems.

1. Frank-Wolfe algorithm

To minimize the local irreversibility İ given a set of
constraints, we employ the Frank-Wolfe algorithm, which ef-
ficiently converges to a local (and therefore global) minimum.
Specifically, we initialize Q using any dynamics that match
the observed constraints (for example, one can begin with

the observed dynamics Q = P). We then iterate the following
steps:

(1) First, we compute the gradient of the local irreversibil-
ity:

∂ İ

∂Q(xi → x′
i, x−i )

= log
Q(xi → x′

i, x−i )

Q(x′
i → xi, x−i )

− Q(x′
i → xi, x−i )

Q(xi → x′
i, x−i )

+ 1, (I1)

where log(·) represents the natural logarithm for simplicity.
(2) Second, we solve for the dynamics Q∗ that obey the

desired constraints while minimizing the inner product with
the gradient:

N∑
i=1

∑
x−i

∑
xi,x′

i

Q(xi → x′
i, x−i )

∂ İ

∂Q(xi → x′
i, x−i )

. (I2)

We note that this constrained linear minimization problem is a
linear program, and thus can be efficiently solved using stan-
dard techniques (e.g., the linprog function in MATLAB).

(3) Finally, we take a step toward Q∗, such that Q ← Q +
αt (Q∗ − Q), where αt = α0/t is the step size, which decreases
with the number of iterations t .

An implementation of the above algorithm is available
at [37].

2. Constraining kth-order dynamics

We seek to constrain the kth-order dynamics of a binary,
multipartite system with joint transition probabilities P(xi →
x′

i, x−i ). For each element i, consider a group of k − 1 of the
remaining elements K ⊆ {1, . . . , i − 1, i + 1, . . . , N}. Let xK

denote the states of the elements in K , and x−{i,K} the states of
the elements not in i nor K . The marginal dynamics of i with
the elements in K held fixed are then given by

P(xi → x′
i, xK ) =

∑
x−{i,K}

P(xi → x′
i, x−i ). (I3)

Constraining the kth-order dynamics amounts to constraining
the marginal probabilities P(xi → x′

i, xK ) for all elements i
and all groups of the remaining elements K of size k − 1.
For example, if K is empty, then we arrive at the indepen-
dent (first-order) dynamics P(xi → x′

i ). If K consists of one
element j, then we have the pairwise (second-order) dynam-
ics P(xi → x′

i, xj ) discussed in Sec. V. We remark, however,
that these marginal probabilities are not all independent, and
therefore the set of constraints is overdetermined.

To write down independent constraints that fully define the
kth-order dynamics, it helps to consider an analogy with Ising
systems. Consider a binary system with state probabilities
P(x). It is known that the kth-order marginal probabilities
P(xK ) = ∑

x−K
P(x) are completely defined by the correla-

tions between groups of elements up to size k: 〈xi〉, 〈xixj〉,
. . ., 〈∏i∈K xi〉, where 〈·〉 represents an average over P(x) [5].
Moreover, these correlations are independent, thus forming a
basis for the kth-order probabilities P(xK ).

Here, we wish to constrain the kth-order transition prob-
abilities P(xi → x′

i, xK ) for all elements i and all groups
of the remaining elements K of size k − 1. For a given
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transition xi → x′
i , we denote the correlation between a set of

the remaining elements K by

〈∏
j∈K

xj

〉
xi→x′

i

=
∑
x−i

∏
j∈K

xjP(xi → x′
i, x−i ). (I4)

If K is empty, then we simply arrive at the independent tran-
sition probabilities:

〈1〉xi→x′
i
=

∑
x−i

P(xi → x′
i, x−i ) = P(xi → x′

i ). (I5)

By analogy with Ising systems, for each transition xi →
x′

i , the kth-order marginal probabilities P(xi → x′
i, xK ) can

be defined by the correlations between groups of elements
(not including i) from the empty set up to size k − 1:
〈1〉xi→x′

i
, 〈xj〉xi→x′

i
, . . ., 〈∏j∈K xj〉xi→x′

i
. We can then constrain

the kth-order dynamics of the entire system by computing
the above correlations for each of the 2N transitions xi →
x′

i (not including self-transitions). We remark that we do
not need to constrain self-transitions x → x because they do
not contribute to the local irreversibility [Eq. (2)]. Code for
constraining the kth-order dynamics of binary, multipartite
systems is available at [37].

APPENDIX J: GROUPS OF NEURONS OPERATE
AT STEADY STATE

In Fig. 5 we see that a group of N = 3 neurons operates
at a nonequilibrium steady state. Here we demonstrate that
steady-state dynamics are not specific just to this group, but
are instead a general feature of all groups of neurons analyzed

FIG. 10. Neurons operate at stochastic steady states. (a–c) Distri-
butions of changes in state probabilities �P(x) = ∑

x′ P(x′ → x) −
P(x → x′), normalized by the standard deviation σ�P(x), for groups of
N = 5 cells responding to a natural movie (a), moving bar stimulus
(b), and a repeated moving bar stimulus (c). Distributions are over
the 2N = 32 different states for the 100 random groups analyzed in
Figs. 6 and 7.

in this paper. To determine if a system operates at steady state,
one must examine whether its state probabilities are stationary
in time. The change in the probability P(x) of a state x during
one time step is given by �P(x) = ∑

x′ P(x′ → x) − P(x →
x′). In steady state this should be zero, but more precisely
we expect that it will be a random number with a variance
set by the errors in sampling the underlying distributions. In
Fig. 10 we plot the distributions of �P(x), normalized by the
relevant standard deviation σ�P(x), for the groups of N = 5
cells analyzed in Figs. 6 and 7. We note that these quantities
are estimated using the same finite-data correction techniques
described in Appendix H. Across all stimuli, we find that the
changes in state probabilities �P(x) for all cell groups are
small relative to errors; that is, for all stimuli, all groups of
neurons appear to operate at steady state.
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