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DNA synthesis in Xenopus frog embryos initiates stochastically in time at many sites �origins� along the
chromosome. Stochastic initiation implies fluctuations in the time to complete and may lead to cell death if
replication takes longer than the cell cycle time ��25 min�. Surprisingly, although the typical replication time
is about 20 min, in vivo experiments show that replication fails to complete only about 1 in 300 times. How is
replication timing accurately controlled despite the stochasticity? Biologists have proposed two solutions to
this “random-completion problem.” The first solution uses randomly located origins but increases their rate of
initiation as S phase proceeds, while the second uses regularly spaced origins. In this paper, we investigate the
random-completion problem using a type of model first developed to describe the kinetics of first-order phase
transitions. Using methods from the field of extreme-value statistics, we derive the distribution of replication-
completion times for a finite genome. We then argue that the biologists’ first solution to the problem is not only
consistent with experiment but also nearly optimizes the use of replicative proteins. We also show that spatial
regularity in origin placement does not alter significantly the distribution of replication times and, thus, is not
needed for the control of replication timing.

DOI: 10.1103/PhysRevE.78.041917 PACS number�s�: 87.15.A�, 87.14.G�, 87.17.Ee, 87.15.Ya

I. INTRODUCTION

DNA replication is an important yet complicated process
that requires not only accurate and efficient DNA synthesis
but also genome-wide coordination among replicative pro-
teins �1�. In a time that can be as short as a few minutes, all
of a cell’s O�109� bases of DNA must be replicated once and
only once �2,3�. Unfaithful and uncontrolled replication of
the genome—for example, misreplication, partial replication,
and rereplication—can lead to chromosomal instability that
activates programmed cell death or oncogenes �4,5�. Over
the past few decades, significant advances have been made in
identifying the molecular basis of DNA repair and rereplica-
tion prevention �3,6�. On the other hand, it is only in the last
few years that large amounts of data on the genome-wide
coordination have become available. In particular, a tech-
nique called molecular combing has been used to examine
the replication state of large fractions of the genome by con-
trolled stretching of fluorescently labeled replicated and un-
replicated regions onto a substrate �7,8�.

Many of the molecular-combing experiments have been
done on embryos of the South African clawed frog Xenopus
laevis �9–11�. The detailed kinetics of replication revealed a
particularly interesting scenario where stochastic effects play
an important role in the DNA replication process �9,12�. In
previous work, we mapped the stochastic replication process
onto a one-dimensional nucleation-and-growth process and
modeled the detailed kinetics of replication seen in
molecular-combing experiments �11,13,14�. In a recent Let-
ter, we extended the model to quantitatively address a gen-
eralized version of the “random-completion problem,” which
asks how cells can accurately control the replication comple-
tion time despite the stochasticity �15�. Here, we give full
details about those calculations and go further, to investigate

the idea that cells regulate the replication process in order to
minimize their use of cell “resources” and to explore the
effects of spatial regularity on the placement of origins.

A. DNA replication in eukaryotic cells

DNA replication is a two-step process �3�. First, potential
origins—sites where DNA synthesis may start—are “li-
censed” across the genome. For somatic cells, licensing oc-
curs in the G1 phase of the cell cycle; for embryos, whose
abbreviated cell cycles lack the G1 and G2 phases, this oc-
curs late in the mitosis �M� phase. The process of licensing
involves the formation of prereplicative complexes �pre-
RCs� of proteins. Each complex is first formed through the
binding of a single group of six proteins, known as the origin
recognition complex �ORC�, to the DNA. Each ORC, with
the help of two additional proteins �Cdc6 and Cdt1�, then
recruits 20–40 copies of minichromosome maintenance
�MCM� 2-7 hexamer rings onto the chromosome �3�. After
licensing, the second step, DNA synthesis, starts in the syn-
thesis �S� phase. The synthesis begins with the initiation of a
potential origin—two of the MCM2-7 rings—triggered by
the association of cyclin-dependent kinases �3�. Once an ori-
gin is initiated, the pre-RC disassembles, and two helicases,
probably the MCM2-7 rings, move bidirectionally outward
from the origin to unwind the double-stranded DNA, form-
ing two symmetrically propagating replication forks. Poly-
merases are recruited behind the forks to synthesize DNA on
the single-stranded DNA. When two replication forks travel-
ing in opposite directions meet, the helicases disassemble,
and the two growing strands of newly synthesized DNA are
joined together by DNA ligases. This process is referred to as
a coalescence. In eukaryotic cells, the processes of origin
initiation, fork progression, and domain coalescence take
place at multiple sites throughout S phase until the whole
genome is replicated. Rereplication is prevented because pre-
RCs are “nonrecyclable” in S phase. When potential origins*scotty@sfu.ca
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initiate or are passively replicated by other replication forks,
pre-RCs disassemble and are inhibited from reassembling on
the DNA throughout the current S phase, thereby preventing
reinitiation and rereplication �3�.

B. The random-completion problem

Replication in Xenopus embryos is interesting because the
process is stochastic yet the replication completion times are
tightly controlled. After fertilization, a Xenopus embryo un-
dergoes 12 rounds of synchronous, uninterrupted, and abbre-
viated cell cycles �lacking G1 and G2 phases�, whose dura-
tions are strictly controlled by biochemical processes that are
independent of replication �4,16�. In contrast to the case of
most somatic cells, these embryonic cells lack an efficient
S /M checkpoint to delay entrance into mitosis for unusually
slow replication �17�. Nonetheless, in each embryonic cell
cycle, roughly 3�109 base pairs of DNA are replicated in a
20-min S phase followed by a 5-min mitosis phase at 23 °C
�18,19�. If replication is not completed before the end of
mitosis, the cell suffers a “mitotic catastrophe” where the
chromosomes break, eventually leading to cell death
�4,20,21�. �See Sec. III A for more discussion.� In replicating
the lengthy genome, O�106� potential origins are licensed,
without sequence specificity, and initiated stochastically
throughout S phase �11,12,22–24�. One might expect this
spatiotemporal stochasticity to lead to large fluctuations in
replication times, which would result in frequent mitotic ca-
tastrophes. However, experiments imply that such cata-
strophic events for Xenopus embryos happen only once in
about 300 instances �see Sec. III A�. This means that, despite
the stochasticity in licensing and initiations, Xenopus em-
bryos tightly control the duration of S phase, in order to meet
the 25-min “deadline” imposed by the cell-cycle duration.

Laskey was the first to ask whether non-sequence-specific
licensing might lead to incomplete replication �25�. Specifi-
cally, he assumed that origins in embryonic cells initiate at
the start of S phase. He then noted that if the origins were
licensed at random, they would have an exponential distribu-
tion of separations. With the estimates of the average inter-
origin spacing and fork velocity known at that time, one
would expect a few large gaps. The extra time needed to
replicate the gaps would then imply a replication time larger
than the known duration of S phase. Even though some de-
tails have changed, biologists still have such a paradox in
mind when they refer to the random-completion problem
�18�.

In older references in replication �e.g., �26��, it was as-
sumed implicitly that the potential origins are associated
with ORCs. The estimated number of ORCs per nucleus in
Xenopus embryos is about 3.5�105 �1 ORC per 8 kilobase-
pairs� �22�. Positioning these ORCs randomly on the genome
�non-sequence-specificity assumption�, one indeed finds
many gaps that cannot be replicated in time �12,18�. How-
ever, more recent experiments revealed that initiations coin-
cide with the MCM2-7 rings and that each ORC loads 20-40
copies of MCM2-7 �23,24�. Using a pair of MCM rings as a
potential origin, one then expects about �5.3�1.7��106 po-
tential origins per nucleus �1.9�0.6 potential origins/kb�.

With such a high density of potential origins, there is negli-
gible chance of having a gap that is too large to replicate
when licensed randomly �see Sec. III B�. Although a large
excess of potential origins can resolve the issue, the actual
distribution of these origins is not known. There is evidence
that potential origins can cluster together, effectively reduc-
ing the average density �18�. In addition, experiments also
showed that potential origins initiate throughout S phase in a
stochastic manner �11�.

Over the years, biologists have proposed two qualitative
scenarios to address this random-completion paradox. The
first scenario, the “regular-spacing model,” incorporates
mechanisms that regularize the placement of potential ori-
gins despite the nonsequence specificity to suppress large
interorigin gaps �16�. The second scenario, the “origin-
redundancy model,” uses a large excess of randomly licensed
potential origins and initiates them with increasing probabil-
ity throughout S phase �11,16,27�. Experimentally, the ob-
served replication kinetics in Xenopus are compatible with
the origin-redundancy model, but there is also evidence for
limited regularity in the origin spacings �18,28,29�.

In this paper, we shall reformulate the random-completion
problem in a more general way. In particular, we investigate
not only the possibility of replication completion, but also
the probability of completion �fluctuations in completion
time�. We generalize both scenarios to incorporate time-
dependent origin initiation rates using a stochastic model and
Monte Carlo simulations. We then investigate how cells con-
trol the replication time despite the non-sequence-specific
placement and stochastic initiation of potential origins. As
we shall see, the fluctuations in the replication times can be
reduced arbitrarily if one allows an unrestricted number of
initiations. As an extreme example, having an infinite num-
ber of initiations at time t* implies that replication will al-
ways finish at t*. Thus, an even more general formulation of
the random-completion problem is to ask how reliability in
timing control can be achieved with a reasonable or “opti-
mal” use of resources in the cell. Of course, the terms “rea-
sonable,” “optimal,” and “resources” must be carefully de-
fined.

In the following section, we review and extend the previ-
ously developed model of replication to derive the distribu-
tion of replication times �13,14�. The results will show how
replication timing can be controlled despite the stochasticity.
In Sec. III, we use the extended model to extract replication
parameters from in vivo and in vitro experiments. In Sec. IV,
we compare the extracted in vivo “replication strategy” with
the strategy that optimizes the consumption of replication
forks. In Sec. V, we explore the effect of spatial ordering on
the replication time via a variant of the regular-spacing
model. We summarize our findings in Sec. VI.

II. MODELING REPLICATION COMPLETION

In previous work, we developed a stochastic model of
DNA replication �13,14� that was inspired by the
Kolmogorov-Johnson-Mehl-Avrami �KJMA� theory of
phase-change kinetics �30–35�. The KJMA model captures
three aspects of phase transformation: nucleation of the
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transformed phase, growth of the nucleated domains, and
coalescence of impinging domains. Making a formal analogy
between phase transformations and DNA replication, we
map the kinetics of the DNA replication onto a one-
dimensional KJMA model with three corresponding ele-
ments: initiation of potential origins, growth of replicated
domains, and coalescence of replicated domains. Note that
our use of a phase-transformation model implicitly incorpo-
rates the observation that, ordinarily, rereplication is pre-
vented.

Since we neglect any stochasticity in the movement of
replication forks, the stochastic element of the model lies
entirely in the placement and initiation of origins �36�. The
licensing and initiations can be viewed as a two-dimensional
stochastic process with a spatial dimension whose range cor-
responds to the genome and a temporal dimension whose
range corresponds to S phase. There is good evidence that
the positions of the potential origins in Xenopus embryos are
almost—but not completely—random �12,18,29�. In this sec-
tion, we assume the spatial positions of the potential origins
to be uniformly distributed across the genome for ease of
calculation. We discuss the implications of origin regularity
in Sec. V. The temporal program of stochastic initiation times
is governed by an initiation function I�t�, defined as the rate
of initiation per unreplicated length per time. In writing
down the initiation rate as a simple function of time, we are
implicitly averaging over any spatial variation and neglecting
correlations in neighboring initiations. The I�t� deduced from
a previously analyzed in vitro experiment on Xenopus im-
plies that the initiation rate increases throughout S phase
�11�. In order to explore analytically a family of initiation
functions that includes such a form, we investigate the dis-
tribution of replication completion times associated with
I�t�= Intn, with In a constant. We also examine an alternative
�-function form, where all potential origins initiate at the
start of S phase, as one might expect this to be the best
scenario for accurate control of replication time. �In the early
literature on DNA replication, biologists assumed this sce-
nario to be true �25�.�

Figure 1 shows schematically the initiations and subse-
quent development of replicated domains discussed earlier.

After initiation, a replicated domain grows bidirectionally
outward from the origin. The growth stops when domains
meet and coalescence but proceeds elsewhere. Multiple do-
mains grow and coalesce throughout S phase until the entire
genome is duplicated. We shall assume, for simplicity, that
the replication fork velocity is constant. Since variations in
fork velocity have been observed, a constant velocity should
be interpreted as averaging over the course of S phase
�37,38�. We discuss the effect of varying fork velocities in
more detail in Sec. III B.

Our model results in a deterministic growth pattern once
the initiations are set. Figure 1 illustrates such deterministic
growth and shows that, except at the edges, there is a one-
to-one mapping between the initiations and the coalescences.
It follows that every distribution of initiations �i�t� deter-
mines an associated distribution of coalescences �c�t�. Since
the completion of replication is marked by the last coales-
cence, the problem of determining the time needed to repli-
cate a genome of finite length is equivalent to that of deter-
mining the distribution of times at which the last coalescence
occurs. We refer to this distribution as the “end-time” distri-
bution �e�t�. Below, we derive an analytical approximation
to the end-time distribution function for arbitrary I�t�. This
analytical result will allow us to investigate how licensing
and initiation programs affect the timing of replication
completion.

In addition to analytic results, we also carried out exten-
sive numerical simulations of DNA replication. The simula-
tion algorithm used is a modified version of the previously
developed “phantom-nuclei algorithm” �13�. The phantom-
nuclei algorithm includes three main routines: the first deter-
mines the random-licensing positions and the origins’ sto-
chastic initiation times via Monte Carlo methods �39�; the
second implements the deterministic growth; and the third
eliminates passively replicated origins. Once potential ori-
gins are licensed, the algorithm can calculate the state of the
genome at any time step without computing intermediate
time steps. We modified our earlier code to generate end-
time distributions using the bisection method to search for
the first t at which the replication fraction f becomes 1 �40�.
All programming was done using IGOR PRO v. 6.01 �41�.

A. The end-time distribution

In previous work, we showed that for an infinitely long
genome the fraction f of the genome that has replicated at
time t is given by �13�

f�t� = 1 − e−2vh�t�, �1�

where v is the fork velocity �assumed constant�, h�t�
=�0

t g�t��dt�, and g�t�=�0
t I�t��dt�. Equation �1� predicts that

an infinite time is needed to fully duplicate the genome;
however, since all real genomes are finite in length, they can
be fully replicated in a finite amount of time. During the
course of replication, as long as the number of replicated
domains is much greater than 1, the infinite-genome model is
reasonably accurate. However, since the number of domains
is small at the beginning and end of replication �f →0 and
f →1�, we expect discrepancies in those regimes. In particu-

FIG. 1. Schematic of the DNA replication model. A horizontal
slice in the figure represents the state of the genome at a fixed time.
The lighter �darker� gray represents unreplicated �replicated� re-
gions. Open circles denote initiated origins, while filled circles de-
note coalescences. The dark dotted line cuts across the last coales-
cence, which marks the completion of replication. The slope of the
lines connecting the adjacent open and filled circles gives the in-
verse of the fork velocity.
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lar, to calculate the finite replication time expected in a finite
genome, we need to extend our previous model.

We begin by introducing the hole distribution nh�x , t�
=g2�t�exp�−g�t�x−2vh�t��, which describes the number of
“holes” of size x per unit length at time t �13�. A hole is the
biologists’ term for an unreplicated domain surrounded by
replicated domains. Since a coalescence corresponds to a
hole of zero length, we define the coalescence distribution
�c�t��nh�0, t�. Normalizing by imposing the condition
�0

��c�t�dt=1, we find

�c�t� =
2vL

No
g2�t�e−2vh�t�, �2�

where L is the genome length and No the expected total
number of initiations. Note that No is also the total number of
coalescences because of the one-to-one mapping discussed in
the previous section. One can calculate No via

No = L�
0

�

I�t��1 − f�t��dt = L�
0

�

I�t�e−2vh�t�dt , �3�

where the factor �1− f�t�� arises because initiations can occur
only in unreplicated regions. The integrand in Eq. �3� divided
by No is the initiation distribution �i�t�dt, which corresponds
to the number of initiations between time t and t+dt.

Given the initiation distribution, we picture the initiations
as sampling No times from �i�t�. This implies that No inde-
pendent coalescence times are sampled from �c�t�. The rep-
lication completion time, finite on a finite genome, can then
be associated with the largest value of the No coalescence
times, and the end-time distribution is the distribution of
these largest values obtained from multiple sets of sampling
from �c�t�. At this point, we apply extreme-value theory
�EVT� to calculate the end-time distribution. EVT is a well-
established statistical theory for determining the distribu-
tional properties of the minimum and maximum values of a
set of samples drawn from an underlying “parent” distribu-
tion �42,43�. The properties of interest include the expected
value, fluctuations around the mean, frequency of occur-
rence, etc. EVT plays a key role in the insurance industry,
where, for example, the “100-year-flood” problem asks for
the expected maximum water level over 100 years �44�. In
physics, EVT has attracted increasing interest and been ap-
plied to analyze crack avalanches in self-organized material
�45�, degree distribution in scale-free networks �46�, and
many other problems.

EVT is powerful because of its universality. The key theo-
rem in EVT states that the distribution of the extremes of an
independent and identically distributed random variable
tends to one of three types of extreme value distributions, the
Gumbel, Frechet, and Weibull distributions, depending only
on the shape of the tail of the underlying distribution. The
universality of the extreme-value distribution with respect to
the underlying distribution is similar to that of the better-
known central limit theorem �47�. For an underlying distri-
bution with an unbounded tail that decays exponentially or
faster, the distribution of the extremes tends to a Gumbel
distribution. Such is the case of Xenopus since the underly-
ing distribution, the coalescence distribution �c�t�, is ap-

proximately proportional to e−�4
, where � is a dimensionless

time �48,49�. The other initiation functions we consider also
lead to the Gumbel distribution.

The Gumbel distribution,

	�x� =
1



exp�− x − e−x�, x =

t − t*



, �4�

depends on only two parameters, t* and 
 �42,43,50�. The
former is a “location” parameter that gives the mode of the
distribution. The latter is a “scale” parameter proportional to
the standard deviation. We follow standard procedures to ob-
tain t* and 
 as functions of the initiation rate and the fork
velocity �42,50�. The main step is to recognize that the cu-
mulative end-time distribution �e�t�, which has a Gumbel
form, is equal to the product of No cumulative coalescence
distributions, each resulting from the same initiation distri-
bution �i�t�. In other words, the probability that No coales-
cences occur at or before time t is equivalent to the probabil-
ity that the last of them occurred at or before time t, which is
also the probability that the replication will finish at or be-
fore time t. For our case, we find that the mode t* is deter-
mined implicitly by

No�1 − �c�t*�� = 1 �5�

and 
�1 / �No�c�t*��. In Eq. �5�, �c�t� is the cumulative
distribution of �c�t�; thus, �1−�c�t�� is the probability that a
coalescence would occur at or after time t. Equation �5� then
implies that, given a total of No coalescences, t* is the time
after which the expected number of coalescences is 1, and
therefore the typical end time. The Gumbel form of the end-
time distribution is one of our main results, as it allows quan-
titative comparison between the fluctuations of completion
times resulting from different initiation functions.

Below, we derive the end-time distribution for a power-
law initiation function In�t�= Intn �where n�−1� and a
�-function initiation function I��t�= I���t�. In the power-law
case, h�t�� tn+2, while for the �-function case, h�t�� t. From
Eq. �2�, both initiation forms give rise to coalescence distri-
butions that decay exponentially or faster, and thus both
forms will lead to an end-time distribution of the Gumbel
form. Using these initiation functions, we see that the coa-
lescence distribution given by Eq. �2� is completely deter-
mined by three parameters: the fork velocity v, the initiation
strength given by the prefactor In or I�, and the initiation
form determined by n or ��t�. The relationship between these
three parameters and the two Gumbel parameters reveals
how different “initiation strategies” affect the completion
time.

We write the cumulative distribution �c�t� of the coales-
cences as 1−�t

��c�t��dt�. Then, using integration by parts,
we obtain

�
t

�

�c�t��dt� =
L

No
g�t�e−2vh�t� −

L

No
�

t

�

I�t��e−2vh�t��dt�.

�6�

Substituting Eq. �6� into Eq. �5�, we obtain a transcendental
equation
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2vh�t*� = ln��1 − 
�Lg�t*��, 
 =
�t*

� I�t�e−2vh�t�dt

g�t*�e−2vh�t*� , �7�

that relates the initiation parameters to t*. For the width, Eqs.
�2� and �7� give


 =
1 − 


2vg�t*�
, �8�

indicating that the width of the end-time distribution 
 is
inversely proportional to g�t*�. Since g�t� is the integral of
I�t�, and since LI�t�dt is the number of initiations in the given
time interval, Lg�t*� is the number of origins that would have
initiated during S phase if there were no passive replication.
In other words, g�t*� is the lower bound on the average num-
ber of potential origins per length �“average” here is over an
ensemble of genomes�. It is the lower bound because the
potential origins that would have fired with a longer S phase
are not counted. At the end of Sec. III B, we compare the
inferred in vivo bound on potential origin density with the
experimental estimate.

In practice, given experimentally observed quantities such
as v, t*, and L, we solve Eqs. �7� and �8� numerically to
determine the initiation prefactor �I� or In� and the width for
different initiation forms ���t� or tn�. Nevertheless, an ana-
lytical approximation of Eqs. �7� and �8� is possible, as the
factor 
 is often small. For instance, in the power-law I�t�
case, we introduce a function ��t�=be−at that decays more
slowly than �i�t�. Then, imposing ��t*�=�i�t*� so that ��t�
��i�t� for t� t*, we find 
 to be at most O�10−2�. Neglect-
ing 
, we then obtain the analytical approximations

In �
�n + 1��n + 2�

2vt*n+2 ln�L�n + 2�
2vt*n+2 	 , �9�


 �
n + 1

2vInt*n+1 �10�

that show the explicit relationship between the initiation pa-
rameters and the Gumbel parameters.

In summary, given a realistic initiation function I�t� and
fork velocity v, we have shown that the distribution function
of replication end time tends toward a Gumbel form. We
have also shown how the replication parameters relate to the
location and scale Gumbel parameters analytically.

B. Replication timing control

As a first step toward understanding the solutions to the
random-completion problem, we consider the end-time dis-
tributions produced by different initiation functions. From
these results and the theory developed, we infer two heuristic
principles for controlling the end-time distribution: the first
narrows the width, while the second adjusts the mode. We
first explore how the width 
 depends on the initiation form
���t� and tn� by simulating the replication process while con-
straining the typical replication time and fork velocity to
match the values inferred from in vitro experiments: t*
=38 min and v=0.6 kb /min. �As we discuss in Sec. III, rep-

lication in vitro is slower than in vivo.� The genome length L
is 3.07�106 kb throughout the paper �51�. The prefactors I�
and In are then calculated using Eq. �7�.

The result shown in Fig. 2�a� is perhaps counterintuitive:
initiating all origins in the beginning of S phase, which cor-
responds to a �-function I�t�, gives rise to the broadest dis-
tribution. Initiating origins throughout S phase narrows the
end-time distribution. The narrowing is more pronounced as
the power-law exponent n increases. These observations can
be explained by Eq. �8�, which states that the width is in-
versely proportional to the average density of potential ori-
gins. The physical interpretation is that having fewer poten-
tial origin sites leads to more variation in the spacing
between potential origins. This in turn induces fluctuations in
the largest spacings between initiated origins, which widens
the end-time distribution. In this light, Fig. 2�a� shows that
when t* is fixed, the �-function case uses the fewest potential
origins and thus produces the widest distribution. In contrast,
a large power-law exponent n implies the use of many po-
tential origins and thus produces a narrow distribution. In
summary, the first heuristic principle is that the end-time
distribution can be narrowed arbitrarily by increasing the
number of potential origins in the system.

FIG. 2. �Color online� �a� End-time distribution with fixed mode
t*=38 min. Markers are the results of the Monte Carlo simulations.
Each distribution is estimated from 3000 end times. The “� func-
tion” corresponds to initiating all potential origins simultaneously at
t=0 min. The n=0,1 ,2 cases correspond to constant, linearly in-
creasing, and quadratically increasing initiation rates, respectively.
Solid lines are Gumbel distributions with t* and 
 calculated ac-
cording to Eqs. �7� and �8�. There are no fit parameters. �b� Initia-
tion distribution �i�t� for n=0,1 ,2. Parameter values correspond to
those in �a�. Error bars are smaller than marker size. Solid lines are
calculated from Eq. �3�. Again, there are no fit parameters.
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The second principle is that, given an excess of potential
origins, cells can initiate origins progressively throughout S
phase instead of all at once to lower the consumption of
resources while still controlling the typical replication time.
In S phase, initiation factors and polymerases are recyclable
proteins; i.e., they can be reused once they are liberated from
the DNA �52�. Progressive initiation then allows a copy of
the replicative protein to be used multiple times. Compared
with initiating all origins at once, this strategy requires fewer
copies of replicative proteins and thus saves resources. This
notion of minimizing the required replication resources is
further discussed in Sec. IV.

Figure 2�b� shows that increasing the exponent n results
in the “holding back” of more and more initiations until later
in S phase. Comparing this with Fig. 2�a�, one finds that
holding back initiations corresponds to narrowing the end-
time distribution. Although many potential origins are pas-
sively replicated and thus never initiate, the timing of repli-
cation can still be accurately controlled, as initiations now
occur in the “needed places.” Since the probability of initia-
tion inside a hole is proportional to the size of the hole, the
held-back initiations are more likely to occur in large holes.
This filling mechanism is made efficient by increasing I�t�
toward the end of S phase so that any remaining large holes
are increasingly likely to be covered.

One subtle point of the origin-redundancy scenario is that,
although the potential origins are licensed at random, the
spacings between initiated origins form a distribution 	i�s�
with a nonzero mode that contrasts with the exponential dis-
tribution of spacings between potential origins. An example
of the 	i�s� is shown later in Sec. V. In earlier literature,
before experiments showed that initiations can take place
throughout S phase, biologists believed that all potential ori-
gins initiate at the start of S phase. In this �-function case,
the distribution of the interpotential-origin spacing is the
same as that of the spacing between fired origins �interorigin
spacing�. However, with an increasing I�t�, a peak will arise
in 	i�s� because closely spaced potential origins are not
likely to all initiate but be passively replicated by a nearby
initiation. This passive replication effect suppresses the like-
lihood of having small interorigin spacings and thus creates a
nonzero mode in the spacing distribution. One should be
careful not to confuse the two distributions.

In conclusion, we have shown that a large excess of po-
tential origins suppresses fluctuations in the size of
interpotential-origin gaps while the strategy of holding back
initiations allows control of the typical replication time.
These control mechanisms are also “open loop” in that they
do not require any information about the replication state of
the cell. In the next section, we review what is known ex-
perimentally about DNA replication in Xenopus embryos, in
light of the analysis we have just presented.

III. ANALYSIS OF REPLICATION EXPERIMENTS

In the previous section, we showed that, given an initia-
tion function and a fork velocity, one can find the associated
end-time distribution using EVT. In this section, we review
what is known experimentally about these quantities in Xe-

nopus embryos. There have been two classes of experiments:
in vivo, where limited work has been done �4,20,21�, and in
vitro, where rather more detailed studies have been per-
formed on cell-free extracts �9–11,18�. Typically, embryo
replication in vivo takes about 20 min of the �abbreviated�
25-min cell cycle �16,19�. As we discuss below, in vivo ex-
periments imply that replication “failure”—incomplete repli-
cation by the end of the cell cycle—is very unlikely, occur-
ring only once in about 300 instances. The in vitro
experiments on cell-free extracts give more detailed informa-
tion about the replication process, including an estimate of
the in vitro initiation function Ivitro�t�. However, the typical
replication time in vitro is about 38 min, not 20 min, and it is
not obvious how one can apply the results learned from the
in vitro experiments to the living system. Below, we propose
a way to transform Ivitro�t� into an estimate of the in vivo
initiation function Ivivo�t� that satisfies the failure probability
of the in vivo system.

A. The in vivo experiments

A low replication-failure rate is remarkable because Xe-
nopus embryos lack an efficient S/M checkpoint to delay cell
cycle progression when replication is incomplete �16�. If
chromosomes separate before replication is complete, cells
suffer “mitotic catastrophe,” which leads to apoptosis �20�.
Thus, a low failure rate in embryonic cells implies that rep-
lication timing is precisely controlled by the initiation func-
tion and fork velocity. Mathematically, we can test whether
an initiation function is realistic by calculating the rate of
mitotic catastrophe F it implies. To evaluate F, we first
choose a time t** at which mitotic catastrophe occurs if rep-
lication is not fully completed. Then,

F 
 �
t**

�

�e�t�dt = 1 − �e�t**� . �11�

As a first step in estimating F, we identify t** with the
cell cycle time ��25 min� �19�. Our identification is justified
by observations that imply that replication can continue
throughout mitosis, if needed �20�. Thus, even if the bulk of
replication is completed before entering mitosis, small parts
of the genome may continue to replicate, essentially until the
cell totally divides. However, if while the cell is dividing
unreplicated regions of the chromosome segregate, mitotic
catastrophe would cause the two daughter cells to inherit
fragmented chromosomes.

Having identified t**, we estimate F using data from an
experiment on DNA damage in embryos �4,21�. In �4�,
Hensey and Gautier found that cells with massive DNA dam-
age �induced by radiation� will continue to divide through
ten generations. Then, at the onset of gastrulation, which
occurs between the 10th and 11th cleavages, an embryo trig-
gers a developmental checkpoint that activates programmed
cell death. The role of cell death is to eliminate abnormal
cells before entering the next phase of development, where
the embryo’s morphology is constructed via cell migration.
In Hensey and Gautier’s study, abnormal cells were detected
using terminal deoxynucleotidyl transferase-mediated dUTP
Nick end labeling �TUNEL� staining, a technique for detect-
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ing DNA fragmentation in cells. In a later work investigating
the spatial-temporal distribution of cell deaths in Xenopus
embryos, they reported that, at gastrulation, 67% of 237 em-
bryos, each containing 1024 cells, had more than five
TUNEL-stained cells �21�. We can estimate F from the
above observations using a simple model based on the fol-
lowing four elements.

�1� All cells divide; each produces two cells.
�2� If a cell has an abnormal chromosome, all its progeny

are abnormal because replication can at best duplicate the
parent’s chromosome.

�3� Failure to replicate all DNA before the end of a cell
cycle is the main cause of abnormal chromosomes and leads
to apoptosis at gastrulation.

�4� All normal cells in all rounds of cleavage have the
same probability F of becoming abnormal because of incom-
plete replication.

A schematic depiction of our model is shown in Fig. 3�a�.
The model can be described by a standard Galton-Watson
�GW� branching process �53�, where the number of prolifer-
ating progeny generated by a normal cell is an independent

and identically distributed random variable. GW processes
obey recursion relations that can be solved analytically using
probability generating functions; however, the solution in our
case is too complex to be helpful. We thus turned to numeri-
cal analysis.

We used Monte Carlo methods to simulate the branching
process outlined above. Each embryo, after going through
ten rounds of division, contains m abnormal cells that com-
mit apoptosis before the 11th division. Simulation of N em-
bryos results in a distribution of the number of deaths. We
then compare the evaluation of the cumulative distribution at
five death events with the reported likelihood, which states
that 33% of the time there are five or fewer dead cells in
1024 cells �21�. Figure 3�b� shows the cumulative distribu-
tion that matches the reported numbers. To find F, we used a
gradient-based method for finding roots of stochastic func-
tions. In this case, the input is the failure rate F, and the
function evaluates the number and likelihood of deaths via a
Monte Carlo simulation of the branching process of 237 em-
bryos. We found that the numbers reported in �21� imply F
= �3.73�0.01��10−3 �Fig. 3�b� inset� �54,55�. In summary,
we inferred the failure rate in Xenopus embryo replication to
be about 1 in 300.

Comparing Eq. �11� with the standard cumulative Gumbel
distribution given by the integral of Eq. �4�, one can relate
the quantities t** and F to the Gumbel parameters via

t** = t* − 
�t*�ln�ln� 1

1 − F
	� . �12�

For F�1, the expression simplifies to t**� t*−
�t*�ln�F�,
which implies that the end time is insensitive to the exact
value of F: an order-of-magnitude estimate suffices.

B. Connecting in vitro to in vivo results

As discussed above, the most detailed experiments on
replication in Xenopus have been conducted on cell-free egg
extracts. In previous work �11�, we modeled a molecular-
combing experiment on such an in vitro system and inferred
the time-dependent initiation function Ivitro�t� �approximately
quadratic �48,49��, a fork velocity of 0.6 kb /min �averaged
over S phase �37��, and a typical replication time t* of
38 min. In contrast, the typical replication time in living em-
bryos is only 20 min. While it is generally believed that
DNA replication in the two settings occurs in a similar way,
the overall duration of S phase is an obvious difference that
must be reconciled. We thus have a dilemma: the known
replication parameters, v and I�t�, are extracted from in vitro
experiments while the failure rate F is derived from obser-
vations of cells in vivo. Is it possible to “transpose” the re-
sults from the in vitro experiments to the in vivo setting?
Although any such transformation is obviously speculative,
we propose here a simple way that is consistent with known
experimental results.

We hypothesize that, except for the fork velocity, replica-
tion is unaltered between the in vitro and in vivo systems.
The subtlety is that there are several conceivable interpreta-
tions of “unaltered” replication. One could keep Ivitro�t� the
same; however, this is not reasonable in that the dramatic

FIG. 3. �a� Schematic diagram of the simple model described in
the text. Open circles represent normal proliferating cells, while
filled circles are abnormal cells. The numbers indicate the round of
cleavage. Once a cell fails to replicate properly, all its progeny will
be abnormal. �b� Cumulative distribution of the number of dead
cells at gastrulation �between cleavages 10 and 11� generated using
Monte Carlo simulation. The distribution satisfies the constraint that
33% of the embryos have five or fewer abnormal cells. The inset
shows the convergence of the gradient search to F= �3.73�0.01�
�10−3. The average and standard deviation of the mean are com-
puted over the last 40 values.
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increase in Ivitro�t�, at t�17.4 min, would be moved from the
midpoint of replication to the end �11�. Alternatively, one
could express the initiation function in terms of the fraction
of replication, i.e., I= I�f�, and preserve this function. In this
case, one would need a fork velocity of about 2.2 kb /min to
produce the extracted in vivo failure rate. Although this is a
reasonable fork speed in systems such as the Drosophila em-
bryo, it is about twice the maximum fork speed observed in
Xenopus embryonic replication in vitro �37�. The third pos-
sibility is to preserve the maximum number of simulta-
neously active replication forks. Intuitively, this is plausible
as each replication fork implies the existence of a large set of
associated proteins. The maximum fork density then gives
the minimum number of copies of each protein set required.
Thus, we are in effect assuming that the numbers of replica-
tive proteins remains the same in both cases.

The simplest way to preserve fork usage is to rescale the
density of forks active at time t,

nf�t� =
1

2v

df

dt
= g�t�e−2vh�t�, �13�

linearly in time so that

nf
vivo� t

tscale
	 = nf

vitro� t

tvitro
* 	 , �14�

where t
vitro
* �38 min and tscale is chosen so that t**=25 min

and F= �3.73�0.01��10−3. We found that the in vitro fork
usage is preserved by using the rescaling Ivivo�t / tscale�

2Ivitro�t / t

vitro
* � and v=1.030�0.001 kb /min �Fig. 4�. The

error on v is the consequence of the uncertainty in F.
Using the transformed Ivivo�t�, we estimate from gvivo�t*�

the lower bound of the potential origin density to be 1.2
potential origins/kb �PO/kb�. This lower bound is consistent
with the experimentally estimated average density of
1.9�0.6 PO /kb mentioned in Sec. I B. Given this density

�1.2 PO /kb�, by applying Eqs. �4� and �5�, we then find that
the largest interpotential-origin gap resulting from random
licensing is typically 15 kb, and that the probability Pg of
having a gap that is inherently too large to replicate, i.e.,
larger than 2vt**�50 kb, is less than O�10−16�, which is
much smaller than the failure rate �F�O�10−3�� �56�.

The velocity we infer also has a significant interpretation.
In a recent experiment, Marheineke and Hyrien found that
the fork velocity in vitro is not constant but decreases lin-
early from about 1.1 to 0.3 kb /min at the end of S phase
�37�. The decrease in fork velocity suggests that in vitro rep-
lication progressively depletes rate-limiting factors �e.g.,
dNTP� throughout S phase. We suggest that our extracted v
�1 kb /min means that in vivo systems are able to maintain
the concentration of rate-limiting factors, perhaps by regulat-
ing their transport across the nuclear membrane �57,58�, to
maintain a roughly constant fork velocity throughout S
phase. In summary, by preserving the rescaled version of the
in vitro fork usage rate, we have transformed Ivitro�t� into an
Ivivo�t� that results in reasonable replication parameters and
reproduces the in vivo failure rate.

IV. OPTIMIZING FORK ACTIVITY

The random-completion problem mentioned in Sec. I can
be quantitatively recast into a problem of searching for an
initiation function that produces the in vivo failure rate con-
straint in Eq. �11�. In Fig. 5�a�, we show that any initiation
form with the proper prefactor can satisfy the constraint on
the integral of the end-time distribution, including the trans-
formed in vivo initiation function. Can we then understand
why Xenopus embryos adopt the roughly quadratic I�t� and
not some other function of time?

To explore this question, we calculate for the different
cases of I�t� the maximum number of simultaneously active
forks. Figure 5�b� shows that initiation of all origins at the
start of S phase �setting I�t�
��t�� requires a higher maxi-
mum than a modestly increasing I�t�. At the other extreme, a
too rapidly increasing I�t� �high exponent n� also requires
many copies of replicative machinery because the bulk of
replication is delayed and needs many forks close to the end
of S phase to finish the replication on time. Thus, intuitively,
one expects that an intermediate I�t� that increases through-
out S phase—but not too much—would minimize the use of
replicative proteins. Figure 5�b� hints that the in vivo initia-
tion function derived from in vitro experiments may be close
to such an optimal I�t�, as the number of resources required
by Ivivo�t� is close to the minimum of the power-law case.

The three resources modeled explicitly are potential ori-
gins, initiation factors, and replication forks. It is not imme-
diately clear which replication resources should be opti-
mized. In general, the metabolic costs of expressing genes
and making proteins are assumed to be non-rate-limiting fac-
tors. On the other hand, it is plausible that the cell minimizes
the “complexity” of the replication process, minimizing to-
pological problems caused by simultaneously active replica-
tion forks, and thus minimizing the chance of unfaithful rep-
lication. Thus, in our optimization analysis, we ignore the
metabolic costs of having a large number of potential origins

FIG. 4. Density of simultaneously active replication forks
throughout S phase, nf�t�. The dotted curve corresponds to the in
vitro fork usage while the solid curve is the rescaled fork usage that
satisfies the constraints t**=25 min and F=0.003 73. The rescaled
nf�t� is generated using Ivivo�t / t

vivo
* �
2Ivitro�t / t

vitro
* � and v

=1.030 kb /min.
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and propose that the maximum number of simultaneously
active forks is minimized. Above, we argued that the maxi-
mum of nf�t� gives the minimum number of copies of the
proteins required for DNA synthesis. Moreover, since the
unwinding and synthesis of DNA at the forks create torsional
stress on the chromosomes, minimizing the number of active
forks would minimize the complexity of the chromosome
topology, which may help maintain replication fidelity �59�.
For these reasons, the maximum number of active forks is a
plausible limiting factor that causes replication to proceed
the way it does. Below, we calculate the optimal I�t� and
compare it with Ivivo�t�.

The number of forks active at time t is given by nf�t�
=2g�t�exp�−2vh�t��. One can find the I�t� that optimizes the
maximum of nf�t� by minimizing

nmax�I�t�� = lim
p→�

��
0

t**

nf�I�t��pdt	1/p

. �15�

This is a common analytic method to optimize the maximum
of a function �60�. The trick is to analytically calculate the

Euler-Lagrange equations for finite p and then take the limit
p→�, where the contribution of the maximum dominates
the integrand. The associated Euler-Lagrange equation is

ḧ�t� = 2vḣ2�t� , �16�

where we recall that ḧ�t�= I�t� and ḣ�t�=g�t�. Note that Eq.
�16� is independent of p, suggesting that the optimal nf�t�
does not have a peak. Solving Eq. �16� subject to the bound-
ary condition that the replication fraction be 0 at t=0 �i.e.,
h�0�=0� and 1 at t= t**, we obtain

Iopt�t� =
1

2vt**
���t� +

1

t**

1

�1 − t/t**�2	 . �17�

Inserting the result from Eq. �17� into Eq. �13�, one sees that
nf�t�=1 /vt** indeed is constant throughout S phase and is
about three times smaller than the maximum number of si-
multaneously active forks in vivo �Fig. 6�c��. This optimal
solution, like Ivivo�t�, increases slowly at first, then grows
rapidly toward the end of S phase �Fig. 6�b��. However, this
initiation function is unphysical, as the diverging initiation
probability at t→ t** implies an infinite number of initiations
at the end of S phase. In effect, a constant fork density im-
plies that, when the protein complexes associated with two
coalescing forks are liberated, they instantly find and attach
to unreplicated parts of the chromosome. It also implies that
at the end of S phase all the replication forks would be active
on a vanishingly small length of unreplicated genome. Both
implications are unrealistic.

To find a more realistic solution, we tamed the behavior of
the initiation rate for t→ t** by adding a constraint. A natural
constraint to impose is that the failure rate in vivo be satis-
fied. The infinite initiations at t= t** implied by Eq. �17�
means that the replication always finishes exactly at t** and
the failure rate is zero. Therefore, having a nonzero failure
rate would force the number of initiations to be finite. This
constraint is also consistent with the idea that the replication
process is shaped by the evolutionary pressure of survival.
The new optimization quantity is then

J�I�t�� = max�nf�I�t��� + ��F�I�t�� − Fvivo� , �18�

where the first term is the maximum of the fork density, and
the second term is a penalty function that increases J for F
�Fvivo. The strength of the penalty is set by the Lagrange
multiplier �. The time associated with F is t**=25 min
throughout this section.

Substituting Eq. �15� into the first term of Eq. �18� and
applying the method of variational calculus, we obtained an
integro-differential equation that turns out to be stiff math-
ematically and thus difficult to solve. The difficulty in ana-
lytic methods is that the gradient of Eq. �15� is highly non-
linear and that F depends on t*, which is not readily
expressible in terms of the basic replication parameters I�t�
and v. For these reasons, we turned to a gradient-free nu-
merical method called finite difference stochastic approxima-
tion �FDSA� �55�. Although this search method is used for
stochastic functions �as the name suggests�, the method is
just as suitable for deterministic functions. The basic concept
is that the gradient of a function, which encodes the steepest-

FIG. 5. �Color online� �a� Replication end-time distribution with
t** fixed to be 25 min and F=0.003 73. Similar to Fig. 2�a�, the
width decreases with an increase in the exponent n. �b� Typical
maximum number of simultaneously active forks. The curve is ob-
tained by extracting the maximum value of nf�t� for different expo-
nents n.
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decent direction toward a local minimum, can be approxi-
mated by a finite difference of the function. The advantage of
this method is that we can replace the complicated evaluation
of the variation �J�I�t�� by the easily calculable difference
J�I+�I�−J�I−�I�.

Figure 6 shows the results of the FDSA search. We per-
formed the FDSA under several different conditions, with the
initial search function being Ivivo�t�. First, we investigate the
case where the optimization objective J is simply max�nf�,

with no further constraint or boundary condition �except
nf�t��0�. The markers in Fig. 6�a� shows that the optimal
solution lingers near max�nf�=0.05 �slow decrease in J� and
then goes to the global minimum �zero�. In the transient re-
gime �search step between 50 and 100�, the fork density
evolves from a bell curve to a constant, which is the form of
the calculated optimal solution. For search step above 100,
the fork density �a constant� decreases to zero if no constraint
is imposed. This zero solution corresponds to the case where
no initiation or replication occurs. However, when the
boundary condition used in the calculation �replication fin-
ished at t**� is imposed, the FDSA algorithm indeed finds
the nf�t�=1 /vt** optimal solution �data not shown�.

The second search was implemented following Eq. �18�,
where the constraint in F is added. Figure 6�c� shows that the
fork solution is no longer a constant because the tail needs to
decrease to satisfy F=Fvivo. The corresponding effect on the
I�t� is a decrease toward the end of S phase �Fig. 6�b��.
Interestingly, the mechanism of spreading out the fork den-
sity to minimize the maximum fork usage seen in the ana-
lytical calculation is still present here, as shown by the pla-
teau at the beginning. The I�t� then behaves as predicted by
Eq. �17� for most of S phase—a � function at the beginning
followed by a rate that increases sharply at the end of S
phase.

In the third search, in addition to Eq. �18�, we imposed
that there be no burst of initiation at the beginning of S phase
�g�0�=0�, as seen in experiments. Figure 6�c� shows that,
with the addition of each constraint, the maximum of the
fork density increases toward the in vivo value. Further, in
additional to satisfying the constraints and boundary condi-
tions, the fork density profiles show a common feature of
forming as lengthy a plateau as possible to minimize the
maximum. The resulting I�t� is very similar to Ivivo �Fig.
6�b��.

However, there are still some differences between the re-
sult of the third search and nf

vivo. In particular, the optimal
fork solution increases much faster at the beginning of S
phase than nf

vivo does, to spread out the fork activities. Mini-
mizing the maximum number of initiations also leads to the
same feature of a fast initial increase in the initiation activi-
ties followed by a plateau. These observations then suggest
that, while minimizing the maximum of simultaneously ac-
tive replicative proteins may be a factor that determines the
replication pattern, there must a stronger limiting factor at
the beginning of S phase. A plausible hypothesis is that the
copy number of at least some of the replicative proteins is
small to start with but gradually increases with nuclear im-
port throughout S phase �61�. With this additional constraint,
the replication activities at the beginning of S phase are lim-
ited by the small numbers of available replicative proteins. In
conclusion, the optimization method presented in this section
is useful because it connects the replication process with an
optimal criterion that is plausibly connected with evolution-
ary selection pressure. This allows one to explore the limit-
ing factors of replication. Moreover, the method is general in
that it allows one to explore the consequences of a wide
range of possible constraints.

FIG. 6. �Color online� Results of a numerical search for optimal
initiation functions under various constraints. The label “vivo” cor-
responds to the in vivo case; “optimal” corresponds to optimization
of the maximum fork density with no constraint �Eq. �17��; “Fvivo”
corresponds to optimization with the constraint that the failure rate
be equal the Fvivo extracted in Sec. III A; “Fvivo+g�0�” corresponds
to optimization with the constraint of Fvivo and the constraint that
g�0�=0. �a� Finite difference stochastic approximation search. The
markers show the search for the case of minimizing the max�nf�
with no constraint and no boundary condition. The horizontal lines
are the maximum fork density for different search conditions. �b�
Initiation rate I�t�. The Ivivo shown is in the bilinear form �48�.
�c� Fork density nf�t�. Line types correspond to the same cases
as in �b�.
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V. THE LATTICE-GENOME MODEL: FROM RANDOM
TO PERIODIC LICENSING

Until now, we have assumed a spatially random distribu-
tion of potential origins. In this section, we explore the im-
plications of spatial ordering among the potential origins on
the end-time distribution. We have two motivations. First, an
“obvious” method for obtaining a narrow end-time distribu-
tion is to space the potential origins periodically and initiate
them all at once. However, such an arrangement would not
be robust, as the failure of just one origin to initiate would
double the replication time. Still, the situation is less clear if
initiations are spread out in time, as the role of spatial regu-
larity in controlling interorigin spacing would be blurred by
the temporal randomness.

Our second motivation is that there is experimental evi-
dence that origins are not positioned completely at random.
A completely random positioning implies that the distribu-
tion of gaps between potential origins is exponential, result-
ing in many small interpotential-origin spacings. However, in
an experiment of plasmid replication in Xenopus egg ex-
tracts, Lucas et al. found no interorigin gap smaller than 2 kb
�29�. In a previous analysis, we also observed that, assuming
random licensing, one expects more small interorigin gaps
��8 kb� and fewer medium gaps �8–16 kb� than were ex-
perimentally observed �14�. Second, experiments have sug-
gested a qualitative tendency for origins to fire in groups, or
clusters �18�. These findings collectively imply that there is
some spatial regularity in the Xenopus system, perhaps
through a “lateral inhibition” of licensing potential origins
too closely together. Our goal is to find an “ordering thresh-
old,” at which point the resulting end-time distribution starts
to deviate from the random-licensing case.

To investigate spatial ordering, we change the continuous
genome to a “lattice genome” with variable lattice spacing
dl. Potential origins can be licensed only on the lattice sites.
For dl→0, the lattice genome becomes continuous, and the
model recovers the random-licensing case. As dl increases,
the lattice genome has fewer available sites for licensing po-
tential origins, and the fraction of licensed sites increases. In
this scenario, the spacing between initiated origins take on
discrete values—multiples of dl. One can imagine that a fur-
ther increase in dl would eventually lead to a critical dl,
where every lattice site would have a potential origin. This
scenario corresponds to an array of periodically licensed ori-
gins, which leads to a periodic array of initiated origins with
spacing dl. Thus, by increasing a single parameter dl, we can
continuously interpolate from complete randomness to per-
fect periodicity.

In order to compare regularized licensing to random li-
censing, we impose that while the potential origins may be
distributed along the genome differently, the total initiation
probability across the genome is conserved. We then write

I�x,t� = dlI�t��
n=0

L/dl

��x − ndl� , �19�

where x is the position along the genome. This equation
shows that, as the number of lattice sites L /dl is reduced via
an increase in dl, the initiation probability for each site is

enhanced, resulting in more efficient potential origins. This
implies a trade-off between the “quantity” and “efficiency”
of potential origins.

Figure 7 illustrates this concept of trade-off, showing how
Eq. �19� connects random licensing to ordered licensing. A
realization of random licensing is shown in Fig. 7�a�. Since
Eq. �19� modifies only the spatial distribution of origins rela-
tive to our previous I�t�, the effect of going from a continu-
ous genome to a lattice genome is equivalent to shifting the
randomly licensed origins to their nearest lattice sites while
preserving their initiation times �Fig. 7�b��. In doing so, we
obtained Fig. 7�c�, which shows multiple initiations on a
lattice site. Since reinitiation is forbidden in normal replica-
tion, on each site only the earliest initiation contributes to the
replication. The later initiations are “phantom origins” that
illustrate how ordering reduces the number of initiations but
enhances the efficiency of potential origin sites. The increase
in efficiency is indicated by the decrease in the average ini-
tiation times between the two scenarios.

A perhaps more interesting and biologically relevant in-
terpretation of Fig. 7 is that, when potential origins cluster
together, the one that initiates earliest can passively replicate
the nearby potential origins. In other words, clustering can,
in effect, reduce the number of potential origins but increase
their efficiencies. Thus, the increasing spatial order of poten-
tial origins that one sees in going from Fig. 7�a�–7�c� can be
interpreted either as having fewer but more efficient actual

FIG. 7. �Color online� Schematic diagram of licensing on a lat-
tice genome. �a� Realization of replication using random-licensing
�dl=0 case�. The gray �white� area represents replicated �unrepli-
cated� domains. Circles denote initiations. �b� Origins are forced to
their nearest lattice sites �marked by vertical lines at multiples of
dl=200 kb�, while initiation times remain the same. �c� The result
of the shift in origin positions. Open markers represent “phantom
origins” that do not contribute to the replication; filled markers
denote the actual origins. Alternatively, a filled marker can be
viewed as the origin that initiated in a cluster potential origins.
Going from dl=0 kb in �a� to 200 kb in �c�, the average initiation
time decreased from about 22 min to about 10 min.
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potential origins or as indicating clustering, which leads to
fewer but more efficient effective potential origins.

Having outlined the rules for licensing, we now introduce
two quantities, “periodicity” P and dinter, that will be useful
in later discussions of how dl alters the end-time distribution.
We first look at 	i�s�, the distribution of the spacing between
initiated origins, where s is the interorigin spacing. Figure
8�a� shows two 	i�s�’s: the continuous one corresponds to
random licensing, while the discrete one corresponds to set-
ting dl to 2 kb. The two distributions are different because of
the discretization effect of the lattice genome: origins can
have separations that are only multiples of dl. As dl in-
creases, one expects a dominant spacing to appear in the
system. We characterize this ordering effect by defining the
periodicity P, the probability at the mode of the discrete
interorigin-spacing distribution. As an example, the dl
=2 kb distribution shown in Fig. 8�a� has P=0.23, indicating

that 23% of the spacings have the same value. In the fully
periodic case, the probability at the mode is 1, as all the
spacings have the same value: the system is then 100% pe-
riodic �P=1�. For dl→0, P should be interpreted as the
mode of 	i�s� times a vanishingly small �s �
dl�. Thus, P
→0 in the small-�s limit, as there will be no interorigin
spacings sharing the same size.

In interpolating from random licensing to periodic licens-
ing, one expects that the average interorigin spacing davg
would change from being dl independent to being linearly
dependent on dl. Indeed, from Fig. 8�b�, which shows davg as
a function of dl, we can label two asymptotes and thereby
identify two regimes. We first introduce dinter to be the aver-
age interorigin spacing of the dl=0 kb case. For dl→0, we
see that davg asymptotically approaches dinter. In contrast, for
large dl �when all lattice sites are occupied�, we see davg
approaching the asymptote davg=dl. The intersection of the
two asymptotes is precisely at dl=dinter. We therefore identify
two regimes, with regime I being dl�dinter and regime II
being dl�dinter. Physically, the weak dl dependence in re-
gime I suggests that the system is spatially random, whereas
the asymptotically linear behavior in regime II indicates that
the system is becoming periodic.

The length scale dinter encodes the two factors that deter-
mine the distribution of interorigin spacings. The first factor
is the passive replication of closely positioned potential ori-
gins, which suppresses the likelihood of having small inter-
origin spacings. The second factor is based on the low prob-
ability of randomly licensing two faraway origins, which
reduces the probability of having large interorigin gaps. Both
of these effects can be seen in Fig. 8�a�.

When dl exceeds dinter, the typical spacing between poten-
tial origins �
dl� exceeds the typical range of passive repli-
cation and approaches the typical largest spacing of the
random-licensing case. This means that potential origins are
not likely to be passively replicated or positioned farther than
dl apart �note that the next smallest spacing 2dl is quite
large�. The inset in Fig. 8�b�, which shows the periodicity P
as a function of dl, strengthens this notion that for dl�dinter,
the system enters a nearly periodic regime where P has satu-
rated.

Our main result is Fig. 9, which shows how the end-time
distribution changes with increasing dl. The initiation func-
tion used in the simulation is the power-law approximation
of the Ivivo�t� found in Sec. III B, transformed using Eq. �19�.
The fork velocity and failure rate used are as extracted in
Sec. III. There are again two distinct regimes separated by
the ordering threshold dinter�6.5 kb. Below the threshold
�regime I�, the end-time distribution is nearly independent of
dl. Above the threshold �regime II�, the mode shifts to the
right. The width is unaltered.

To understand the changes in going from regime I to re-
gime II, we note that in Eq. �5�, t* depends on the number of
initiations No. On average, No is unaffected when the number
of lattice sites available is in excess �

No

L/dl
�1�. This means

that t* starts to change only when dl=L /No which is pre-
cisely dinter. In regime II, the minimum time to replicate the
smallest gap between potential origins, dl /v, becomes sig-
nificant compared to the temporal randomness resulting from

FIG. 8. �Color online� �a� Distribution of spacings between ini-
tiated origins, 	i�s�, for the dl=0 and 2 kb cases �2 kb is chosen to
mimic the minimal spacing between origins reported in �29��. The
initiation rate and fork velocity are those obtained in Sec. III B. The
mean of the continuous distribution �dl=0 kb case� is marked dinter

and is �6.5 kb. The mode of the discrete distribution �dl=2 kb
case� is marked by �. The probability P at the mode �0.23 in this
case� is defined to be the periodicity, a measure of ordering in the
system. �b� Average interorigin spacing davg as a function of dl.
There is a gradual transition from regime I to regime II. In regime
I �dl�dinter�, davg is asymptotically independent of dl for dl→0. In
regime II �dl�dinter�, dav is asymptotically linearly proportional to
dl. Inset shows the periodicity P as a function of dl.
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stochastic initiation. In effect, t*�dl /v+ tav, where tav is the
average initiation time. We tested numerically that the mean
and standard deviation of the initiation times both decrease
sigmoidally, for dl /dinter�3. Thus, for the range of dl shown
in Fig. 9, one expects t*�dl in regime II, while the width
should be unaltered.

In Xenopus embryos, the inhibition zone observed in plas-
mid replication corresponds to dl�2 kb �dashed line in Fig.
9� �29�. The value is well below the ordering threshold of
dinter�6.5 kb, suggesting that the experimentally observed
spatial ordering plays a minor role in solving the random-
completion problem in embryonic replication.

VI. CONCLUSION

In this paper, we have extended the stochastic nucleation-
and-growth model of DNA replication to describe not only
the kinetics of the bulk of replication but also the statistics of
replication quantities at the end of replication. Using the
model, we have quantitatively addressed a generalized ver-
sion of the random-completion problem, which asks how sto-
chastic licensing and initiation lead to the tight control of
replication end times observed in systems such as Xenopus
embryos. In particular, we applied our model to investigate
and compare the two solutions proposed by biologists—the
regular-spacing model �RSM� and the origin-redundancy
model �ORM�.

First, we found that the ORM, which utilizes purely ran-
dom licensing, can still accurately control the replication
time. With this approach, the fluctuation of the end times is
suppressed by licensing a large excess of potential origins,
while the typical end time is adjusted by increasing the ini-
tiation rate toward late S phase. Then, we analyzed the effect
of spatial ordering in the RSM using a lattice genome. Our

results show that �1� incorporating regularity leads to a trade-
off: the large number of potential origins in the ORM is
effectively replaced by fewer but more efficient ones in the
RSM and that �2� under the condition that the initiation rate
across the genome is preserved, the two models produce the
same end-time distribution until an ordering threshold is
reached. We show that the experimentally observed ordering
effect of lateral inhibition in Xenopus is well below the or-
dering threshold.

These results are particularly enlightening when consider-
ing clustering as a mechanism that transforms the ORM into
the RSM. As mentioned in Sec. V, clustering spontaneously
leads to an effective trade-off between quantity and effi-
ciency of potential origins, while satisfying the condition of
preserving the initiation rate. This means that the intrinsic
reason that the RSM and the ORM produce the same end-
time distribution is not the spatial distribution of potential
origins but the high density of potential origins. Thus, we
argue that the key factors in resolving the random-
completion problem, at least in the Xenopus case, are the
licensing of a large excess of potential origins and an in-
creasing initiation rate—and not an ordered spatial distribu-
tion of origins. To say it in a different way, the analysis in
Sec. V implies that the end-time distribution due to a random
ordering of potential origins will be unaltered if those same
potential origins are positioned more regularly �e.g., in or-
dered clusters�, as long as the clustering is small enough. The
amount of clustering needed to alter the end-time distribution
far exceeds the experimentally observed amounts.

We have also found the optimal I�t� that minimizes the
maximum number of simultaneously active forks. Like the
observed in vitro initiation function, it increases throughout S
phase except for the end. Further pursuit of the optimization
problem with more detailed model may reveal the rate-
limiting factors in replication, which have not been identified
to date. Further, an open issue not addressed by our model is
the observation that there is a weak correlation in the initia-
tions of neighboring origins �18�. To model this effect, one
can introduce correlations in licensing, initiation, and fork
progression based on localization of replication foci �62�,
chromatin structures �28�, or some other mechanisms. We do
not expect that correlations will modify the scenario we have
presented here significantly, as the most significant effect of
correlations, an increase in spatial ordering, would not be
important even at exclusion-zone sizes that are much larger
than observed �e.g., 10 kb�.

Among the various cases of replication programs, replica-
tion in bacteria is the most well understood—DNA synthesis
starts at a single, sequence-specific genome site and proceeds
to completion �63�. With this case, the genome-wide regula-
tion of the replication process is deterministic and strictly
governed by biochemical effects. In this work, we modeled a
very different type of replication program, where both the
licensing and initiation timings are strongly influenced by
stochastic effects. This type of stochastic replication strategy
is usually present in embryos, especially those that develop
outside the parent’s body, for rapid development of the em-
bryos. We showed how stochastic effects ensure the fast and
reliable replication needed for rapid development.

In between these two special cases lie all other replication
programs, where the licensing mechanisms are more compli-

FIG. 9. �Color online� Evolution of the end-time distribution
with increasing spatial ordering due to increasing dl. Each horizon-
tal profile is an end-time distribution. In regime I, the end-time
distribution does not change appreciably; in regime II, the mode
shifts to the right. The ordering threshold is at dl=dinter�6.5 kb.
The dashed line shows the dl=2 kb end-time distribution, which
corresponds to the lateral inhibition ordering observed experimen-
tally �29�.
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cated than simple sequence targeting or a Poisson process
�64�. These include replication in nonembryonic �somatic�
cells, in simple organisms such as yeast, and in cancer cells
where abnormal replication such as rereplication can occur
�5,65,66�. For instance, replication experiments done on
fission-yeast cells show that, while there is an excess number
of potential origins as in embryonic replication, the positions
of the origins are associated with a sequence asymmetry of
the genome instead of being completely sequence indepen-
dent �67�. The experiments also show that different origins
have different efficiencies, suggesting that initiation timings
are not entirely stochastic. In future work, we shall modify

our model to study such systems, which may lead to a fuller
understanding of how replication is regulated by the genome
organization and by DNA replication strategies that are the
outcome of evolution.
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