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The precision of biochemical signaling is limited by randomness in the diffusive arrival of molecules at their
targets. For proteins binding to specific sites on DNA and regulating transcription, the ability of the proteins to
diffuse in one dimension by sliding along the length of the DNA, in addition to their diffusion in bulk solution,
would seem to generate a larger target for DNA binding, consequently reducing the noise in the occupancy of
the regulatory site. Here we show that this effect is largely canceled by the enhanced temporal correlations in
one-dimensional diffusion. With realistic parameters, sliding along DNA has surprisingly little effect on the
physical limits to the precision of transcriptional regulation.
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I. INTRODUCTION

Cells constantly regulate the expression levels of their
genes. A central motif in this regulatory process is the bind-
ing of transcription factor proteins to specific sites along the
DNA. The precision of transcriptional regulation is limited,
ultimately, by randomness in the arrival of transcription fac-
tor �TF� molecules at these sites �1�. But proteins can find
their binding sites on DNA by two very different
mechanisms—either by diffusing in three dimensions �3D�
through the surrounding solution, or by binding weakly and
diffusing in one dimension �1D� along the contour of the
DNA molecule. The idea of diffusion or sliding along DNA
goes back �at least� to the realization that the lac repressor
seems to bind more rapidly to its target site than would be
allowed by three-dimensional diffusion alone �2,3�. The the-
oretical understanding of the association kinetics of TFs to
their cognate sites in the DNA in the presence of 1D and 3D
diffusion was developed by Berg and co-workers �4,5�. More
recently, the discussion of 3D vs 1D diffusion has been re-
vitalized by theoretical analysis of the optimal search strate-
gies �6�, by new biochemical measurements �7�, and by di-
rect physical observations of the sliding motion �8–10�. Here
we consider the impact of dimensionality and diffusion on
the physical limits to the precision of transcriptional regula-
tion.

Any physical system which responds to the concentration
of a signaling molecule will exhibit noise due to the random
diffusion of these molecules in and out of its “sensitive vol-
ume” �1�; the larger the volume, the smaller the �fractional�
noise. This leads to the intuition that 1D diffusion will have
a huge impact on the noise because it effectively increases
the size of the target to which the transcription factor is bind-
ing �11�. Our main result is that this intuition is wrong. The
problem is that diffusion in one dimension has a very differ-
ent statistical structure than in three dimensions, and so one

cannot simply say that 1D sliding generates a larger 3D tar-
get. We show that realistic combinations of 3D and 1D dif-
fusions in fact have a surprisingly small effect on the limiting
noise level—the increased size of the target is largely can-
celed by stronger temporal correlations, which means that
integrating over a fixed time gives fewer independent
samples.

II. CONCENTRATION FLUCTUATIONS

Before starting on the problem of proteins binding to
DNA, it is useful to recall some facts about concentration
fluctuations for molecules free in solution �12�. If we write
the concentration as c�x , t�, then the power spectrum of fluc-
tuations Sc�k ,�� is defined by

��c�x,t��c�x�,t��� =� ddk

�2��d� d�

2�
Sc�k,��e+ik·�x−x��−i��t−t��,

�1�

where d is the dimensionality of space. For molecules
present at the mean concentration c̄ and diffusing freely with
diffusion constant D, the power spectrum is given by

Sc�k,�� =
2c̄Dk2

�Dk2�2 + �2 , �2�

where k= �k�. This result is independent of the dimensionality
d, although of course the units of concentration are different
in different dimensions. If we integrate over all frequencies,
which corresponds to making instantaneous measurements,
we find a spatial power spectrum

� d�

2�
Sc�k,�� = c̄ . �3�

This is spatial white noise, and embodies the fact that a snap-
shot of molecules in solution will reveal a random, Poisson
distribution: the variance of the molecule number in any fi-
nite volume is equal to the mean, so the power spectrum of
concentration fluctuations is equal to the mean concentration,
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and again this is independent of dimensionality.
Consider a measurement of concentration that is averaged

over some small region of space,

C�t� =� ddxW�x�c�x,t� , �4�

where W is a weighting or windowing function that defines
the size of the region we are interested in. To interpret C as
an average of the local variable c, we must have 	ddxW�x�
=1. The temporal fluctuations in C are themselves deter-
mined by a power spectrum SC���,

��C�t��C�t��� =� d�

2�
SC���e−i��t−t��, �5�

SC��� =� ddk

�2��dSc�k,���W̃�k��2, �6�

where

W̃�k� =� ddxW�x�eik·x. �7�

The normalization of W implies that W̃�k=0�=1. If the size

of the region is �d, then W̃�k� will fall to zero for k much
larger than �
1 /�. Thus we can approximate

SC��� =� ddk

�2��d

2c̄Dk2

�Dk2�2 + �2 �W̃�k��2 �8�


�
0

�

dkkd−1 2c̄Dk2

�Dk2�2 + �2 . �9�

We are interested in the behavior of the power spectrum at
low frequencies, corresponding to measurements with long
averaging times. If we try simply to set �=0, then we find

SC�� = 0� 
 �
0

�

dk kd−1 2c̄

Dk2 . �10�

For d=3,

SC
3d�� = 0� 
 �

0

�

dk k2 2c̄

Dk2 

2c̄�

D



c̄

D�
. �11�

This corresponds to white noise in the time domain, so we
expect that averaging over time will reduce the noise vari-
ance in proportion to the averaging time. More precisely, if
we average for a time �int, we will be sensitive to frequencies
����1 /�int, so we will see a variance

���C�2�3d 
 �
����1/�int

d�

2�
SC

3d��� �12�


�
����1/�int

d�

2�
SC

3d�� = 0� �13�



c̄

D��int
. �14�

Although we have not done a full calculation including the
effects of binding and unbinding to target sites, this is essen-
tially the “noise floor” for a system which senses the concen-
tration of signaling molecules by having them bind to a site
of size � �1,13,14�.

In contrast, for d=1 we have

SC
1d�� = 0� 
 �

0

�

dk
2c̄

Dk2 , �15�

which is divergent at small k. To get the right low-frequency
behavior in one dimension we have to be a bit more careful.
We have

SC
1d��� 
 �

0

�

dk
2c̄Dk2

�Dk2�2 + �2 . �16�

This integral is actually finite as �→�, so we can write

SC
1d��� 
 �

0

�

dk
2c̄Dk2

�Dk2�2 + �2 �17�

=
2c̄

�D�
�

0

�

d�k�D

�



�
Dk2/�

�Dk2/��2 + 1
�18�

=
2c̄

�D�
�

0

�

dq
q2

q4 + 1
�19�



c̄

�D�
. �20�

Now the variance of measurements averaged over a time �int
becomes

���C�2�1d 
 �
����1/�int

d�

2�
SC

1d��� �21�


�
����1/�int

d�

2�

c̄
�D�

�22�



c̄

�D�int

. �23�

We see that in one dimension, the variance of concentration
measurements declines only as the square root of the mea-
surement time. This is in contrast to the three-dimensional
case, where the standard deviation of the noise declines as
the square root of time but the variance declines in direct
proportion to the measurement time, as seen in Eq. �14�.

In the following sections we expand on these general re-
sults by presenting a calculation that explicitly couples dif-
fusion to the kinetics of binding and unbinding to or from a
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target site. However, because the target site dimensions are
as small as a nanometer, there is concern about whether dif-
fusionlike models are appropriate or not. We first point out
that we are by no means the first to apply the diffusion equa-
tion down to the length scales characterizing individual mol-
ecules: in the chemical physics literature there are numerous
examples where diffusion-limited association rates are com-
puted within this framework, and even small deviations from
the theory are taken seriously. For the general application to
biomolecular context, see the review in Ref. �15�; a concrete
case that couples 1D and 3D diffusions in an association
problem for a lac transcription factor is derived in Ref. �4�,
and has been generalized to curved DNA geometry in Ref.
�5�.

With this remark in mind we note that our aim is to com-
pute the equilibrium behavior of the occupancy of the bind-
ing site on long-time scales. We do not track the evolution of
motion of a single molecule along the DNA, but actually
imagine a number of molecules diffusing in the bulk and
along the DNA. Our results will concern the noise in the �
→0 limit, or, more precisely, the noise averaged over times
which are much longer than the characteristic time that the
TF particle needs to diffuse over length scales of the receptor
or sliding length. Concretely, the noise in gene regulation is
generally averaged on the cell division or protein lifetime
scale, both of which are in the range of at least minutes,
while diffusion across a region 1 nm in size at D

1 	m2 /s will take on the order of 1 	s, and will be com-
paratively short even if such region is bigger by 2 orders of
magnitude. This means that—over the relevant time-
scale—we will be able to define an ensemble of particles that
samples the spatial neighborhood of the binding site ex-
tremely well and will thus be justified in using the diffusion
equations. We expect that our continuous approach is inap-
propriate for probing small distances at short times, but this
is not relevant here.

III. BINDING WITH 3D DIFFUSION

If transcription factors bind specific sites on the DNA to
control the rate of gene expression, then the noise in the
regulated gene product will contain a contribution from the
noise in the occupancy of the specific site. Here we want to
compute this noise contribution, starting with the case where
the transcription factors find their cognate site by 3D diffu-
sion alone and progressing toward more complicated trans-
location strategies in the following sections.

In this section we briefly review the calculations of Ref.
�13�. Consider a cell volume with an average concentration c̄
of TFs present, and a binding site located at x0=0. The tran-
scription factor molecules can diffuse with a bulk diffusion
constant D3, bind to the specific site at a rate k+c, and disso-
ciate back into the free solution at a rate k−, according to the
following set of equations:

�c

�t
= D3�

2c − ṅ��x − x0� , �24�

ṅ = k+c�x0,t��1 − n� − k−n . �25�

To determine the fluctuations in the binding site occupancy
n, we linearize the equations about the mean occupancy
n�t�=�n�t�+ n̄ with n̄=k+c̄ / �k+c̄+k−�, and around the mean
concentration, c�x , t�=�c�x , t�+ c̄, and write the perturbations
as Fourier modes,

�n�t� =� d�

�2��
e−i�t�ñ��� , �26�

�c�x,t� =� d�

�2��� d3k

�2��3e−i��t+k·x��c̃k��� . �27�

We are looking for the power spectrum of fluctuations in
occupancy, which we can define by

��ñ����ñ������ = 2���� − ���Sn��� . �28�

If there exists a low-frequency limit, Sn��→0�, and we
average the noise for a time �int that is longer than all other
relevant timescales in the problem, we can �by analogy with
the arguments leading to Eq. �14�� use it to calculate the
observable variance by computing 
n

2=Sn��→0� /�int.
Having introduced the necessary notation, we can com-

pute the fluctuations in concentration at the binding site, x0
=0, from Eq. �24�,

�c̃�x0,�� = i��ñ� d3k

�2��3

1

− i� + D3k2 . �29�

This integral is ultraviolet divergent, and must be cut off at
�= �

a , where a is the binding site size; keeping leading terms
in i� one obtains,

�c̃�x0,� → 0� =
i��ñ

2�D3a
. �30�

In linearizing Eq. �25�, we should take account of the possi-
bility that the rates k� themselves are fluctuating; but as
explained in Ref. �13�, these fluctuations are constrained by
detailed balance, k+ /k−�exp�F /kBT�, where F is the free-
energy difference between the bound and empty states of the
site �the binding energy�. The result is that

− i��ñ = −
�ñ

�c
+ k+�1 − n̄��c̃�x0,�� + k−n̄
�F̃ , �31�

where �c
−1=k+c̄+k− is the time scale of occupancy fluctua-

tions, 
=1 /kBT, and �F̃ is the fluctuation in the binding
energy; this is the “force” that is thermodynamically conju-
gate to the “displacement” �n; for details see Ref. �13�.

After substituting the local concentration fluctuations, Eq.
�30�, into Eq. �31�, one can finally use the fluctuation-
dissipation theorem to compute the power spectrum of the
noise in occupancy,
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Sn��� =
2kBT

�
Im

�ñ

�F̃
. �32�

The result of Ref. �13� was that, in the case of 3D diffusion
to the binding site, the low-frequency limit of the occupancy
noise power spectrum is

Sn�� → 0� =
2n̄�1 − n̄�2

k−
+

n̄2�1 − n̄�2

�D3ac̄
. �33�

The first term corresponds to the binomial switching fluctua-
tions as the occupancy of the specific site changes between
full and empty; this term depends on the microscopic details
of the TF-DNA interaction �here embodied by the off-rate
constant k−�. The second term is caused by the fluctuating
diffusive flux to the binding site, and provides a lower bound
on the noise, independent of details. Expressed in terms of
the equivalent concentration fluctuations, Sc���=Sn���� dn̄

dc �−2,
the noise spectrum for the second term is

Sc�� → 0� = c̄/�D3a , �34�

with the associated fractional variance

�
c

c̄

2

=
1

�
�

1

D3c̄�int

�
1

a
, �35�

where, to facilitate comparison with results that follow, we
explicitly pull out the leading numerical factor and
1/�effective binding site size�. This is the noise lower bound,
consistent with the result of Eq. �14� for �=a, that depends
solely on the rate of 3D diffusion D3, the binding site size a,
and the amount of time averaging that the system performs,
�int.

IV. BINDING WITH 1D DIFFUSION

Consider the case where the diffusion in bulk does not
occur, and the TF is only free to slide along the length of the
DNA. Let ��x , t� denote the 1D concentration along the DNA
contour, which we imagine to be stretched in the x̂ direction,
and let D1 be the corresponding diffusion constant. Equa-
tions �24� and �25� remain unchanged but for the new nota-
tion, i.e., c�x , t�→��x , t� , D3→D1 , �2→�x

2; we will use q
to denote the Fourier variable conjugate to x. We again need
to calculate �as in Eq. �29�� the change in concentration at the
binding site in response to fluctuations in the occupancy of
the site itself, and we find

��̃�x0,�� = i��ñ�
−�

� dq

�2��
1

− i� + D1q2 . �36�

This integral diverges as q→0 if we set �=0, but in contrast
to the discussion above there is no problem as q→�, echo-
ing the results for the simpler problem in Sec. II. The full
result is that

��̃�x0,�� =
i��ñ

2D1
�− i�/D1

. �37�

Note that unlike Eq. �30�, this result does not contain the
binding site dimensions. Using Eq. �37� we compute the dif-

fusive contribution to the noise power spectrum �cf. Eq. �34�,
but no limit �→0�,

S���� =
�̄

�2�D1

. �38�

The noise variance is obtained by integrating the noise power
spectrum, as in the arguments leading to Eq. �23�,

�
�

�̄

2

=
2

�

1

�2D1�int�̄
. �39�

We see that the noise variance declines as 1 /��int, consistent
with the simpler calculation of concentration fluctuations in
Eq. �23�. This again is in contrast to our intuition that vari-
ances should decline as 1 /�int, which is the result for binding
coupled to 3D diffusion. The difference between 1D and 3D
can be understood by realizing that in 1D diffusion, a particle
leaving the binding site at the origin has a large probability
�in fact, probability 1� of returning back to the origin. A
receptor trying to estimate the local concentration of TFs will
therefore be unable to collect samples that are truly indepen-
dent, and the variance in the measurements will consequently
decrease at a rate that is slower than expected from averaging
over independent measurements.

Suppose that the DNA with the sliding TFs is embedded
into the cytoplasm, where the bulk concentration of TFs is c̄;
the TFs can jump onto the DNA at a rate �per unit length�
�+c̄, where we expect �+
D3. The TF will stay on the strand
for a residence time, �r=�−

−1, where �− is the rate for disso-
ciating from the DNA. There will be an equilibrium between

the 1D and 3D concentrations, �̄=�+�rc̄, so that c̄� �̄ /�rD3.
With these identifications, the noise variance can be rewritten
in a form similar to the result in Eq. �35�,

�
c

c̄

2

=
�2

�
�

1

D3c̄�int

�
1

�D1�r
2/�int

. �40�

Here, the effective binding site size is aeff=�D1�r
��r /�int.

Naively, one could think that the effective site size would be
equal to the average length that the TF explores during 1D
diffusion on the DNA, b=�D1�r, and therefore aeff
b, but
that would be wrong: the effective site size depends on �int to
compensate for the highly correlated fluctuations in 1D dif-
fusion. Because �int��r �16�, the effective site size will be
much smaller than b. The reduction in the noise expected in
the naive picture—because the size of the binding site, a, is
replaced by presumably much larger length explored by 1D
diffusion, b—must in reality be traded off against the longer
required integration time. As a result, it is not immediately
clear whether 1D diffusion decreases the noise lower bound
compared to 3D case.

V. COMBINED 1D AND 3D DIFFUSION

In the discussion so far we have been missing a parameter
that would interpolate between two qualitatively different
noise regimes: the 3D result of Eq. �35� and the 1D result of
Eq. �40�. If the rate for dissociation from the sliding state
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into the bulk is increased, the 1D case must approach the 3D
result; the residence time will grow ever shorter and will, at
some scale, break the strong correlations reflective of the 1D
sliding mode with its high probability for returning to the
origin.

A. Perfect mixing in bulk solution

We first solve a simplified case where the TF diffuses on
the DNA, but if it dissociates into the bulk, it mixes very
quickly and there is no correlation between the point of dis-
sociation and subsequent reassociation to the DNA strand.
We expect that the divergence observed in the pure 1D case,
Eq. �36�, will now get regularized. The dynamical equations
for this case are

dn

dt
= k+��x0,t��1 − n� − k−n , �41�

��

�t
= D1

�2�

�x2 − ṅ��x − x0� − �−� + �+C , �42�

dC

dt
= �−� dx��x,t� − �+LC . �43�

Here, C�t� is the bulk concentration that is perfectly mixed
and therefore does not have any spatial dependence; TFs in
the bulk are enclosed into a box with a side of length L and
the DNA inside is an infinitely thin line of length L; and �−
and �+ are rates for transitioning between 1D concentration �
and the bulk C. When linearized and written out in terms of
their Fourier components, the equations couple to the zero

mode, ��̃�q=0,��, differently than to nonzero modes,

�− i� + 1/�c��ñ = k+�1 − n̄���̃�x0� + k−n̄
�F , �44�

�− i� + D1q2���̃q = i��ñ − �−��̃q + �+L�C̃ , �45�

�− i� + �+L��C̃ = �−��̃q=0. �46�

We use Eq. �45� at q=0 together with Eq. �46� to express �C̃
and substitute it back into Eq. �45� for nonzero q; it is then

straightforward to write ��̃�x0� as

���x0� =� dq

�2��
i������ñ

− i� + D1q2 + �−
�47�

=
i�����
2�D1

�ñ
��− − i�

, �48�

where

���� = 1 +
�−�+L

�− i� + �−��− i� + �+L� − �−�+L
. �49�

Note that as �→0, ���� will diverge; before computing the
power spectrum of fluctuations Sn using Eq. �32� we there-
fore need to expand Eq. �47� to the leading power of i�. On

the other hand, the q integral in Eq. �47� now converges due
to the �− term in the denominator.

After some algebra, the effective power spectrum in the
concentration fluctuations is

S��� → 0� =
�̄

2�D1�−
�1 +

1 − �

�1 + ��2
 , �50�

where �=�+L /�− is the ratio of on and off rates for going
into 1D solution. The �-dependent expression in parenthesis
has a minimum of 7/8 at �0=3, and therefore a noise floor
exists that cannot be eliminated by some convenient combi-
nation of the rate parameters.

Rewritten in terms of the “equivalent concentration” c̄

= C̄ /L3=�−�̄ /�+L3��−�̄ /D3, the concentration noise floor is
�cf. Eq. �40��,

�
c

c̄

2

=
7

16
�

1

D3c̄�int

�
1

�D1�r

. �51�

This is the result we might naively have expected, namely,
that sliding along the DNA creates a larger target, of size
aeff�b. But we get this result only because we have assumed
that the TF can repeatedly dissociate into a well-mixed bulk
solution, instantly losing the memory of the point along the
DNA from which it dissociated.

B. Diffusion in bulk solution

We will now solve the coupled 3D-1D diffusion problem
without assuming that in the bulk solution the transcription
factors mix perfectly. The relevant quantities are schematized
in Fig. 1.

We describe the system by the following set of equations:

dn

dt
= k+��x0,t��1 − n� − k−n , �52�

���x,t�
�t

= D1
�2��x,t�

�x2 −
dn

dt
��x − x0�

+ �+c�x,R = 0,t� − �−��x,t� , �53�

�c�x,R,t�
�t

= D3�
2c�x,R,t� − ��+c�x,R = 0,t�

− �−��x,t����y���z� . �54�

We have again assumed that DNA is stretched along the x
axis and that it is an infinitely thin molecule. � is a function
of only one variable, x, while c is a function of coordinate x
and radial coordinates R that are perpendicular to the x̂ di-
rection.

We linearize and Fourier transform the equations as fol-
lows:

− i��ñ = −
�ñ

�c
+ k+�1 − n̄���̃�x0� + k−n̄
�F̃ , �55�

− i���̃q = − D1q2��̃q + i��ñ − �−��̃q + �+�ĉq, �56�
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− i��c̃q,k�
= − D3�q2 + k�

2 ��c̃q,k�
+ �−��̃q − �+�ĉq,

�57�

where again q is the spatial Fourier variable conjugate to x

and k� is conjugate to R. Note that ��̃q is function only of q,
while �c̃q,k�

is a 3D Fourier transform of the bulk concen-
tration fluctuations that depends on both q and k�. Finally,
�ĉ�q ,R=0 ,�� are Fourier modes of concentration fluctua-
tions along the x̂ direction, evaluated at the location of the
DNA strand, R=0.

We first express �c̃q,k�
from Eq. �57�,

�c̃q,k�
=

�−��̃q − �+�ĉq

− i� + D3q2 + D3k�
2 . �58�

The quantity �ĉq from Eq. �56� is an integral of �c̃q,k�
over

momenta k�,

�ĉq =� d2k�

�2��2�c̃q,k�
�59�

=� d2k�

�2��2

�−��̃q − �+�ĉq

− i� + D3q2 + D3k�
2 �60�

=
�−��̃q − �+�ĉq

4�D3
log�1 +

�2

k0
2 � . �61�

Here, k0
2=q2− i� /D3, and �= �

R is the cutoff at the �in-
verse� radial size of the DNA molecule, as in Eq. �29�. We
can substitute �ĉq from Eq. �61� into Eq. �56� to obtain the

expression for ��̃�x0�,

��̃�x0� = i��ñ� dq

�2��
1

− i� + D1q2 + �−F−1�q�
, �62�

F�q� = 1 +
�+

4�D3
log�1 +

�2

− i�/D3 + q2� . �63�

Compared to the pure 1D result, Eq. �36�, Eq. �62� now
contains a new term �−F−1�q� in the denominator; for �−
=0 this term vanishes and the result reverts to the 1D case as
expected. F�q� depends on the momentum q, whereas in the
perfect mixing case, Eq. �47�, it was simply equal to 1. The
integrand of Eq. �62� is still divergent for �=0 as q→0, but
the integral nevertheless converges. Assuming a nonzero �−,
the limit �→0 therefore exists, and we can integrate

��̃�x0,� → 0� =
i��ñ

��D1
I��,
� , �64�

where

I��,
� = �
0

� dt

t2 + 
�1 + � log�1 + t−2��−1 , �65�

� =
�+

4�D3
, �66�


 =
�−

�2D1
= � R

�b

2

. �67�

The noise power spectrum for occupancy follows in close
analogy to Eq. �33�,

Sn�� → 0� =
2n̄�1 − n̄�2

k−
+

2n̄2�1 − n̄�2

��D1�̄
I��,
� . �68�

The effective spectrum of local concentration fluctuations
corresponding to the second term is �cf. Eqs. �34�, �38�, and
�50��:

Sc�� → 0� =
2�̄R

�2D1
I��,
� . �69�

The associated noise variance is

�
�

�̄

2

=
2I��,
�

�2D1�int�̄/R
. �70�

With the above definition of �, the equilibrium between 1D

and 3D concentrations turns out to be c̄= �̄ /4�D3��r. The
noise variance in concentration can be rewritten as

�
c

c̄

2

=

I��,
�

2��
�

1

D3c̄�int

�
1

R
. �71�

The result looks similar to the pure 3D diffusion case in
Eq. �35�: the noise due to concentration fluctuations has its

diffusion along DNA in 1D, D1
(x,t)

binding site
occupancy
n(t) at x0

bulk concentration
3D diffusion, D3

c(x,t)

k+ k-

b

2R

κ+ κ-

ξ

FIG. 1. The transcription factors can either be free in solution at
concentration c, or they can enter a region on the DNA where they
diffuse by sliding. The 1D concentration is denoted by ��x , t�. The
specific binding site on the DNA is at location x0=0; k+��x0� and k−

are the on and off rates for transitions between the 1D sliding state
and the bound state on the specific site; �+c is the rate per unit
length for transition onto the DNA from free solution, and �−=�r

−1

is the rate for dissociating from 1D solution into the 3D solution.
The effective radius of the DNA molecule is R and the “sliding
length,” or the average distance along the contour covered in a
single 1D random walk before dissociation, is b.
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length scale a �receptor size in pure 3D case� replaced with R
�effective DNA cross section in the combined 1D and 3D
case�, and the noise contribution term gets multiplied by the
prefactor that we examine next.

We expect the parameter �=�+ /4�D3 to be close to 1 for
diffusion-limited approach to DNA. Imagine that the area
that TF attempts to hit in order to bind nonspecifically to the
DNA is a cylindrical segment of DNA with radius R and
length b. If we were treating the cylindrical DNA segment as
a sphere of radius b, then Smoluchowski on-rate limit

4�D3b would apply �17�. In the first approximation, the on
rate per unit length, �+, would then be 4�D3 and �=1. Exact
derivations for Smoluchowski limit in simple geometries
were reviewed in Ref. �15�; for elongated objects �prolate
ellipsoid with long semiaxis b and short semiaxis R�, the
diffusion-limited rate is given by 4�D3b / ln�2b /R�, and
therefore �
 ln−1�2b /R�. � is hence less then one, and has a
weak logarithmic dependence on the ratio of the scale of the
persistence length and the effective radius of the DNA.

The parameter 
 is approximately the square of the ratio
between the cross section of the 1D cylinder �the “target”
that 3D diffusion has to hit� and the average “sliding length”
b along the DNA. R must be of order of several nanometers;
while b is, at DNA stacking length of a=0.3 nm per base
pair and 100 bp average diffusion length �6,22�, around b
=10–100 nm. It is therefore not unreasonable to assume that
the factor 
 could be as low as 

10−3–10−2. The corre-
sponding decrease in noise relative to pure 3D diffusion is
shown in Fig. 2. Importantly, note that for values of 
 span-
ning 4 orders of magnitude, the noise reduction spans a range
of only 
5.

Note that as 
→� one should recover the pure 3D diffu-
sion result. Looking back at expression for I�� ,
� in Eq.
�65�, as 
 increases, the t2 term in the denominator of the
integrand is becoming irrelevant. If we neglect it completely,
the integral is solvable analytically,

I��,
 → �� = 
−1��x

�
+ ��
 , �72�

where �x= �
a is the cutoff at the binding site size along the

DNA, and �x /�=R /a. Inserting the integral in the large 

limit into the noise result, Eq. �71�, we see that 
 cancels and
we get

�
c

c̄

2

=
1

2�
�� +

R

�a

 �

1

D3c̄�int

�
1

R
�73�

�
1

2��
�

1

D3c̄�int

�
1

a
, �74�

which is essentially the 3D result, Eq. �35�. This limiting
behavior is also clearly evident in Fig. 2, where the thick
lines are plotted with momentum cutoff �x /�=a /R=1
�which corresponds to the upper limit of integration in Eq.
�65� at t=1�, and the thin lines have �x→�. In the biologi-
cally relevant range for parameter 
, the two results do not
differ appreciably, making our conclusions robust with re-
spect to the precise value chosen for the cutoffs.

VI. DISCUSSION

One-dimensional diffusion of transcription factors along
the DNA has long been recognized as a possible explanation
for the observed speed with which transcription factors find
their targets. In contrast, the impact of this additional mode
of TF translocation on the noise in binding site occupancy
has remained unexplored. The question is important for two
reasons: first, the diffusive contribution to the noise in gene
expression must fundamentally limit the precision of tran-
scriptional regulation; and second, there is an appealing ar-
gument that 1D diffusion could drastically increase the target
area on the DNA that TFs have to find and correspondingly
lower the limiting diffusive noise. Here we show that this
intuitive argument is wrong—while there might be some re-
duction in the noise if the bulk diffusion is supplemented by
1D sliding, this reduction is not expected to be significant.

Much has been said about possible TF translocation strat-
egies on the DNA, such as three-dimensional volume ex-
change, local dissociation-reassociation reactions �hopping�,
sliding along the DNA and intersegmental transfers mediated
by DNA looping �3,18�, and about the ways in which these
mechanisms influence the target search times �6,19–21�.
While our model does not examine all of the proposed
mechanisms, we are ultimately only interested in what hap-
pens locally around the specific site, as opposed to comput-
ing global properties such as target search time statistics. As
a result, while rare but long-range excursions might be im-
portant in search arguments, they should not significantly

10�4 0.001 0.01 0.1 1

1.0
0.5

2.0

0.2

5.0

10�4 0.001 0.01 0.1 10
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�1D

�
3D
��

Σ
�3D
�

Α �
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Α � 0.1
Α �

1

FIG. 2. �Color online� Effective concentration noise level, com-
pared to the pure 3D diffusion model, as a function of parameters �
and 
. Parameter �=�+ /4�D3 is the per unit length on rate for
binding nonspecifically to the DNA, normalized by the Smolu-
chowski diffusion limit. Parameter 
= �R /�b�2 is approximately the
square of the ratio between the radius of the DNA cylinder and the
typical sliding length during a 1D diffusion excursion along the
DNA contour length; in this plot it covers the relevant range if
typical 1D diffusion length is as expected from search time opti-
mality arguments �order hundred base pairs�. Three values for � are
shown, spanning 2 orders of magnitude ��=1 solid, �=0.1 dotted,
�=0.01 dashed�. For each value of �, two curves are plotted: the
thin curve with �x /�=R /a→�, and the thick curve with �x /�
=1 �thin curves at given � have larger effective noise�. The latter
case in 
→� �short sliding length� limit converges to the pure 3D
diffusion result, as explained in Eq. �74�. Importantly, note that
while in both cases 
 extends over 4 orders of magnitude, the
relative decrease in noise is only of order 1.
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affect the noise as long as they are not the dominant form of
all bulk transfers; if they are, one would have the case dis-
cussed in Sec V A of perfect mixing upon dissociation. In
our noise calculations we also make rather crude approxima-
tions to the DNA geometry, assuming it is a straight cylinder
and neglecting the fluctuations in curvature. However, if the
search optimality arguments in Refs. �6,22� are valid, then
the 1D sliding lengths are on the order of or less than a
persistence length, and a straight rod approximation should
be sufficient for modeling a sliding diffusion excursion
around the binding site. Moreover, fluctuations that in the
extreme can lead to ring closure and facilitated TF interseg-
ment transport, happen on a time scale for which an upper-
bound estimate of 
4�10−3 s is given in Refs. �3,23�; this
is longer than an estimated time before dissociation in the
optimal search scenario �22�. Without actual measurements
of the relevant time and length scales it is clearly impossible
to rule out the effects of local fluctuations of DNA on the 1D
sliding process, but current estimates are at least consistent
with the idea that, locally, a straight rod approximation is
sufficient.

Despite much recent progress, experimental measure-
ments of 3D and 1D diffusion constants, the residence time
�r and even the absolute in vivo concentrations still remain a
challenge. In Escherichia coli, for instance, the GFP diffuses
with D3
7 	m2 /s, but this apparent diffusion constant can
be substantially reduced by a small change in the protein
�24�; the in vivo diffusion constant of lac was measured to be

3 	m2 /s �10�. In the Drosophila embryo, the in vivo dif-
fusion constant of the Bicoid-GFP fusion was measured us-
ing fluorescence recovery after photobleaching to be as low
as D3
0.3 	m2 /s �25�. 1D diffusion constants seem even
more elusive. On the one hand, based on a simple dimen-
sional analysis one could argue that D1
D3, corrected for
the possible interactions between the TF and the DNA that
generate “frictional effects”: this could reduce D1 by about
an order of magnitude from D3 based on theoretical argu-
ments �6�. Direct measurements, on the other hand, often
exhibit smaller than expected 1D diffusion constants. For
lac, for instance, the estimate is D1
0.05 	m2 /s �10� �or
D1
0.02 	m2 /s, with a large spread, in Ref. �9��; for RNA
polymerase in Escherichia coli D1
0.15 	m2 /s �26�. In
contrast, the DNA repair protein hOgg1 seems to diffuse
along the DNA with D1
0.5 	m2 /s, with D1 depending
strongly on the pH �27�. The 1D diffusion constant and the
DNA residence time �r �or, equivalently, the sliding off-rate
�−� combine into 
, which directly affects both the absolute
value of diffusion noise, as well as the relative noise in our
�1D+3D� vs pure 3D comparison, plotted in Fig. 2. In the
light of these remarks, one of our main findings is therefore
not only that the relative decrease in noise with added 1D
diffusion is small for a particular value of 
, but for a range
in 
 spanning 4 orders of magnitude.

To summarize, while our calculations are based on a num-
ber of simplifying assumptions, our conclusions nevertheless
reflect the basic differences in the diffusive processes in one
and three dimensions, in particular the high probability of
returning to the origin in 1D diffusion. The conclusions are
therefore not a consequence of the detailed assumptions
about the TF-DNA interaction, as we tried to show by pre-
senting first the “back of the envelope” arguments of Sec. II.
While our approach was based on the fluctuation-dissipation
theorem, we can also imagine extending the first passage
time methods to arrive at the noise associated with diffusion:
in calculating the “association rates,” for which the methods
of the mean first passage time are well developed, one is
really computing the mean association rates. For Poisson
processes, the variance in the flux due to diffusion scales
with the mean arrival rate, but in general this is not true, and
the behavior of the noise is a separate question. Extending
the mean first passage time formalism to give results on the
variance would thus allow for an independent calculation of
noise.

The diffusive contribution to the total noise in gene ex-
pression has only recently been recognized as significant
�13�. Metzler discusses the concept of “interaction volume”
around the regulatory site on the DNA and studies the prob-
ability that transcription factors will enter this volume in the
case of the �-phage infecting Escherichia coli bacterium,
concluding that the spatial fluctuations can be important in
genetic circuits �28�. Holcman et al. study the master-
diffusion equation in the context of signaling molecules
binding to and unbinding from ion channels �29�. The analy-
sis of Bicoid-Hunchback system in the development of the
fruit fly Drosophila melanogaster shows that the measured
signatures in the noise in Hunchback expression are consis-
tent with diffusive fluctuations in Hunchback’s regulator, Bi-
coid �30,31�. van Zon and co-workers �32� study the diffu-
sional component of the noise in Green’s function reaction
dynamics �GFRD� stochastic simulations and conclude by
noting that 1D sliding along the DNA could have important
effects on the noise power spectra. All these results point to
the basic physics of diffusion as setting a limit to precision of
a fundamental biological process, transcriptional regulation.
Our results indicate that this fundamental limit is not easily
evaded by the �still largely unknown� complexities of protein
motion along the DNA molecule.
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