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Glycolysis is one of the most essential intracellular networks, found in a wide range of organisms. Due to its
importance and due to its wide industrial applications, many experimental studies on all details of this process
have been performed. Until now, however, to the best of our knowledge, there has been no comprehensive
investigation of the robustness of this important process with respect to internal and external noise. To close
this gap, we applied two complementary and mutually supporting approaches to a full-scale model of glycolysis
in yeast: (a) a linear stability analysis based on a generalized modeling that deals only with those effective
parameters of the system that are relevant for its stability, and (b) a numerical integration of the rate equations in
the presence of noise, which accounts for imperfect mixing. The results suggest that the occurrence of metabolite
oscillations in part of the parameter space is a side effect of the optimization of the system for maintaining a
constant adenosine triphosphate level in the face of a varying energy demand and of fluctuations in the parameters

and metabolite concentrations.
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I. INTRODUCTION

The process of glycolysis, considered the paradigm of a
classical metabolic process, consists of a series of well-studied
steps. Nevertheless, the complete pathway of glycolysis still
presents important challenges concerning the quantitative
aspects of its robustness, its improvability by biotechnological
means, and its suitability as a basis for synthetic biology.

Glycolysis produces adenosine triphosphate (ATP) by de-
grading glucose, and such a process cannot be both maximally
fast and efficient at the same time, i.e., there is a tradeoff
between rate and yield [1-4]. In other words, organisms
having unlimited resources available will maximize the ATP
production rate by confining themselves to fermentation
(glycolysis only). By contrast, organisms that have limited
resources perform respiration, which has a slower rate of ATP
production, but a much higher yield per molecule glucose.
Stephani et al. [5] searched for signatures of optimization in
the structural features of ATP-producing pathways, concluding
that the existence of ATP-producing reactions at the end and
ATP-consuming reactions at the beginning of the glycolytic
pathway is a result of optimization.

Chandra et al. [6], who investigated a simplified model of
glycolysis, argue that those features that increase metabolic ef-
ficiency and robustness to disturbances, namely, a high degree
of autocatalysis and a not too fast response to fluctuations,
decrease the dynamical stability of the process and drive
it into sustained oscillations. Goldbeter [7] and Sel’kov [8]
identified the allosteric enzyme phosphofructokinase (PFK)
as the generator of these oscillations, as it is inhibited by
the product of glycolysis, ATP. In contrast, Bier et al. [9],
using a mathematical core model of glycolysis, found that
the oscillation frequency is sensitive to the change of several
parameters and conclude that regulation and control need to
be attributed to more than one step.
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These observations contributed to the discussion of the
past 60 years [10-16], whether the oscillations observed in
glycolysis are a side effect of other network features, or
whether they serve a particular purpose. Even more generally,
itis not yet fully understood whether the process of glycolysis
optimizes a particular singular characteristic, or whether it has
to be understood as a holistically adapted module—a question
at the core of systems biology [17].

Apart from oscillations, random fluctuations in the metabo-
lite concentrations can also cause instabilities. In order to
function properly and guarantee the cell’s survival, metabolic
networks need to be sufficiently robust against noise. Buzi
et al. [18] showed that the region of attraction of the fixed
point at which the cell operates is large, and that therefore
random fluctuations cannot easily push the system outside this
region.

While simplified core models of glycolysis provide useful
insights, a deeper understanding requires full-scale models.
Rizzi et al. [19] investigated a detailed model for glucose
transport into the cell in order to understand quantitatively the
response of the glycolytic pathway to a sudded glucose supply.
A detailed model for the entire pathway in Saccharomyces
cerevisiae was presented by Hynne et al. [20]. They included
all relevant reaction steps into the model and determined
the values of those kinetic parameters that have not been
measured by fitting the steady state of the model to all available
experimental data for Saccharomyces cerevisiae. They found
that the point of operation is near a Hopf bifurcation. This
model has since then been used for interpreting experiments
and for systematically performing model reductions [21,22].

In this paper, we will use the full-scale model by Hynne
et al. [20] in order to perform two mutually supporting types
of investigations: (1) a linear stability analysis under variation
of the parameters and fixed point concentrations, using the
generalized method developed by Gross and Feudel [23] and
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adapted to metabolic networks by Steuer et al. [24], yielding
the stability of fixed points and the occurrence of bifurcations
in dependence of general features of the system, without a
need to specify the steady state or the regulatory functions;
and (2) a numerical integration of the rate equations subject to
random noise in the concentrations to mimic imperfect mixing,
varying kinetic parameters and metabolite concentrations, and
evaluating fluctuations and correlations in the system.

Our main findings suggest the stationary ATP level remains
constant when glucose supply or ATP demand changes,
and that this behavior is robust in the presence of periodic
oscillations and stochastic fluctuations, reflecting imperfect
mixture of compounds within the cell. Furthermore, our results
resolve the puzzle of why some studies identified one enzyme
as the key player responsible for the oscillations, while others
found that several reactions affect the oscillations.

The paper is structured as follows. In Sec. I, we outline the
full-scale model of glycolysis in Saccharomyces cerevisiae,
followed by the generalized method and our implementation
of noise used for the analysis in Sec. III. Section IV presents
and explains the results of the two approaches. Finally, we
discuss our findings in Sec. V.

II. FULL-SCALE MODEL OF GLYCOLYSIS
IN SACCHAROMYCES CEREVISIAE

The process of glycolysis degrades glucose into pyruvate
in the cytosol of the cell. The essential reactions are shown
in Fig. 1. After the transport of glucose (Glc) into the cell
(reactions 1 and 2), the enzyme hexokinase (HK) catalyzes
phosphorylation of glucose (reaction 3). This process, which
moves one phosphate group of adenosine triphosphate (ATP)
to one molecule of glucose, serves as a temporary energy
storage. The products of this reaction are glucose 6-phosphate
(G6P) and adenosine diphosphate (ADP). As the cellular mem-
brane is permeable for glucose but not for G6P, the conversion
of glucose into G6P enables the cell to accumulate GOP.
GO6P is subsequently converted to fructose 6-phosphate (F6P)
by the enzyme phosphoglucoisomerase (PGI) (reaction 4)
or stored, using one molecule of ATP (reaction 22). F6P is
phosphorylated to fructose 1,6-bisphosphate (FBP) by the key
enzyme phosphofructokinase (PFK) at the expense of one
molecule of ATP (reaction 5). ATP is not only a substrate of
this reaction, but also an inhibitor of phosphofructokinase,
which is an allosteric protein. On the other hand, adenosine
monophosphate (AMP) is an activator of PFK. This key
regulatory step, the second phosphorylation, next leads to the
splitting of FBP into dihydroxyacetone phosphate (DHAP)
and glyceraldehyde 3-phosphate (GAP), mediated by the
enzyme aldolase (ALD) (reaction 6). DHAP is transformed
by triosephosphate isomerase (TIM) into GAP (reaction 7) or
converted into glycerol (Glyc), using one molecule nicoti-
namide adenine dinucleotide (NADH) (reaction 15). GAP
is oxidated by glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) using one molecule of NAD and adding a phosphate
group, producing 1,3-bisphosphoglycerate (BPG) (reaction
8). Each of the following two reactions produces one
molecule of ATP by transferring one phosphate residue to
adenosine diphosphate (ADP) (reactions 9 and 10). During
these reactions, BPG is converted into phosphoenol pyruvate
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FIG. 1. Metabolic reaction network of glycolysis in yeast,
adopted from Hynne et al. [20]. x = extern, out = species to be
export from the cellular volume, in = cellular intake.

(PEP), which is subsequently transformed into pyrovate (Pyr),
catalyzed by pyruvate kinase (PK). Cyanide (CN, ™), which
is imported into the cell (reaction 21), acts as an inhibitor
and prevents the inflow of pyruvate into the citric acid cycle.
Instead, Pyr is fermented by acetaldehyde (ACA) into ethanol
(EtOH) (reactions 11 and 12).

In this model, only glucose and cyanide enter the system
(reactions 1 and 2), and ethanol, glycerol, and acetaldehyde
diffuse through the membrane into the extracellular volume
(reactions 13, 16, and 18). This simplification leads to
two conservation laws: The total concentrations A = ATP +
ADP + AMP and N = NADH + NAD remain constant.
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Hynne et al. [20] built on results of extensive biochemical
studies to set up the rate equations and to determine the kinetic
parameters and the operating point, which was found to be
located near a Hopf bifurcation. The exact location of the
bifurcation point was found experimentally by using [Glc, ]y
as a bifurcation parameter.

This full-scale model of glycolysis in yeast provides
an excellent basis for further studies of the dynamics of
glycolysis. In order to obtain a deeper understanding of its
design principles, we applied two different approaches: (a)
We analyzed the model at its stationary state by a method that
focuses on the general features of the reactions and (b) we
integrated numerically the rate equations under the influence
of extrinsic and intrinsic noise. Extrinsic noise is due to
disturbances in the cell’s environment [25] and is modeled as
a variation of the parameters. Intrinsic noise is due to local
fluctuations in the number of molecules of each chemical
species and is modeled by adding random fluctuations to
the concentrations, deliberately violating the perfect-mixing
hypothesis.

III. METHODS

A. Generalized method

The generalized method, developed by Gross and Feudel
[23] and adapted to metabolic networks by Steuer et al. [24],
bridges the gap between structural kinetic modeling, based
on the stoichiometry alone, and explicit kinetic models of
metabolism [24]. By way of this method, we are able to
search in a large ensemble of models for bifurcations and
oscillatory regions via a local stability analysis. The approach
assumes that an explicit model is not necessary to study the
onset of oscillations. For example, in order to determine under
which conditions a steady state loses stability, only a linear
approximation to the system at this state is necessary, as one
just needs to know the eigenvalues of the associated Jacobian.

Instead of focusing on a particular set of differential equa-
tions, this approach is based on the parametric representation
of the Jacobian matrix, where each element has a well-defined
interpretation in biological terms [24]. Once the Jacobian
is constructed, the method gives a detailed account on the
dynamical capabilities of a molecular network, including
the stability of steady states, the possibility of sustained
oscillations, as well as the existence of chaotic regimes. The
analysis is quantitative and therefore assesses the robustness
of a system in a specified region in parameter space [24].

The approach decomposes the Jacobian J for m metabolites
and r reactions into a product of two matrices, denoted A and
O below, the elements of each of which have a well-defined
interpretation. This decomposition is obtained by starting from
the set of differential equations

s
7 = NV(S,k), (1)

where S and N denote the vector of metabolite concentrations
and the stoichiometric matrix, where v(S,k) denotes the
vector of reaction rates, which depend on the metabolite
concentrations S and on a set of parameters k. Under the
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assumption that there exists at least one state S fulfilling the
steady-state condition

Nv(S°,k)=0 (2)
and using the definitions
v;(8%) v;(S)
A;ji = N; == and (x) = L 3
J J Slo /’Lj( ) ])](SO) ( )
as well as the variable transformation
Si
Xi = E,
the Jacobian in the new variable x reads
0
J=AOF with ©F .= PE) @)

ox

The matrix A is fully defined by the stoichiometric matrix
N, a set of steady-state concentrations SO, and a steady-state
flux distribution [determined by r — rank (V) free parameters,
i.e., elementary flux modes] v". The matrix @% defines the
effective kinetic order of each reaction with respect to the
metabolites.

For each element of the r x m matrix @, we can specify
a well-defined interval of possible values for the elements
©% without referring to the explicit functional form of the
particular rate equation; for example, ®% = 1 corresponds
to a simple mass-action model, while values € [0,1] repre-
sent Michaelis-Menten kinetics (for further information see
Ref. [24]).

Drawing entries of ©% from a random distribution gen-
erates efficiently a large ensemble of possible Jacobians for
the glycolysis network. We select those models that lead to
sustained oscillations, i.e., that have a positive real part of the
largest eigenvalues, with complex conjugated imaginary parts.
We can then compare the average steady-state values of @%
within the subensemble of these oscillating models to the initial
value in order to obtain information about the influence of each
reaction on the stability of the system. A similar procedure
can be performed for the metabolite concentrations and for the
elementary flux modes. This procedure allows us to identify
those reactions and metabolites that have a strong influence on
the dynamics of glycolysis.

B. Influence of noise

Contrary to the generalized method, which is based on
the general structure of the rate equations and a local stability
analysis, the second route taken in this work focuses directly on
the influence of noise on the dynamics of glycolysis. Real cells
do not show well-mixed intracellular and extracellular phases;
rather, the molecules are subject to diffusive motions through
the cell, leading to cytosolic fluctuations of the metabolite
concentrations. We model the dynamics and these fluctuations
in the concentrations § by a stochastic differential equation,
as recently discussed in Ref. [26],

S=fF(S.ki)+pBS-W, (5)

with W a (vectorial) Wiener process of (component wise)
variance 1 and vanishing average. The global ratio 8 gives
the “noise” strength relative to the absolute concentrations.
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Again, k is the set of parameters of the reaction kinetics. In
the following, we assume stationarity, so that f in Eq. (5) does
not explicitly depend on time ¢. This stochastic differential
equation can be solved numerically by an explicit order
1.5 Runge-Kutta method [27] with sufficient accuracy.

To evaluate the influence of noise on the dynamics of gly-
colysis in yeast, we will analyze the proportion of oscillating
systems compared to the system without noise, the mean values
and standard deviation of the metabolic concentrations, and the
resulting time-averaged correlation matrix. This is repeated for
several sets of slightly varied parameters k in order to account
for external noise and uncertainty in these parameters, too.

IV. RESULTS

A. Generalized method

We applied the generalized method to the full-scale model
of glycolysis outlined above around the empirical operation
point, which is located close to a Hopf bifurcation. With this
method, the stability of a fixed point is evaluated as a function
of the values of the generalized parameters. We performed
three different series of evaluations, during each of which one
type of parameters was varied while the others were kept at the
operation point. The variation of a set of parameters was done
by choosing at random each parameter value from an interval
of a width of 5% around its value at the operation point. For
each series, 10° sets of parameters were generated, and the
eigenvalues of the Jacobian were computed numerically using
a GNU Scientific Library (GSL) routine for real nonsymmetric
eigensystems [28].

Then, we determined the mean values of the sampled
parameters for the subset of oscillating systems and plotted
the natural logarithm of the ratio of these values to the overall
mean, similar to the procedure performed in [24]. Figures 2—4
show the result of this analysis. A positive (negative) value
means that the parameter takes a larger (smaller) value in
oscillating systems than the original value of Hynne e al.
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FIG. 3. (Color online) Dependency of the occurrence of oscil-
lations on the saturation parameters. Shown is the natural logarithm
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Figure 2 shows the influence of the metabolic concentra-
tions on the occurrence of oscillations. The generalized method
allows us to vary the fixed point metabolic concentrations
while retaining the linear combination of elementary flux
modes and all saturation parameters @% as in Hynne et al.
This type of investigation cannot be done with other methods,
where the variation of one quantity usually affects many other
quantities. Metabolites that affect the oscillations most are
those located in the center of the network (G6P, F6P, FBP, GAP,
DHAP), together with those participating in the conservation
laws (ATP, AMP, ADP, NADH, NAD), which define a core
of the system that controls the dynamics. Figure 2 shows that
a high concentration of ATP in the cell leads to oscillations.
This can be explained by the inhibitory effect ATP has on the
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FIG. 4. (Color online) Elementary flux modes of glycolysis,
adopted from Hynne et al. [20], and the dependency of the occurrence
of oscillations on linear combinations of elementary flux modes.
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key enzyme PFK: A high ATP concentration results in a strong
negative feedback and a slower flow through the network; both
effects favor oscillations. Similarly, an increased fixed point
concentration of F6P or FBP with fixed values of the saturation
parameters indicates a slower flow through the system and
therefore an increased tendency to oscillations.

Our findings generalize earlier studies on model reduction,
which found the same metabolites as the model core of
glycolysis in Saccharomyces cerevisiae [15,21,29,30]. Madsen
et al. [15] and Schmiedel et al. [29] found also that the insta-
bility of the stationary state originates from the autocatalytic
effect of ATP on its own production. A similar conclusion was
obtained by Kourdis er al. [22], who showed that glycolytic
oscillations cannot be understood as a simple cause-and-effect
chain through the intermediates of the system.

Figure 3 shows the results for varying saturation parameters
®%. A negative value is evidence of a parameter favoring
oscillations when a related concentration is closer to saturation,
i.e., when a change in the respective concentration affects the
reaction rate to a lesser extent. The figure shows that reaction
5 has the strongest effect on the oscillations. In addition,
reactions 3, 8, 12, 10, and 22 have a considerable effect, all
of which involve either ATP or NADH. The sensitivity to
the saturation with respect to Glc in reaction 2 indicates that
oscillations are induced when glucose concentration itself does
not affect the transport of glucose into the cell, i.e., when the
transport of glucose is saturated. This is the case when little
energy is used, i.e., when the flow through the system is slow.

Third, we analyzed the dependency of the oscillations on
the linear combination of elementary flux modes (see Fig. 4).
An elementary flux mode is a minimal set of enzymes that
can operate at a steady state with all irreversible reactions
proceeding in the direction implied thermodynamically. Any
steady-state flux pattern can be expressed as a non-negative
linear combination of these subpathways [31,32]. The ele-
mentary flux modes of glycolysis are shown in the upper
part of Fig. 4. Each subpathway must start with the entry of
glucose into the cell and is determined by the conservation of
internal metabolite concentrations. The possible combinations
of branches are limited by the stationary condition for the
conserved sums of metabolites, A = ATP + ADP + AMP
and N = NADH + NAD (see Hynne et al. [20]).

In oscillating models, the elementary modes b and ¢ are
overrepresented (see Fig. 4), i.e., those modes that include
reaction 15, the production of glycerol. Elementary modes a
and d in contrast include reaction 7, the conversion of DHAP
into a second molecule of GAP, leading to a twofold occurrence
of reaction 8 and all following reactions. Therefore, elementary
modes a and d lead to a high ATP production in the cell and
are preferred when ATP demand is high and when oscillations
are unlikely. In contrast, modes b and ¢ lead to a high storage
rate and much less ATP production. They dominate when ATP
demand is low, i.e., when the flow through the system is slow
and when the system tends to oscillate.

All these findings suggest that oscillations are a mere side
effect of the negative feedback built into the pathway in
order to keep the ATP concentration within desired limits.
In order to test the extent to which the system manages to
maintain the ATP level, we simulated time series by direct
numerical integration of the rate equations. We determined
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FIG. 5. ATP concentration in the stable (left-hand column) or
oscillating (right-hand column) system with ATP consumption rate
ky3 being doubled (first row) or halved (second row) after 30 min.

the stationary behavior for different rates of ATP consumption
(reaction 23). Figure 5 shows the effect of doubling or halving
the rate of reaction 23 on a stable and an oscillating system.
In the left-hand column the system is initialized with the
kinetic parameters in the stable regime (bifurcation parameter
[Gley]o = 17), and in the right-hand column the system
is initialized with the kinetic parameters in the oscillating
regime ([Glc,]o = 24; for other parameter values, see the
Appendix). After 30 min, the ATP consumption rate k3 is
either doubled (first row) or halved (second row). While a
reduced consumption rate drives the system toward stronger
oscillations, the mean ATP concentration changes barely.
Doubling the demand reduces the ATP level only by 5%. Our
investigations of the response of the system to noise in the
next section will support this finding: The system evolved
such that the mean ATP level remains constant when overall
rates change.

B. Influence of noise

We simulated 844 perturbed systems with 5% noise on
the relative concentrations. Each system was assigned kinetic
parameters that were chosen at random within a 5% interval
around the operation point given by Hynne et al. [20]. After a
transient period of 100 min, we started to analyze a time series.
These analyses gave the correlation matrix, the proportion
of oscillating systems, as well as the means and standard
deviations of the metabolite concentrations.

Figure 6 exemplifies time series of a system with and
without noise. The oscillations in the system without noise
have a fixed phase relation among the different metabolites.
G6P and F6P are in opposite phase to FBP, i.e., metabolites
before and after reaction 5 are out of phase. Because of the
conservation of the sum of ATP, ADP, and AMP, two of the
three metabolites oscillate in phase, whereas the third must
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FIG. 6. (Color online) (a) Oscillations in the deterministic system and (b) the system under the influence of noise.

show the opposite phase. Due to conservation of the sum of
NADH and NAD, these two metabolites have opposing phases.

Correlations between metabolites are shaped by a
combination of stoichiometric and kinetic effects [33]. One
would expect a high correlation of metabolites directly
connected to each other. However, it has been shown [34] that
this assumption does not need to hold in all cases, because the
variance in enzyme concentrations affects the metabolites by
equal amounts, but in different directions. In contrast, metabo-
lites having no direct connection can show a high correlation.
Camacho et al. [34] tried to reveal the underlying mechanisms
and found that metabolites in chemical equilibrium have a
nearly perfect positive correlation, leading to the assertion
that negatively correlated metabolites are out of equilibrium.
Moderate correlations between metabolites suggest a “hidden
causality,” namely, a shared enzyme. Another factor affecting
correlations is mass conservation, which is mandatory
in metabolism; common examples are NAD-NADH and
ATP-ADP-AMP.

We quantify the correlation C;; of substance i and j in the
simulated time series by computing the instantaneous cross
correlation [35] of their respective concentrations ¢; and c;:

m;

Tax
C,'j = C,'(l‘)~Cj(l).
t=1

1
Tmax
In Fig. 7, the correlation matrix for the noisy system shows
strong correlations of extracellular metabolites and strong
correlations between input (Glc,) and output (EtOH, ACA,
Glyc, and the extracellular forms, respectively). As can be seen
in Fig. 6, extracellular metabolites do not show oscillations.
Then, high correlations arise due to a simple mechanism: More

input into the system generates more output. Furthermore, the
three metabolites FBP, GAP, and DHAP that form the central
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triangle in the network are highly correlated, because their
reactions are fast. Those metabolites located next to each other
in the network and associated with the conversion of ATP
into ADP or NADH into NAD or the reverse reactions, are
correlated negatively. Additionally we found anticorrelations
between ATP and ADP-AMP and between NAD and NADH.

Using a fast Fourier transform analysis, we evaluated in
how many of the 844 systems metabolites show oscillations.
The Fourier spectrum was computed based on a sampling
frequency of 8.33 Hz. The data was smoothened by aver-
aging over 30 adjacent data points. We determined whether
the spectrum shows a maximum in the sampling range of
[1/2; 1] min~", which contains the oscillation period of ~40 s
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FIG. 7. (Color online) Correlations of metabolites’ mean values.

021913-6



ROBUSTNESS OF GLYCOLYSIS IN YEAST TO INTERNAL . ..

7T T
with noise (5%) —
without noise

0.8 | 1

0.6 q

04 r b
02 | 1
0.0 =

=

>

=9

proportion of oscillating schemes

[ | | B O | | I |
SO A A A D A <C<?<m R e R
i m m 20 =
COSLESZIRELSUCEE2226
A <mﬁ &)

FIG. 8. (Color online) Proportion of oscillating systems of the
844 simulations.

of the original system. This approach allows to understand
potential (resonance) frequency shifts due to noise. Figure 8
shows the fraction of systems in which each metabolite
oscillates in the noisy simulations. For comparison, the
corresponding proportion in the noise-free system is also
shown (with the same internal parameters). When noise is
added, the proportion of oscillating systems increases by some
30%, as can be seen for the metabolites PEP, F6P, BPG, FBP,
ATP, ADP, GAP, DHAP, G6P, and NAD. The extracellular
metabolites Glc,, ACA,, Glyc, and EtOH, oscillate in fewer
systems when noise is added.

In the absence of noise and at the operation point determined
by Hynne et al., the concentrations of CNy, Glyc,, ACA,, and
GAP do not fluctuate. CN, oscillates only in very few systems
in the absence of noise.

The finding that the core metabolites are more prone to
oscillating when noise is added is in agreement with the general
observation that white noise can induce sustained oscillations
when a system is near a Hopf bifurcation and would show a
dampened oscillation in absence of noise. This is a resonance
effect [36].

A potential explanation for the loss of oscillations in the
external metabolites is the fact that they accumulate the noise
of the previous reaction steps, and therefore the random
fluctuations become so large that the signatures of oscillations
are lost due to a bad signal-to-noise ratio.

Next, we investigate which kinetic parameters affect the
occurrence of oscillations in the noisy setup. We call a
system “oscillating” if NADH shows oscillations. We choose
NADH as a reference since experimental data are almost
exclusively determined in relation to the NADH concentration.
We compare the mean of the parameters of the oscillating
systems with the respective mean of all simulated systems and
calculate the natural logarithm of this ratio. Figure 9 shows
the result of this analysis. A positive (negative) value indicates
that the parameter takes a larger (smaller) value in oscillating
systems than the original value of Hynne et al.

In contrast to Fig. 3, many reactions affect the oscillations
equally strongly, and reaction 5 is not the dominant one. We
explain this difference by the fact that the parameters are varied
differently in Fig. 3 than in Fig. 9. In Fig. 3, the saturation
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FIG. 9. (Color online) Influence of individual parameters in the
system with noise on the occurrence of oscillations.

parameters were varied for fixed metabolite concentrations—
this can only be realized by a simultaneous variation of the
reaction constants.

We conclude from these results that, while the saturation
parameters of reaction 5 are the main determinants of the
oscillations, these saturation parameters depend on several
kinetic parameters of the original model. Therefore, a variation
of each of these parameters can induce oscillations. This
explanation resolves the contradiction between the conclusions
by Bier et al. [9] and those by Goldbeter [7] and Sel’kov [8]
mentioned in the Introduction.

Next, we evaluated the robustness of the reaction network
to noise. From a bioengineering point of view, important
measures of robustness are the mean values of concentrations
and their standard deviations.

Figure 10 shows the means and time-course standard
deviations of all metabolites from our 844 simulations. For
reference, we show also the original values from Hynne et al.
The reference line of 5% is a first approximation to the order
of magnitude of the standard deviation. It would be exactly
realized if all metabolites were uncoupled. However, the
reaction network topology and the enzyme kinetics increase
the magnitude of fluctuations in some concentrations, while
suppressing such fluctuations in others: A striking feature is
the small fluctuation in ATP, which indicates that in oscillating
systems and in stable systems the mean ATP level remains
constant for most if not all 844 simulations.

Other metabolites with small error bars are ADP, AMP,
NAD, and NADH, which are also related to the cellular energy
supply. This indicates the importance of a stable amount of
energy, but can additionally be induced by conservation laws.
The network appears to have been evolved such that the ATP
level is kept at an optimum level. Even with noise, the system
manages to keep the energy level constant, i.e., reaction 5
ensures that the remaining steps of glycolysis are adjusted to
the level of ATP. One mechanism for achieving a constant ATP
level is the interception of fluctuations by an internal buffer,
such as FBP: In the systems with noise, FBP is the only internal
metabolite that has a standard deviation larger than the noise
level, and a considerable deviation of its mean from the value
at the operation point.

FBP is highly correlated with DHAP and GAP, i.e., it
affects reaction 6 (see Fig. 1). If FBP accumulates in the cell,
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FIG. 10. (Color online) Mean and standard deviation of all
metabolites analyzed for the 844 simulations. Top: Mean concentra-
tions and the original mean values from Hynne e? al. [20] are shown.
Error bars are standard deviations from sampling of the 844 different
replica. Bottom: Standard deviation in the time series of metabolic
concentrations. Again, error bars are standard deviations from the
sampling over the 844 parameter choices. For reference, we show
also the corresponding 5% noise level imposed on the metabolites’
concentrations (horizontal line).

reaction 6 runs faster, leading to fluctuations in the external
metabolites. Indeed, the metabolites that show a significant
standard deviation and a shift of their mean value are EtOH,
EtOH,, and Glc, . In addition, Glc has a shift of its mean value,
and CN, has a large standard deviation. All these metabolites
are at the boundary of the network. There is no need to regulate
the values of their concentrations, and in any case no such
regulation is built into the model by Hynne et al. The reason
why Glyc and Glyc, as external metabolites do not have large
fluctuations lies in the very small reaction rate of diffusion
reaction 16. The export of Glyc is very slow, so that fluctuations
in the interior of the cell do not affect this reaction.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have investigated the susceptibility of the
full-scale model for glycolysis to internal and external noise.
We applied a diverse set of tools and approaches, in particular
generalized models and numerical integration of the stochastic
differential equations. For both approaches, we generated an
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ensemble of systems subject to an external noise of 5% on the
kinetic parameters.

The generalized method revealed that the saturation of the
PFK reaction has the strongest influence on the occurrence of
oscillations. This reaction is catalyzed by phosphofructokinase
and inhibited by ATP; it introduces a negative feedback into
the process of glycolysis. When the original kinetic parameters
are varied instead of the saturation parameters, many reactions
appear to affect the occurrence of oscillations. Due to its
generic nature, which takes into account only those effective
quantities that affect the eigenvalues of the stability matrix, the
method of generalized models can thus identify the general
features of a model that are relevant for a certain type of
dynamical behavior much more clearly than the standard
approaches based on the original parameter sets. In fact, this
is the main difference between the generalized models and
metabolic control analysis, which is also based on a linear
stability analysis of stationary points. If the exact functional
form of the chemical reactions involved in the different
reaction steps is not precisely known, the generalized method
has the advantage that it only relies on a few generic features.

Our investigations revealed that the strong negative feed-
back and the longer time delay that are present at higher ATP
concentrations are the mechanism that causes the oscillations.
This situation manifests itself also in a predominance of those
metabolic pathways that produce less ATP, as revealed by
studying the influence of the different elementary flux modes
on the occurrence of oscillations.

Since oscillations occur when a significant amount of
ATP is present and the flow through the network is slow,
they cannot be the result of an optimization of the network

TABLE 1. Metabolites’ concentrations used for simulations of
the stable system (bifurcation parameter [Glc,]o = 17) and for the
oscillating system ([Glc, ]o = 24) [20].

Metabolite S8 11 (MM) Sexcillating (MM)
Glc, 0.8559 6.6700
Gle 0.2074 2.7200
G6P 3.9858 4.2000
F6P 0.4671 0.4900
FBP 3.9281 4.6400
GAP 0.1060 0.1150
DHAP 2.7036 2.9500
BPG 0.0003 0.0002
PEP 0.0379 0.0410
Pyr 3.6556 22.1500
CN, 5.2368 5.1900
ACA 1.3477 1.5500
ACA, 1.1718 1.3490
EtOH 18.4863 19.5600
EtOH, 15.8094 16.7470
Glyc 3.8219 4.3800
Glyc, 1.6848 6.6700
ADP 1.4945 1.5000
ATP 2.1094 2.1000
AMP 0.3300 0.3300
NAD™ 0.6617 0.6500
NADH 0.3300 0.3300
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TABLE II. Rate constants, maximum velocities V,,, and parame-

ters of glycolysis in Saccharomyces cerevisiae [20].

Reaction Rate constants, V,,, and parameters
1 Yool 59.0000
ko (min~") 0.0480
[Glc, Jop (mM) 18.5000
2 Vo (mM min) 1014.9600
Kocie 1.7000
Koigep 1.2000
KZIIG6P 7.2000
P, 1.0000
3 Vs (MM min~!) 51.7547
Kiatp 0.1000
Kscie 0.0000
K3paie 0.3700
4 Vi (MM min~") 496.0420
Kacep 0.8000
K yrep 0.1500
Kieq 0.1300
5 Vs,, (mM min~") 454327
Ks 0.0210
Ks 0.1500
6 Ve; (mM min~!) 2207.8200
Ver (mM min~") 11039.1000
Kerpp 0.3000
Keaap 4.0000
Ke¢puar 2.0000
Keicar 10.0000
Koo 0.0810
7 Vo (MM min~!) 116.3650
KipHaP 1.2300
K7GAP 1.2700
Kreq 0.0550
8 Vg (mM min~) 833.8580
Ksgap 0.6000
Kgprg 0.0100
Kgnap 0.1000
Kgnapu 0.0600
Kseq 0.0055
9 kos (mM~! min~") 443866.0000
ko, (MM~ min~") 1528.6200
10 Viom(mM min~1) 343.0960
Ki0app 0.1700
K iopep 0.2000
11 Vitm(mM min~1) 53.1328
K 0.3000
12 Viom(mM min~") 89.8023
Kizaca 0.7100
13 ki3 (min~") 16.7200
15 Vism (mM min~") 81.4797
K 1snapu 0.1300
K spHap 25.0000
K isiapH 0.0340
K ismap 0.1300
16 kie (min~") 1.9000
18 ks (min~") 24.7000
20 koo (mMM™! min~") 0.0028
21 [CN-To (mM) 5.6000
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TABLE II. (Continued.)

Reaction Rate constants, V,,, and parameters

22 ko, M~ min~") 2.2593

23 ka3 (min~™") 3.2076

24 k24f (HlM min’l) 432.9000
ko4 (MM min~") 133.3330

for maximum yield or maximum rate. Our study rather
suggests that the oscillations are a side effect of other design
principles of the process of glycolysis. However, oscillations
can be exploited by the cell for other purposes, such as
intracellular and intercellular communication and regulatory
functions [37]. Oscillations carry the information that there is
plenty of energy supply. Indeed, glycolytic oscillations were
observed to be synchronized, implying the coupling of the
metabolism between different cells. Richard er al. [38] and
Bier et al. [39] conclude that cells can influence each other
via a shared concentration of ACA, which is involved in
the conserved NAD-NADH cycle. They state that in the case
of fast synchronizing processes the cells would immediately
synchronize their ATP concentrations and consequently their
oscillations. But due to its slow dynamics relative to the
glycolytic oscillations, the synchronization might be a driving
force toward equalizing the ATP concentrations. In the model
by Hynne et al., synchronization of all cells is assumed [20],
and this might be the ultimate cause of the constant level
of ATP.

Our numerical simulation of the model with noise supports
the hypothesis that the glycolysis pathway evolved such that
it operates robustly: In particular, the mean ATP level in the
stationary state changes very little when the ATP consumption
rate changes by a large amount or when extrinsic or intrinsic
noise is added to the system. The phase correlations that
are present in oscillating systems in the absence of noise
remain the same in the presence of noise. Our findings thus
complement and extend the findings by Buzi et al. [18] that
the region of attraction of the fixed point at which the process
operates is large. We also found that while the concentrations
of most internal metabolites have small standard deviations in
the presence of noise, the metabolites at the boundary of the
network appear to accumulate the fluctuations.

While the stationary ATP level is very robust, it can
nevertheless change transiently, as reported by the authors of
Ref. [40], who measured the ATP level in cells that had been
starved and were then given a certain amount of glucose. In
this experimental setup, the ATP level declined after addition
of glucose until the glucose reservoir was depleted, and then
increased again.

To conclude, our synergistic methodology based on a gen-
eralized method and on numerical integration in the presence
of noise of a full-scale model of glycolysis, provides strong
evidence that the design principle of this network is robustness
and that oscillations are a side effect of the negative feedback
that is required to achieve this robustness. For redesign in
bioengineering by in silico optimization techniques [41,42]
this robustness implies an additional criterion that constitutes
a challenging multiobjective optimization problem.b
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Tables I-III show the metabolic concentrations, the values
of the kinetic parameters and the rate equations in the

TABLE III. Rate equations in the model of glycolysis in Saccharomyces cerevisiae [20].
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