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A minimal description of the inherent states of amorphous solids is presented. Using field theory, applicable
when a system is probed at long length scales, it is shown that athermal amorphous solids have long-range
correlations in their stresses, as recently observed in supercooled liquids, colloids, and granular matter. Explicit
predictions for the correlators are presented, in both two and three dimensions, in excellent agreement with
simulation data on supercooled liquids. It is shown that when applied to solids with strictly repulsive interactions
the simplest naïve theory leads to a paradox. This paradox is resolved, and it is shown that a nontrivial non-Gaussian
theory is necessary for such materials. Modifications to the correlators are shown, at the saddle-point level. In all
cases, “equations of state” relating fluctuations to imposed stresses are derived, as well as field equations that fix
the spatial structure of stresses in arbitrary geometries. A holographic quantity in three-dimensional amorphous
systems is identified.
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I. INTRODUCTION

Amorphous solids have degrees of freedom (DOFs) in their
inherent states that have no counterpart for perfect crystals.
Both for glasses at low temperature and for out-of-equilibrium
athermal solids like granular matter, foams, and emulsions,
precise characterization of these inherent states remains an
unsettled problem. While microscopic details of inherent
states will vary from material to material, certain macroscopic
properties may be universal. Recent evidence for universality
comes from two fronts.

First, there have been many observations of long-range
stress correlations in amorphous solids. In simulations of
model granular materials [1,2], model glasses [2], and deeply
supercooled liquids [3–5], the spatial shear-stress correlator
has quadrupolar anisotropy and a power-law decay ∝ 1/rd in d

dimensions. Strain correlations measured experimentally show
similar behavior, both for colloidal glasses [6–8] and granular
materials [9]. In anisotropic photoelastic-disk packings, a
model granular material, direct measurements also evidence
long-range stress correlations [10,11].

Second, a large research effort is devoted to understanding
the plasticity and eventual yielding of amorphous solids. It
is accepted that plasticity is initiated by local instabilities,
deemed shear transformations, which can then, through long-
range elastic coupling, trigger further instabilities, leading to
avalanches of plastic activity. This paradigm has been explored
in detail in computer simulations of glass formers [12–15],
and is supported by experimental measurements on colloidal
glasses [6,7], granular media [9,16], and emulsions [17]. One
strand of research is dedicated to prediction of localized
instabilities from particle positions [18,19]. A second strand
of work aims to predict the mesoscopic avalanche properties
and macroscopic plastic flow curves [20–22].

The relation between long-range stress correlations and
localized shear transformations is not entirely straightforward.

On one hand, Lemaître showed that elastic relaxation of so-
called Eshelby transformations is sufficient to explain long-
range stress correlations [3,5]. On the other hand, for granular
matter the elastic range is extremely small, such that essentially
all observed deformation is plastic [23,24], casting doubt on
this explanation when applied to these materials. A promising
alternative is to argue that mechanical equilibrium is sufficient
to explain both the long-range stress correlations and localized
activity [25]. In this paper we present a theory aimed in this
direction.

We will present a field theory of inherent structures, which
we refer to as an “Edwards field theory.” This references early
contributions of Edwards [26,27], who sought to establish a
basis for a theory of granular matter. Edwards’s proposal was
to consider the uniform ensemble over all metastable states,
now known as an Edwards ensemble, which in principle can be
treated by the methods of statistical physics [28]. This simple
statement belies two great difficulties, which have preoccupied
the field in the past decades: first, establishing the relevant
macroscopic control parameters that characterize metastable
states; second, actually performing the highly constrained sum
over metastable states.

Initially, many works considered the volume ensemble of
N hard grains in a volume V [27,29–31]; later, the stress
tensor σ̂ was added as a relevant variable [1,10,11,26,32–40].
Despite some empirical successes [29,33,39,41,42] the ap-
proach has remained controversial, because the assumption
of a flat measure has never been justified. Moreover, even
assuming the flat measure as a theoretical starting point, the
sum over metastable states is extremely difficult to perform.
Significant effort has been expended in finding alternative rep-
resentations of relevant DOFs in order to work on the manifold
of metastable states [34,43–51], and exact computations have
been performed in the limit of infinite dimensions [52], but so
far no exact computation of a genuine Edwards ensemble has
been performed in physical dimensions.
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In this paper we attempt to overcome these difficulties.
First, we abandon the proposal of a flat ensemble, which
was never well justified. In order to constrain the theory,
we instead restrict consideration to probing at small wave
number kD � 1, where D is a typical particle diameter; then
standard methods of statistical field theory can be used to
determine which interactions are relevant. Second, follow-
ing pioneering work by Henkes and Chakraborty on two-
dimensional (2D) granular matter [1,32–34], we work in the
continuum by constructing a field theory. In doing so, it
is possible to work directly on the manifold of metastable
states, and see the nontrivial consequences arising from this
restriction.

We will not restrict attention to granular matter, but treat
in a common framework all athermal amorphous solids with
finite-range interactions in two and three dimensions. Initially,
we consider generic glasses with both attractive and repulsive
interactions, and then derive the additional features in solids
with strictly repulsive interactions. Our results shed light on
several of the above issues. Namely, we will predict the
following.

(1) Athermal amorphous solids have long-range stress cor-
relations. Existence of correlations follows from mechanical
equilibrium alone. An explicit formula for the stress correlator
will be derived in field theory, both for two and three dimen-
sions. These results are in excellent agreement with simulations
of supercooled liquids.

(2) Equations of state relate external control parameters to
applied stresses, explicit forms of which are presented.

(3) Field equations govern the spatial distribution of stress
in arbitrary geometries. These will be derived, along with
appropriate boundary conditions.

(4) A new controllable quantity in three-dimensional (3D)
systems will be presented, the Beltrami volume.

(5) For solids with strictly repulsive interactions, the equa-
tion of state and field equations are modified. Connected stress
correlators are nontrivial at all orders. The pressure field then
has long-range correlations, which may explain recent results
[2].

A brief account of these results has been presented in [53].
Our tensor notation is such that all contractions are explic-

itly indicated. We alternatively use index-free notation, when
appropriate, and indices when necessary, with the Einstein
convention. The identity tensor is denoted δ̂. We let tensor
divergences act on the first index, e.g., ∇ · Â = ∂iAij , while,
by convention, the tensor curl operates on the final index, e.g.,
∇ × Â = εijk∂jAlk . In two dimensions, we make frequent use
of the antisymmetric tensor, ε12 = −ε21 = 1, ε11 = ε22 = 0.
We recall that ε̂−1 = −ε̂ = ε̂t . In two dimensions, it is useful
to introduce an inverted-hat notation, for tensors,

Ǎ ≡ ε̂t · Â · ε̂ = δ̂ trÂ − Ât , (1)

where the last equality follows from εij εkl = δikδjl − δilδjk .
We will frequently use the simple relation

Ǎ : B̂ = Â : B̌. (2)

II. STRESS CORRELATIONS IN
MECHANICAL EQUILIBRIUM

Inherent states are defined by conditions of mechanical
equilibrium. Unlike crystals, for which these constraints are
trivially satisfied by symmetry, in amorphous materials me-
chanical equilibrium imposes nontrivial constraints on the mi-
croscopic DOF. In this paper, we consider the constraints only
on stress; microscopically, forces and particle positions are of
course coupled, but we can marginalize over the geometric
DOF to work in the reduced “stress ensemble” [1,36]. We
suppose that this marginalization is benign, in the sense that
no long-range interactions are induced by marginalization.
Future work will examine the circumstances under which this
assumption is correct.

Before constructing a complete theory of the stress en-
semble, it is instructive to see how the conditions of me-
chanical equilibrium strongly constrain the tensorial form of
correlation functions, without any additional hypotheses. This
point has recently been vividly demonstrated by Lemaître
in two-dimensional systems [25]; here we will show how a
gauge formulation of the problem immediately gives a compact
and complete answer, and then generalize this result to three-
dimensional systems.

In the absence of body forces, the stress tensor of a system
in mechanical equilibrium must be symmetric, σ̂ = σ̂ t , from
torque balance, and solenoidal, 0 = ∇ · σ̂ , from force balance.
In two dimensions these equations are identically solved by
Airy’s representation

σ̂ = ∇ × ∇ × ψ, σik = εij εkl∂j ∂lψ, (3)

where ψ is known as the Airy stress function [54] and
ε12 = −ε21 = 1, ε11 = ε22 = 0. It is easily verified that for
any function ψ (�r ) both σ̂ = σ̂ t and 0 = ∇ · σ̂ are identically
satisfied. Moreover, this representation also exists at the parti-
cle scale [34,48,49,51]. The price of the gauge representation
is that stresses are invariant under the gauge transformation
ψ → ψ + �a · �r + b, for any constants �a and b. Stresses depend
only on the curvature of ψ .

The fundamental correlation function is therefore

Cψ (�r, �r ′) = 〈ψ (�r )ψ (�r ′)〉c, (4)

which is invariant under the gauge transformation ψ → ψ +
�a · �r + b. The stress-stress correlation function is then

〈σij (�r )σkl (�r ′)〉c = εimεjnεkpεlq∂m∂n∂
′
p∂ ′

qCψ (�r, �r ′). (5)

Assuming homogeneity, this can be written

〈σij (�r )σkl (0)〉c = εimεjnεkpεlq∂m∂n∂p∂qCψ (�r, 0). (6)

Since the pressure-pressure correlator is 〈p(�r )p(0)〉c =
1
4∇4Cψ (�r, 0), in periodic systems the full correlation function
can be written

〈σij (�r )σkl (0)〉c = 4P T
ij P T

kl 〈p(�r )p(0)〉c, (7)

where P T
ij is the transverse projector [55], which in Fourier

space is simply

P T
ij = εimεjn

kmkn

k2
= δij − kikj

k2
. (8)
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Equation (7) holds even in anisotropic systems; the tensorial
structure is entirely fixed by mechanical equilibrium.

From (6) one can easily determine all components of the
stress correlator if Cψ (�r, 0) is known. It will be the object of
later sections to derive the latter. But let us first extend the
above results to three dimensions.

On simply connected domains,1 the representation analo-
gous to (3) in three dimensions is

σ̂ = ∇ × ∇ × �̂, σil = εijkεlmn∂j ∂m�kn, (9)

where �̂, a symmetric second-order tensor, is the Beltrami
stress tensor [57]. Note that, by convention, the tensor curl
is defined by acting on the rightmost index, i.e., (∇ × �̂ )ij =
εikl∂k�j l . A discrete representation of �̂ also exists [49]. What
is the gauge freedom of �̂? For any vector field �p(�r ), the stress
tensor is invariant under the transformation �̂ → �̂ + ∇ �p +
(∇ �p)t , which thus constitutes a nontrivial gauge group [56].
Accordingly, �̂ has redundant degrees of freedom, and can be
further reduced. In the literature, one finds the Morera gauge,
where�ij = 0 if i = j , and the Maxwell gauge, where�ij = 0
if i �= j [57]. Completeness of both representations has been
proven for sufficiently smooth stress fields [58,59]. We will use
the Maxwell gauge �ij = δijψj (no sum on j ), with a residual
gauge group ψj → ψj + pj (�r ), with ∂kpj = 0, j �= k (thus
pj cannot be rotationally symmetric). Then the fundamental
correlation function is

Cij (�r, �r ′) = 〈ψi (�r )ψj (�r ′)〉c, (10)

which has at most six independent components, and is gauge
invariant. If isotropy and homogeneity are assumed, then this
has two independent components, A(�r ) = Cii (�r, 0) (no sum on
i) and B(�r ) = Cij (�r, 0) (i �= j ). As shown in Appendix A, all
stress correlators involving longitudinal components vanish,
so that again only the transverse-transverse stress correlator
survives, which now, however, is tensorial.

Although simple to derive in the gauge formulation, the
above results completely prescribe the tensorial structure of the
stress correlator, a major aim of previous works [3,5,25,60]. We
also see that material isotropy is not important in determining
this structure, although it would simplify the implied deriva-
tives. To obtain predictions for the correlation functions, we
now proceed to statistical mechanics.

III. GAUGE FIELD THEORY OF INHERENT STATES

A. Ensembles for athermal systems

Here we review and extend general arguments for construc-
tion of a statistical ensemble in systems where the Boltzmann-
Gibbs distribution does not necessarily apply [1,26,33,61–63].
We are interested both in glasses and out-of-equilibrium
athermal systems. For glasses, the probability distribution over
inherent states will contain a Gibbs contribution from the
energy at the glass transition temperature, but also an entropic
contribution, the “complexity” [52,64]. The latter is highly
nontrivial and can depend on all the parameters of the system.

1In multiply connected domains, topological excitations require
additional harmonic terms in σ̂ . See [56].

For athermal systems, we do not even have a Gibbs contribution
from which to begin a theory.

To construct a stress ensemble valid out of equilibrium,
we will therefore take an operational point of view: typi-
cally, physical three-dimensional systems can only be probed
through forcing at the boundary. Unlike thermally equilibrated
systems, an athermal ensemble needs to be explicitly explored
through systematic forcing. Such an ensemble can be explored
dynamically, as in quasistatic shear flow in a Couette cell, but
we need not restrict ourselves to this setting; indeed, most
numerical simulations and experiments simply use repeated
application of a preparation protocol. One can of course
imagine ensembles created by means other than boundary
forcing, especially in numerical simulation, such as by repeated
local probes. The difficulty with such ensembles is that they
allow Maxwell demons. The procedure we follow is analogous
to construction of classical thermal statistical mechanics, as
discussed more below.

In order for a variable to be controllable under an athermal
ensemble generated by boundary forcing, it must be holo-
graphic, that is, determined by boundary quantities only. The
stress tensor in a mechanically equilibrated system is indeed
such a quantity, as can be seen by taking a tensorial moment
of the condition ∇ · σ̂ = 0:

0 =
∫

�

dV (∇ · σ̂ )�r =
∫

�

dV ∇ · (σ̂ �r ) −
∫

�

dV σ̂ , (11)

where our tensor notation is such that all tensor contractions
are explicitly indicated by dots. In the final equation, the
divergence theorem implies that

∫
dV ∇ · (σ̂ �r ) is a boundary

term, while the second term gives the volume integral of the
stress tensor, hence the latter is holographic. This result also
holds at the particle scale [65].

In addition to being holographic, controllable quantities
should be additive, so that the thermodynamic limit can exist.
Thus the true controllable quantity is

∫
�

dV σ̂ , also known
as the force-moment tensor. This should be compared to the
behavior of energy in classical statistical mechanics. Since
energy is conserved in time, its integral over time can written
as boundary terms involving initial and final times. Energy is
controllable in classical statistical mechanics in the same sense
as force-moment above.2

It is a surprising fact that in addition to
∫
�

dV σ̂ , there is
another holographic additive quantity depending on the stress
[67–69]. To see this, we initially consider two dimensions, and
use the Airy representation (3). One sees that the determinant
of the stress tensor is then

det σ = 1
2εij εklσikσjl = 1

2εij εklεimεkn(∂m∂nψ )σjl

= 1
2∂j [(∂lψ )σjl] (12)

2Note also that classical statistical mechanics of conservative sys-
tems, with nontrivial boundary conditions only in time, and Edwards
statistical mechanics, as defined here without time but with nontrivial
boundary conditions in space, are end members of a larger class of
theories in which boundary conditions can be nontrivial in space and
time. For example, Galley has shown that Lagrangian theories with
initial conditions in time, rather than boundary conditions, describe
the dynamics of dissipative systems [66].
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where we used ε̂T · ε̂ = δ̂ and ∇ · σ̂ = 0. Thus A =∫
�

dV det σ can be written as a boundary quantity. Note that
sinceψ has a gauge freedomψ → ψ + �a · �r + b, the fluxJj =
(∂lψ )σjl has a gauge-dependent solenoidal part. This does
not affect the obviously gauge-independent det σ = 1

2∂jJj . In
previous work, the discrete quantity corresponding to A has
been called the Maxwell-Cremona area [49,63,67–69].

Let us now show that a similar quantity also exists in
three dimensions, although to our knowledge it has never been
reported before. Using the gauge representation (9), simple
algebra (Appendix A) shows that the determinant of σ̂ is now

det σ = 1
3εlmn∂p[(∇ × �̂ )lqσpmσqn], (13)

which is a total divergence. The quantity A = ∫
�

det σ could
be called the Beltrami volume. As in two dimensions, the flux
Jp = εlmn(∇ × �̂ )lqσpmσqn has a gauge-dependent solenoidal
part.

Having identified controllable quantities
∫
�

σ and A, we
can construct a canonical ensemble in which the control
parameters are temperaturelike variables conjugate to σ and
A. This leads to an action

S0 =
∫

�

dV [α̂ : σ̂ + γ det σ̂ ], (14)

where α̂−1 has been called the angoricity [35], and γ has
been called the keramicity [40]. The justification for the
canonical ensemble is based upon an assumed factorization of
the probability distribution for macroscopic variables into that
of subsystems, and is discussed in detail in Refs. [1,33,61].
In such a generalized Gibbs ensemble, the temperaturelike
variables α̂ and γ are argued to be spatially constant [61].

To complete the specification of the probability distribution
of the stress field, we need to address (i) the hard constraints
necessary to impose mechanical equilibrium and (ii) the a pri-
ori probability with which each metastable state is sampled.
Since σ̂ = σ̂ t and 0 = ∇ · σ̂ are identically solved by the Airy
(2D) and Beltrami (3D) stress functions, we can efficiently
work on the manifold of metastable states by writing σ̂ as a
functional of ψ (2D) and ψi (3D). This leads to

P[σ̂ [ψ]] = 1

Z
ω[σ̂ [ψ]]e−S0[ψ], (15)

where ω is the sampling probability of the state defined by
σ̂ [ψ], and we use ψ to refer either the scalar Airy stress
function (2D) or its vectorial analog in the Maxwell gauge
(3D). It is implicit that in ψ space there is a UV cutoff
� ∝ 1/D, where D is the typical particle diameter.

In a strict canonical ensemble, the sampling probability
ω would be unity, as was taken in previous work on the
stress ensemble [33,34], although it was recognized that the
statistical mechanical formalism does not require this [36].
In fact, there is no general justification for the flat measure
out of equilibrium, even if it was observed to hold to a good
approximation in several model systems [41,42]. In general,
we expect the flat measure to be unrealistic for a simple
reason: since S0 can be written in terms of boundary quantities
only, if ω ≡ 1 then (15) would be invariant under arbitrary
diffeomorphisms in the bulk, limited only by the UV cutoff
�. This would allow arbitrarily wild fluctuations of the field
down to the scale �, which is not physical: a solid stores elastic

energy, and whenever elasticity is present stress fluctuations
will be penalized.

The sampling probability ω must thus be nontrivial. Initially
this looks hopeless, because for arbitrary ω nothing can be
computed, but we are rescued by the continuum limit. The
general theory of the renormalization group indicates that when
a system is probed at long length scales most of its microscopic
details are irrelevant [70,71]. For any theory with a Lagrangian,
power counting can be applied to see which terms are necessary
to retain in a general expansion

ω[σ [ψ]] = e− ∫
dV [A1[σ̂ ]+A2[σ̂ ,σ̂ ]+...], (16)

where each Ai is a differential operator linear in each argument.
Tacitly we are assuming that log ω contains only simple powers
of σ̂ and their derivatives, the usual Landau expansion. We will
return to this point below, when we discuss granular matter.

B. Solids with both attractive and repulsive interactions

To constrain ω, we need to consider the symmetry properties
of the stress tensor. Here we consider systems with both repul-
sive and attractive interactions; systems with only repulsive
interactions are considered in Sec. II C. With both attraction
and repulsion a term linear in stress, which is not invariant
under σ̂ → −σ̂ , will not ensure a well-behaved distribution;
for this a term quadratic in stress is necessary. In the continuum
limit, the lowest-order term necessary to tame fluctuations is
then η σ̂ : σ̂ . We assume that η defines the correct units in
which to construct the field theory, meaning that the term∫

dV ησ̂ : σ̂ survives in the continuum limit for any value of
η. Since the action is dimensionless, if we assign a dimension
+1 to lengths and a dimension zero to η, then σ̂ must have
canonical dimension3 −d/2. A term of the form ∂nσ q then has
a coupling constant with operator dimension δn,q = d − n −
qd/2. Relevant operators are those with δn,q � 0, since these
will, at least perturbatively, stay finite in the continuum limit
kD → 0 [70]. In d = 2, 3 this includes only q = 1, n � 1 and
q = 2, n = 0. Assuming reflection symmetry (no gravity), so
that a term gijk∂iσjk is excluded, the only new isotropic terms
added are η tr2σ̂ and g tr σ̂ 2. The leading anisotropic term is
αijσij , which we retain. Higher-order anisotropic terms are
possible, such as gaFijσijσkk , and under strongly anisotropic
forcing such terms would be necessary; this is discussed more
below.

We are thus led to consider

P[σ̂ [ψ]] = 1

Z
e−S[ψ], S =

∫
�

dV L[ψ], (17)

with

L[ψ] = α̂ : σ̂ + γ det σ̂ + 1
2η tr2σ̂ + 1

2g tr σ̂ · σ̂ . (18)

Both η and g should be positive to suppress fluctuations. As
usual, it is sufficient to compute Z = ∫

Dψ e−S to extract
the behavior of controllable quantities. For example, writing
x ≡ 1

|�|
∫
�

dV x(�r ) for a spatial average one easily sees

3Equivalently, we could define a rescaled σ̂ ′ = √
ησ̂ and find the

dimension of σ̂ ′ necessary to make
∫

dV σ̂ ′ : σ̂ ′ dimensionless.
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that

〈σ̂ 〉 = − 1

V

∂ log Z

∂α̂
, 〈σ̂ σ̂ 〉c = 1

V 2

∂2 log Z

∂α̂∂α̂
, (19)

〈tr2σ̂ 〉 = − 2

V

∂ log Z

∂η
, (20)

where V is the system volume.
At this stage, it is clear that we could have arrived at

(18) with power counting alone, without any consideration of
controllable quantities. However, this would miss an important
point: the parameters α̂ and γ are conjugate to holographic
quantities, and hence in principle under experimental control.
The “elastic” parameters η and g instead reflect the properties
of the particles and should not depend on details of the
experimental protocol.

We will see further the importance of this distinction below.
Note that in three dimensions this distinction between param-
eters is precise, but in two dimensions there is an ambiguity,
because det σ̂ = 1

2 (tr2σ − trσ̂ 2), so that γ, η, and g are not
independent; we will absorb g into η̃ = η + g, γ̃ = γ − g.

1. Infinite shear symmetry

Remarkably, (18) has an infinite-dimensional symmetry. In
two and three dimensions, respectively, consider the transfor-
mation

ψ (�r ) → ψ (�r ) + h(�r ) 2D, (21)

�̂(�r ) → �̂(�r ) + δ̂ h(�r ) 3D, (22)

where h(�r ) is harmonic, ∇2h(�r ) = 0, but otherwise arbitrary.
It is straightforward to compute that (21) and (22) leave the
pressure p invariant, and L itself invariant up to a boundary
flux, so that all such stress changes are symmetries of the action.
These are gauge symmetries of (17), but with a clear physical
meaning: since they preserve the pressure, they are increments
of shear stress. This symmetry is expected to play an important
role in the dynamics near inherent states, to be considered in
future work.

2. Two dimensions

We now consider 2D and 3D cases separately. In two
dimensions. the partition function to be computed is

Z =
∫

Dψ e−S, S =
∫

�

dV L[ψ], (23)

with

L[ψ] = α̂ : σ̂ + γ det σ̂ + 1
2η tr2σ̂

= α̂ : (ε̂t · ∇∇ψ · ε̂) + γ̃ det ∇∇ψ + 1
2 η̃ (∇2ψ )2,

(24)

where η̃ = η + g, γ̃ = γ − g. In the physical system, α̂, γ, η,

and g are constant in space. However, correlation functions can
be generated by allowing α̂ to be space dependent [70]. We let
α̂ = α̂ + α̂g (�r ) where the former controls the mean stress and

the latter generates correlation functions. One easily sees that

〈σ̂ (�r )σ̂ (�r ′)〉c = δ2 log Z

δα̂g (�r )δα̂g (�r ′)
. (25)

At the end of the computation, one can then set α̂g = 0 to
recover the physical ensemble.

It is useful to note that ψ is not translationally invariant. For
example, the solution to σ = ∇ × ∇ × ψ is

ψ = 1
2 �r × σ × �r = 1

2 riεij σ jkεklrl, (26)

which grows as r2. For this reason, in computing Z we cannot
disregard boundary terms with impunity. The equation of state
will in fact be determined by boundary fluxes.

Since L is quadratic in the field ψ, Z can be computed
exactly in the continuum limit. It is convenient to use the
“background field method,” where we let ψ = ψc + ψ ′ and
choose ψc to eliminate cross-coupling between ψc and ψ ′. This
procedure avoids complications from functional integrations,
and generalizes well to nonlinear situations. The result in the
thermodynamic limit (Appendix B) is log Z = −Sc − Sp with

Sc = 1

2

∫
dV α̂ : σ̂c, Sp = V �2

8π
log

η̃�4

e2
, (27)

where the “classical” part ψc must solve

∇4ψc = −η̃−1∇∇ : α̌ (28)

with boundary conditions

0 = �n · [α̌ + γ̃ σ̂c + η̃ δ̂(∇2ψc )],

0 = �n · [∇ · α̌ + η̃∇(∇2ψc )], (29)

where �n is a boundary normal, and we use the notation Ǎ ≡ ε̂t ·
Â · ε̂ = δ̂ trÂ − ÂT . We write ψc = ψ + ψg with ψ as above.
We see that in order to cancel the term α̌ in the boundary
conditions, σ̂ must satisfy 0 = α̌ + γ̃ σ̂ + η̃δ̂ tr σ̂ , which leads
to

σ̂ = 1

γ − g
α̂ − (η + γ )

(γ − g)(γ + g + 2η)
δ̂ tr α̂. (30)

This is the equation of state relating the temperaturelike
quantities α̂ and γ to the mean stress 〈σ̂ 〉 = σ̂ . If boundary
terms had been neglected from the outset, we would not have
obtained this equation. The inhomogeneous part ψg must
satisfy ∇4ψg = −η̃−1∇∇ : α̌g and the boundary conditions
(29) with α → αg . In an infinite domain, the solution to a
source α̂g = α̂0δ(�r ) is

4πη̃ ψg = −α log r2 + a cos 2θ + b sin 2θ, (31)

where

α̂0 =
(

α + a b

b α − a

)
. (32)

Boundary conditions can be applied by adding to ψg an
appropriate biharmonic function ψb, ∇4ψb = 0. As noted
above,L has a large symmetry: any harmonic function h(�r ) can
be added to ψ while only changing the action by a boundary
term. This symmetry is reflected here in the ability to add a
biharmonic function ψb to ψg .
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The solution to a general collection of sources α̂g (�r ′) =∑
i α̂iδ(�r − �ri ) is then obtained by superposition:

ψg (�r ) = −1

4πη̃

∑
i

[
αi log |�r − �ri |2

− ai cos 2θrri
−bi sin 2θrri

]
, (33)

where θrri
is the polar angle of �r − �ri .

Since the “phonon” part Sp does not depend on α̂, the
correlation function is

〈σ̂ (�r )σ̂ (�r ′)〉c = − 1
2δσ̂g (�r )/δα̂g (�r ′) − 1

2δσ̂g (�r ′)/δα̂g (�r ),

(34)

evaluated at α̂g = 0. For example, the pressure-pressure cor-
relator is

〈p(�r )p(0)〉c = 1

4η̃
δ(�r ). (35)

This is short range, but all second derivatives will have a 1/r2

decay with appropriate anisotropic dependencies, following
Eq. (7). Note that the prediction of a perfect δ(�r ) correlator is an
artifact of the truncation ofL to Gaussian order; if higher-order
terms were included in L, such as tr4σ , then the pressure-
pressure correlator would have an exponential decay over the
particle size length scale ∼ D, as observed in Ref. [1].

The correlator for ψ corresponding to (31) is

Cψ (�r, 0) = r2 log r

4πη̃
(36)

up to irrelevant terms that do not affect the stress correlator.
From this we can compute, for example,

〈σxx (�r )σxx (0)〉c = 3

8η̃
δ(�r ) + 2 cos 2θr + cos 4θr

4πη̃r2
, (37)

〈σyy (�r )σyy (0)〉c = 3

8η̃
δ(�r ) + − cos 4θr

4πη̃r2
, (38)

〈σxy (�r )σxy (0)〉c = 1

8η̃
δ(�r ) + −2 cos 2θr + cos 4θr

4πη̃r2
. (39)

In addition to the 1/r2 decay discussed above, several charac-
teristic properties of this solution were observed in previous
work [3]: the ratio of the δ(�r ) amplitude in the p correlator to
that of theσxy correlator is 1/2, and the ratio of the coefficient of
the cos 4θ terms to that of the cos 2θ terms is also 1/2. Similar
relations can be obtained for the normal stress difference
(σxx − σyy )/2 by symmetry. These results agree with those
of Henkes and Chakraborty in the macroscopic limit qD → 0.

Finally, the field equation ∇4ψc = 0 applies whenever
there are large-scale variations in σ arising from boundary
conditions. Since this is equivalent to the equation satisfied by
ψ in linear elasticity [72], solutions will coincide when stresses
are fixed on the boundary. To apply boundary conditions on
displacements, a proper treatment of geometrical variables is
necessary. This is left for future work.

3. Three dimensions

In three dimensions, we can proceed similarly. The
Lagrangian is now

L[�] = α̂ : σ̂ + γ det σ̂ + 1
2η tr2σ̂ + 1

2g tr σ̂ · σ̂ . (40)

We write � = �c + � ′ and find (Appendix C) that �c must
solve

0 = εlmiεnkj ∂m∂kαln + (η + g)δij∇2σc,kk

− (η + g)∂i∂jσc,kk − g∇2σc,ij (41)

subject to boundary conditions

0 = nk[αij εikl + γ εjmnσc,kmσc,ln + η εjklσc,ii + g εiklσc,ij ],

(42)

0 = nkεiml∂m[αij εjkn + η εiknσc,jj + g εjknσc,ij ], (43)

where nk is a boundary normal. We write �c = � + �g , where
σ̂ = ∇ × ∇ × � is constant. It is fixed by the equation of state

0 = αij + η δijσ kk + g σ ij + 1
2γ εiklεjmnσ kmσ ln. (44)

As with the 2D case, the partition function separates into its
classical and fluctuating contributions. The former is e−Sc with

Sc = 1

2

∫
dV [α̂ : σ̂c − γ |σ̂c|]. (45)

We have σ̂c = σ̂ + σ̂g , with σ̂ determined by the equation of
state. For a source α̂g = α̂0δ(�r ) at the origin of an infinite
domain, σ̂g is

gσ̂g = −α̂g − 2η

g̃
δ̂ ∇ · �u + η

g̃
tr αg + ∇�u + (∇�u)t , (46)

with

∇ · �u = − 1

8π

g̃

2η + g

[
α̂0 : ∇∇ − η tr α̂0

g̃
∇2

]
1

r
, (47)

�u = − 1

4π

[
α̂0 − η

g̃
δ̂ tr α̂0

]
· ∇ 1

r
− η + g

g̃

1

∇2
∇∇ · �u (48)

and g̃ = 3η + g. The complex tensorial structure resulting
from this solution precisely matches what was found in
Ref. [5]. For example, the isotropic part is

tr σ̂g = − 2α

2η + g
δ(�r ) − 1

2η + g
/̂α : ∇∇ 1

4πr
, (49)

where α̂0 = αδ̂ + /̂α with tr /̂α = 0. The correlator is determined
using (25). By power counting, the term in (45) dependent upon
γ is expected to be subdominant; for simplicity we will neglect
it. In this case, the correlator can be determined by Eq. (34).
The pressure-pressure correlator is short range:

〈p(r )p(0)〉c = 1

6η + 3g
δ(�r ), (50)

while the pressure-shear correlator will have anisotropies and
long-range decay determined by the Oseen tensor ∇∇r−1.

As in two dimensions, the classical equation Eq. (41) ap-
plies, with ∇α̂ = 0, whenever there are large-scale variations

033001-6



EDWARDS FIELD THEORY FOR GLASSES AND GRANULAR … PHYSICAL REVIEW E 98, 033001 (2018)

in σ̂ arising from boundary conditions. By taking a trace one
sees that ∇2p = 0 when ∇α̂ = 0 so that

0 = (η + g)∂i∂jσkk + g∇2σij . (51)

This is equivalent to the Beltrami-Michell equation of linear
elasticity [72], with an effective Poisson ratio

ν = −η/(η + g). (52)

4. Holography

From the above results we can see that the holographic terms
play a fundamentally different role from the others. Indeed, α̂

and γ appear only in the equations of state, and in boundary
conditions for the fluctuations. Since the latter have a negligible
effect in large systems, we reach the surprising conclusion that
α̂ and γ control the system-spanning �k = 0 fluctuations, but
not the finite wave-vector |�k| > 0 fluctuations. As a result the
stress-stress correlation function should have a discontinuity
or kink at �k = 0, which was indeed observed in Ref. [25].

To see these distinct fluctuations, let x ≡ 1
|�|

∫
�

dV x(�r )
denote a spatial average, and consider

Ce = 〈(p − 〈p〉)2〉, Cs = 〈(p − p)2〉, (53)

where 〈 〉 denotes an ensemble average. Ce measures the
ensemble pressure fluctuations while Cs measures spatial
pressure fluctuations. For d = 2 we find (Appendix D)

Ce = 1

2V (2η + g + γ )
, Cs = �2

16π (η + g)
− Ce. (54)

We see that the total fluctuations Ce + Cs are fixed by η and g

only, while the ensemble fluctuations depend additionally on
γ . This is an expression of the singularity at �k = 0.

C. Solids with strictly repulsive interactions

Previous work on the stress ensemble [1,33,36] has fo-
cused on dry granular material, for which contact forces are
strictly repulsive. This constraint, which implies p > 0 in the
continuum, significantly complicates evaluation of Z. Let us
first see what happens if we try to naïvely apply the previous
results. The local pressure p(r ) has a typical magnitude p(r ) ∼
p ± √

Cs + Ce; to ensure that the vast majority of forces are
positive, it would be enough to take p2 > Cs + Ce. In 2D
systems this implies that

η + g � 1

D2p2 , (55)

so thatη + g must diverge as the unjamming transition atp = 0
is approached. We recall that both η > 0, g > 0 to suppress
fluctuations, so in fact both η and g must diverge in this
limit.

Manually fixing η + g to satisfy (55) is extremely unnatural,
because it runs antithetical to the distinction between holo-
graphic and elastic contributions to the action; η and g should
not depend on externally controlled quantities, like p. Instead,
a condition like (55) should emerge as a result of imposing
p > 0 in construction of the theory. The deficiency in earlier
arguments is apparent: the sampling probability ω[σ̂ ] should
impose p > 0. Consider a patch of the system with pressure
p(�r ). Since the space of force states with all forces repulsive

is convex, the volume of force states with pressure ∼p(�r ) will
scale as p(�r )ν

′
, where ν ′ counts the number of force DOFs after

satisfying local constraints [62,67]. Since we have integrated
over all geometric DOFs, there will also be a contribution
from the number of geometric configurations for a given force
configuration. A simple argument suggests that for frictionless
disks the total from mechanical and geometrical contributions
gives ν ′ ≈ 2 near the jamming point.4 Over the entire system,
we therefore expect a contribution

ωP [σ̂ ] = eν
∫

dV log p(�r ) (56)

that enforces positivity of forces, with ν = ν ′N/V . However,
if we admit a term ν log p, then we must admit terms of the
form ∂n(log p)q , with n � d by power counting (log p has zero
canonical dimension). Ignoring for simplicity total derivatives,
which would correspond to more controllable quantities, we
have to add m|∇ log p|2. We are thus led to a Lagrangian

LP [ψ] = L[ψ] − ν log p[ψ] + 1
2m|∇ log p[ψ]|2, (57)

which preserves the infinite-dimensional shear symmetry,
since the new terms depend only on p.5 LP is not Gaussian,
and cannot be integrated exactly. The modification of the field
equation and the equation of state can be obtained by an
expansion to Gaussian order, detailed in Appendix E. Here we
present some results at the classical level, in two dimensions.
First, the leading modification to spatial fluctuations from ν is

Cs = �2

16πη̃R

− Ce (58)

where η̃R is the renormalized η̃ = η + g:

η̃R = η̃ + ν

4p2 , (59)

so that the inequality (55) is then predicted. This resolves
the problem with naïve application of the simpler Gaussian
model. Simulations of frictionless disk packings indicate that
Cs ∝ p2 to very good accuracy [1,2], indicating that η̃ plays a
subdominant role, as will be predicted below.

The field equation becomes nonlinear:

0 = ∇∇ : α̌ + η̃∇4ψc − ∇2

(
ν + m∇2 log ∇2ψc

∇2ψc

)
(60)

4For frictionless disks, there are NC = zN/2 DOFs in the forces,
where z is the coordination number of the packing. There are
additionally 2N geometric DOFs, the particle center positions. Force
balance removes 2N DOFs. Near the jamming point, force changes
correspond to grain movements of negligible amplitude, so that the
DOFs can be considered independent. Then the number of free
DOFs with a fixed mesoscopic pressure is approximated as Nν ′ ≈
NC + 2N − 2N − 1 ≈ zN/2. At the jamming point, z = 4, so that
ν ′ ≈ 2. A similar argument is made by Henkes and Chakraborty [1].

5For any function f , the first variation of
∫

dVf (p[ψ]) is∫
dVf ′(p)δp. Since, under the shear symmetry, δp = 0, the new

terms preserve the symmetry.
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with boundary conditions

0 = �n ·
[
α̌ + γ̃ σ̂c + 2η̃ δ̂ pc − δ̂

ν + m∇2 log pc

2pc

]
, (61)

0 = �n ·
[
∇ · α̌ + 2η̃∇pc − ∇

(
ν + m∇2 log pc

2pc

)]
, (62)

0 = �n · [∇ log pc]. (63)

From this we read off the equation of state

0 = α̌ + γ̃ σ̂ + 2η̃ δ̂ p − δ̂
ν

2p
(64)

which is easily solved for σ̂ . Despite its manifest nonlinearity,
the classical equation can be solved in some nontrivial limits.
Consider a number of sources

α̂ = α̂ +
∑

i

α̂iδ(�r − �ri ). (65)

Then using ∇2 log r = 2πδ(�r ) we see that

0 = ∇2

[
S(�r ) + η̃∇2ψc − ν + m∇2 log ∇2ψc

∇2ψc

]

where S(�r ) = (2π )−1 ∑
i α̌i : ∇∇ log |�r − �ri | contains the

source terms. This implies

S(�r ) + η̃∇2ψc − ν + m∇2 log ∇2ψc

∇2ψc

= h(�r ) (66)

where h(�r ) is harmonic, ∇2h = 0, and fixed by boundary
conditions. In asymptotically large systems, we can replace
the full boundary conditions (61)–(63) with the condition
that σ̂c → σ̂ as |�r| → ∞. In this case h(�r ) → h∞ = 2η̃p −
ν/(2p) as �r → ∞. But then the maximum principle implies
that h is constant and equal to h∞ everywhere.

The parameter m defines a length scale through

ξ =
√

m

4η̃Rp2 . (67)

Let us consider the regime where ξ � 1 in macroscopic units.
Then we can solve (66) perturbatively in ξ . At O(ξ 0), (66) is
simply a quadratic equation in ∇2ψc:

2η̃∇2ψc = h − S(�r ) +
√

[h − S(�r )]2 + 4η̃ν. (68)

We have taken the positive root to ensure that p � 0. We can
solve the resulting Poisson equation. In an asymptotically large
domain,

ψc(�r ) = ψs (�r ) +
∫

d2r ′ F [h − S(�r ′)]
4πη̃

log |�r − �r ′| (69)

where ψs (�r ) = 1
2 �r × (σ̂ − δ̂ p) × �r , which generates the de-

viatoric part of the mean stress, and F [h − S] = h − S +√
(h − S)2 + 4η̃ν. The stress tensor is

σ̂c(�r ) = σ̂ − δ̂ p + 1

4η̃
δ̂ F [h − S(�r )]

+ 1

4πη̃

∫
d2r ′ F [h − S(�r ′)]

1

|�r − �r ′|2 [δ̂ − 2�n�n]

(70)

where �n = (�r − �r ′)/|�r − �r ′|.

At the classical level, the partition function is approximated
by its saddle-point value, Z ≈ e−Sc , Sc = ∫

LP [ψc], and we
use (25) to extract correlators. Since the source function S(�r )
appears in a square root in (70), derivatives of σ̂c with respect to
α̂ will not vanish at any order. This then implies that nontrivial
stress correlations will be present at all orders. This should
be compared with the Gaussian theory, which predicts only
nontrivial pairwise connected correlation functions, with all
higher-order correlators fixed by Wick’s theorem.

In practice, extracting these higher-order correlators is oner-
ous. Here we will focus on the two-point pressure correlator,
the computation of which is outlined in Appendix E. The result,
in large systems and far from the boundary, is

〈p(�r )p(0)〉c = A δ(�r ) − (γ − g)
(F ′)2

8πη̃2

1

r2
, (71)

where F ′ = F ′(h − S)|S=0 = −8η̃p2(4η̃p2 + ν)−1. Here A

is the coefficient of the contact terms, which have many
contributions. The key result is that the pressure correlator
is no longer short range: it has a power-law tail, the sign of
which depends on the value of γ − g. Since γ and g can
be independently extracted using the equation of state and by
fitting the stress distribution, this result could be directly tested.

These results can be extended perturbatively in ξ . The main
effect is to renormalize the function F appearing above: at
O(ξ 2), it becomes

F → FR ≡ F + m
∇2 log F√

[h − S(�r )]2 + 4η̃ν
. (72)

The basic form of correlations is thus not affected, although
the coefficients will be. We note that at large ξ a new regime is
possible; in fact this regime corresponds to quantum gravity
in two Euclidean dimensions, for which many results are
available [73]. This connection will be discussed elsewhere.

IV. EXTENSIONS

A. Coulomb friction

In the previous section we showed that an inequality p > 0
leads to nontrivial modifications of the theory. For granular
materials, and for glasses in general, one may also expect
inequalities on the shear stress, such as

τ � μp, (73)

where τ 2 = (σij − δijp)(σij − δijp) is a deviatoric stress
scale, and μ is a Mohr-Coulomb friction coefficient. In models
of granular matter, an inequality of this form is commonly taken
to hold exactly at the scale of particle-particle contacts [74]. In
glasses this is not the case, but at a mesoscopic level, so-called
“elastoplastic” models used to investigate plasticity frequently
impose a criterion of the form (73) [22].

Similar arguments as applied for the constraint p > 0
can be applied to (73). One may expect terms of the form
νf log(μ2p2 − τ 2), and an associated gradient term. At the
Gaussian level, this will renormalize coefficients, while at
higher orders one may expect many nontrivial effects, possibly
relevant to plasticity. We leave this for future work.
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B. Structural anisotropy

We have assumed throughout that the material is isotropic
and reflection symmetric, although it may be subject to external
shear stresses, through anisotropic α̂. If subject to continued
shear forcing, or if the solid itself has been formed by shear
jamming, then it will retain anisotropy in the particle arrange-
ments, the “fabric.” In this case new terms should be added
to the Lagrangian. The lowest-order such term is gaFijσijp,
where Fij is a traceless fabric tensor. It is straightforward to
extend the previous results to this case; for the Gaussian model,
the field equation will resemble that derived by the author in
previous work [51]. The fluctuations will be modified from the
isotropic case, and long-range correlations will be present even
in the pressure correlator. We leave a full discussion of these
effects for future work.

Note also that gravity is a particular case of anisotropy,
which we have also neglected. A net force such as gravity
cannot be accommodated by stress functions, which identically
satisfy ∇ · σ̂ = 0. Thus in the presence of gravity, our theory
describes the stress state in the subspace satisfying ∇ · σ̂ = 0.

C. Topological excitations

Since stresses are given, in the gauge formulation, by
curvature of stress functions, these functions are not a priori
required to be single valued. If not, these could be subject to
vortexlike topological excitations, familiar from the theory of
2D melting [75,76]. In fact, it was shown in Ref. [51] by explicit
construction at the particle scale that the 2D discrete Airy stress
function is continuous at the smallest scale at which it can be
defined, thus precluding such excitations in two dimensions. It
is not known whether this result survives in three dimensions.

D. Geometrical variables

We have restricted our theory to the stress ensemble, where
any geometrical variables are assumed to have been marginal-
ized over. Previous work has considered the volume as an im-
portant additional holographic quantity [26,27,29–31,37]. At
the simplest level of description, a complete theory will lead to
a temperaturelike coupling for the volume, the “compactivity,”
and volume-stress couplings. If the volume only appears up to
quadratic order, then it can be integrated out, and the reduced
stress ensemble derived explicitly. In this case we will obtain
the stress ensemble considered here, with coupling constants
renormalized from their bare values. If, however, nontrivial
constraints are added to the theory, such as nonpenetration of
hard grains, then a non-Gaussian coupled theory will result.
We leave consideration of this for future work.

V. DISCUSSION

A. Behavior near the jamming point

Much of the recent work on amorphous solids has focused
on their behavior close to the jamming point where solids
lose rigidity altogether. A system frequently used in numerical
simulations is a packing of soft frictionless spheres, with a
one-sided linear elastic contact interaction, so that forces are
always repulsive [77].

We have argued above that the elastic parameters η and
g should not depend on the external driving conditions,
including the pressure. Dimensionally, η and g both have
units of length d/stress2. For this model, they must then be
proportional to 1/k2, where k is the spring constant of the
contact interaction. At the jamming point p/(kD2−d ) → 0,
thus ηp2 � ν and some simplifications occur. For example,
η̃R ≈ ν/(4p2), explaining the scaling of stress fluctuations
observed in Refs. [1,2]. Also, the term involving η̃ can be
dropped in Eq. (64).

B. Comparison with data

1. Equation of state

Numerous works in the granular matter community have
attempted to test proposed forms of P[σ̂ ] and extract the
temperaturelike quantities α̂ and γ from numerical and ex-
perimental data [1,33,39,63]. To explain the technique, let us
consider the theory with generic sampling probability ω and
write P[σ̂ ] as

P[σ̂ ] = ω[σ̂ ]

Z(α̂, γ )
e−α̂:�̂−γA (74)

where �̂ = V σ̂ andA = V det σ over a subsystem. α̂ and γ are
set by the global value of σ̂ through the equation of state. We
can then consider this equation as expressing the conditional
probability of observing �̂ and A in a subsystem with fixed
α̂, γ , i.e.,

P[�̂,A|α̂, γ ] = ω[�̂,A|α̂, γ ]

Z(α̂, γ )
e−α̂:�̂−γA, (75)

where there is an implied integration needed to produce the
density of states depending only on �̂ and A. Evaluating this
at two pairs of values of α̂, γ , but the same values of �̂,A, one
finds

R ≡ log
P[�̂,A|α̂1, γ1]

P[�̂,A|α̂2, γ2]

= log
ω1Z2

ω2Z1
− (α̂1 − α̂2) : �̂ − (γ1 − γ2)A (76)

where ωi = ω[�̂,A|α̂i , γi], Zi = Z(α̂i , γi ). The goal of the
“overlapping histograms” method is to use the linear depen-
dence of the latter terms in R on �̂ and A to extract α̂ and γ

up to additive constants. Of course, this is only possible if the
dependence of ω2/ω1 on �̂ and A can be neglected. We have
argued above that the parameters appearing in the sampling
probability, such as η and g, should not depend on external
parameters like the pressure. As discussed above, to reconcile
this fact with the observed behavior that suggests η̃R ∝ 1/p2,
one needs to incorporate nontrivial log p terms in the sampling
probability. After this modification, the assumption that ω is
indeed independent of globally applied stresses is theoretically
and empirically justified. Thus under such an assumption,
ωi = ω[�̂,A], and these terms cancel from R.

Let us note that since A = ∫
dV det σ̂ in the continuum,

in isotropic packings we expect A ≈ Vp2 and �̂ ≈ δ̂Vp.
Then (74) implies a noncentered Gaussian distribution for the
pressure, with modifications from ω.
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The first works to apply this method to the stress ensemble
[1,33] considered isotropic packings of frictionless disks, and
the Maxwell-Cremona areaAwas not considered. The authors
used the difference R(�1) − R(�2) and found that α ∝ 1/p.
This is recovered in our theory from Eq. (64) if η ≈ γ ≈ g ≈ 0,
and indeed γ was not considered in the corresponding theory
[1]. Experimental results on a system of nearly frictionless
photoelastic disks found consistent results [39].

More recently, a very careful analysis of simulations of
the same system [63] showed that the method applied in
Refs. [1,33] can lead to false positives in fitting of (74) with
γ = 0. Their refined analysis usingR concluded thatγ needs to
be included in the analysis. The resulting measurements found
that, approximately, α ∝ −1/p and γ ∝ 1/p2, consistent with
our (64).

Recently, experimental results were analyzed with the full
ensemble (74), and measured both α and γ [40]. It was found
that α can depend on the experimental protocol, consistent with
its identification in our theory as conjugate to a controllable
variable.

In all of these works, the systems considered had repulsive-
only forces, and were close to the unjamming point. The
natural equation of state for such materials is Eq. (64), where
η̃ can be set to zero as described in the previous section.
In its isotropic version α̂ = αδ̂ the equation reads α + γp =
ν/(2p). This should be compared with the isotropic equation of
state in the Gaussian theory, Eq. (30), which reads α + γp =
−p(g + 2η). Since the two equations have the same left-hand
side, but right-hand sides with differing sign, these could be
used to discriminate between the Gaussian and non-Gaussian
theories. Note that in Ref. [1] the authors derived an equation of
state from microscopic considerations, of the form α = a/p,
consistent with our result from the non-Gaussian theory when
γ = 0. These authors did not derive an equation of state from
their field theory, but the result must be the same as ours for
the Gaussian theory, with γ = 0 and isotropic α̂, since the two
theories coincide in this particular case.

2. Anomalous stress correlations

To our knowledge, the large body of experimental and
numerical work on stress correlators is compatible with the
simple Gaussian theory, with one exception. This exception
is Ref. [2], where it was found that packings of frictionless
particles and Lennard-Jones glasses, both in two dimensions,
have anomalously large stress correlations at small wave
number k � 0.1D−1, with approximately 〈|p(k)|2〉c ∼ k−1.3,
and similar results for other stress correlators.

We have shown above that when repulsive constraints are
considered the pressure correlator has long-range correlations,
Eq. (71). In Fourier space, these will take the form

〈|p(k)|2〉c = A − C

∫
dr

r
J0(kr ), (77)

where J0 is a Bessel function. The integral has a logarithmic
divergence at small r , and must be cut off with a length scale
�. We find then that 〈|p(k)|2〉c − A ∝ (�k)−3/2 for k� � 1,
while 〈|p(k)|2〉c − A ∝ log k for k� � 1. Thus this result is
consistent with the measurements of [2], but only if the length
scale � is very large. Within the present theory, there is no

particular reason to expect a large �, but we cannot exclude this
possibility, so we leave this result as a tentative, but promising,
explanation of the anomaly reported in Ref. [2].

VI. CONCLUSION

We have theoretically shown, in both two and three dimen-
sions, that athermal amorphous solids have long-range stress
correlations. Explicit forms of these correlations were derived
in a field theory that is applicable at long length scales. The
main assumptions underlying the theory are that (i) all quan-
tities are probed at lengths much larger than the particle size;
(ii) all interactions between the stresses are themselves local;
and (iii) the material is isotropic. Furthermore, we derived
the equations of state relating the magnitude of fluctuations
to imposed stresses, and field equations that can be used to
find the spatial form of stresses in arbitrary domains. We also
identified a holographic quantity in 3D systems.

The predicted form of stress correlators is in extremely good
agreement with simulations on supercooled liquids [3,5,25].
Besides the basic functional form and anisotropy, we have
been able to explain several minute features of the correlator,
going beyond what is possible from a strictly dynamical,
elastic theory [3]. This supports the claim that the structure of
inherent states, as characterized by their stress, follows from
considerations of mechanical equilibrium alone, as we have
argued.

For athermal amorphous solids dominated by repulsive
interactions, the Gaussian theory leads to a paradox, which
we resolved. The requirement that pressure p remains positive
leads to a non-Gaussian theory, with new features: the equation
of state is modified, and nontrivial stress correlations are
predicted at all orders. The equation of state agrees with
previous tests of the ensemble. We find that the pressure has
long-range correlations, which may explain anomalous stress
correlations found in Ref. [2].

We identified an infinite-dimensional symmetry, corre-
sponding to increments of shear stress which do not affect
the action except through boundary terms. If the system is
in some local maximum of probability in configuration space,
equivalent to a local energy minimum in a thermal system, then
the most probable route out of this state to another inherent state
will be through the action of this symmetry. Thus transitions
from one inherent state to another will largely proceed by
changes in the deviatoric stress. This symmetry is expected
to be very important for plasticity dynamics, to be considered
in the future.

Our analysis has been restricted to the saddle-point level,
which is exact for the Gaussian theory, but not for the p > 0
theory. There are five sources which may lead to renormal-
ization of the discussed long-range correlations: (i) the terms
arising from holographic quantities that live on the boundary
will lead to nontrivial boundary effects, which we have not
investigated; (ii) for the p > 0 theory, fluctuations will modify
the pressure correlator; (iii) coupling to geometric variables
can lead to nontrivial pressure fluctuations if the effective
coupling after integrating out geometric variables is nonlocal;
(iv) geometric variables may admit topological excitations, like
contact-opening excitations [78]; and (v) structural anisotropy
will lead to shearlike effects in the pressure correlator. It
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would be valuable to pursue these many directions of future
research.

Overall, our description of the inherent states of athermal
amorphous solids is simple and widely applicable. A crucial
application is to understand the effect of long-range stress
correlations on vibrational properties [79]; this will be tackled
in future work.
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APPENDIX A: STRESS TENSOR CORRELATOR
AND DETERMINANT IN THREE DIMENSIONS

In three dimensions, the stress-stress correlator is

〈σij (�r )σkl (�r ′)〉c
= εipqεjrsεkuvεlwx∂p∂r∂

′
u∂

′
w〈�qs (�r )�vx (�r ′)〉c. (A1)

Assuming homogeneity, this can be written

〈σij (�r )σkl (0)〉c
= εipqεjrsεkuvεlwx∂p∂r∂u∂w〈�qs (�r )�vx (0)〉c. (A2)

In Fourier space this becomes

〈σij (�q )σkl (−�q )〉c
= εipqεjrsεkuvεlwxqpqrquqw〈�qs (�q )�vx (−�q )〉c. (A3)

From antisymmetry of the Levi-Civita symbol, we see that
any contraction along qi, qj , qk , or ql will vanish. Thus only
transverse-transverse stress correlators are nonzero.

The determinant of σ̂ in three dimensions is

det σ = 1

3!
εijkεlmnσilσjmσkn

= 1

3!
εijkεlmnεipq[∂p(∇ × �)lq]εjrs[∂r (∇ × �̂ )ms]

× εktu[∂t (∇ × �)nu]

= 1

3!
εlmn(εprsεqtu − εqrsεptu)[∂p(∇ × �)lq]

× [∂r (∇ × �̂ )ms][∂t (∇ × �)nu]

= 1

3!
εlmn((εprsεqtu − εqrsεptu)∂p{(∇ × �)lq

× [∂r (∇ × �̂ )ms][∂t (∇ × �)nu]}
+ εprsεqtu(∇ × �̂ )lq∂r (∇ × �)ms∂p∂t (∇ × �)nu

− εqrsεptu(∇ × �̂ )lq∂p∂r (∇ × �)ms∂t (∇ × �)nu)

(A4)

where we integrated by parts. In the final line, two terms have
already been eliminated because they involve εprs∂p∂r and
εptu∂p∂t , which vanish from antisymmetry of the Levi-Civita
symbol. In the final line, the last two terms are equal and
opposite (easily seen after a permutation r ↔ t, s ↔ u), hence

det σ is again a total divergence. It can be simplified to

det σ = 2

3!
εlmn∂p[(∇ × �̂ )lqσpmσqn]. (A5)

APPENDIX B: PARTITION FUNCTION
IN TWO DIMENSIONS

We want to compute

Z =
∫

Dψ e−S, S =
∫

�

dV L[ψ], (B1)

with

L[ψ] = α̂ : σ̂ + γ̃ det σ̂ + 1
2 η̃ tr2σ̂ . (B2)

To simplify expressions involving σ̂ , notice that σ̂ = ∇ ×
∇ × ψ = (ε̂ · ∇ )(ε̂ · ∇ )ψ = ε̂ · (∇∇ψ ) · ε̂t , so that detσ̂ =
det ε̂ det ∇∇ψ det ε̂t = det ∇∇ψ , using ε̂t = ε̂−1, and tr σ̂ =
tr ∇∇ψ = ∇2ψ , using the cyclic property of the trace. Also
we have α̂ : σ̂ = α̂ : (ε̂t · ∇∇ψ · ε̂) = (ε̂ · α̂ · ε̂t ) : (∇∇ψ ) =
α̌ : (∇∇ψ ) with our definition of Ǎ = ε̂ · Â · ε̂t for any 2×2
matrix A. Thus we find

L[ψ] = α̌ : (∇∇ψ ) + γ̃ det ∇∇ψ + 1
2 η̃ (∇2ψ )2. (B3)

Although in the physical case α̂ is constant, we can let α̂ =
α̂ + α̂g (�r ) where the former controls the mean stress and the
latter generates correlation functions. We can write

L[ψ] = ∇ · [
α̌ · ∇ψ + 1

2 γ̃ σ̂ · ∇ψ + 1
2 η̃ (∇2ψ ) · ∇ψ

]
− (∇ · α̌) · ∇ψ − 1

2 η̃ ∇(∇2ψ ) · ∇ψ

= ∇ · [
α̌ · ∇ψ + 1

2 γ̃ σ̂ · ∇ψ + 1
2 η̃ (∇2ψ ) · ∇ψ

− (∇ · α̌)ψ − 1
2 η̃ ∇(∇2ψ )

] + ψ
[∇∇ : α̌+ 1

2 η̃∇4ψ
]

= ∇ · �J [ψ, α̂] + ψ
[∇∇ : α̌ + 1

2 η̃∇4ψ
]

(B4)

with

�J [ψ, α̂] = [
α̌ + 1

2 γ̃ σ̂ + 1
2 η̃ δ̂(∇2ψ )

] · ∇ψ

− [∇ · α̌ + 1
2 η̃∇(∇2ψ )

]
ψ. (B5)

Now we let ψ = ψc + ψ ′ and find

L[ψ] = ∇ · �Jc + ∇ · �J ′ + ∇ · � �J + ψc

[∇∇ : α̌ + 1
2 η̃∇4ψc

]
+ 1

2 η̃ψ ′∇4ψ ′ + ψ ′[∇∇ : α̌ + η̃∇4ψc] (B6)

where �Jc = �J [ψc, α̂], �J ′ = �J [ψ ′, 0] and

� �J = [α̌ + γ̃ σ̂c + η̃ (∇2ψc )] · ∇ψ ′

− [∇ · α̌ + η̃∇(∇2ψc )]ψ ′. (B7)

To eliminate coupling between ψc and ψ ′ we would like to
choose the nonfluctuating “classical” part ψc to satisfy

∇4ψc = −η̃−1∇∇ : α̌ (B8)

with boundary conditions

0 = �n · [α̌ + γ̃ σ̂c + η̃ δ̂(∇2ψc )], (B9)

0 = �n · [∇ · α̌ + η̃∇(∇2ψc )] (B10)
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where �n is a boundary normal. We write ψc = ψ + ψg where
σ = ∇ × ∇ × ψ is a constant. We see that in order to cancel
the term α̌ in the boundary conditions, σ must satisfy 0 = α̌ +
γ̃ σ + η̃δ̂ tr σ , which leads to the equation of state shown in the
main text. The second boundary condition (B10) is identically
satisfied for ψ .

The correlation function is determined by the particular
solution ψg . Existence of such a ψg is not guaranteed, because
the biharmonic equation generally has solutions only when
two DOFs are specified on the boundary [54]. We return to
this point below.

Assuming existence of ψc satisfying (B8)–(B10), then
having eliminated cross-coupling between ψc and ψ ′, we have
simply

L[ψ] = ∇ · �Jc + ∇ · �J ′ + 1
2ψc∇∇ : α̌ + 1

2 η̃ψ ′∇4ψ ′

= 1
2 σ̂c : α̂ + ∇ · �J ′ + 1

2 η̃ψ ′∇4ψ ′. (B11)

Then since the change of variable ψ → ψ ′ has a unit Jacobian,
the partition function can be written

Z = e−Sc

∫
Dψe−S ′

, S ′ =
∫

�

dV

[
∇ · �J ′ + 1

2
η̃ψ ′∇4ψ ′

]

(B12)

where

Sc = 1

2

∫
dV [∇ · [α̌ · ∇ψc − ψc∇ · α̌] + ψc∇∇ : α̌]

= 1

2

∫
dV α̌ : ∇∇ψc (B13)

= 1

2

∫
dV α̂ : σ̂c. (B14)

The fluctuating part gives a functional determinant

∫
Dψ e−S ′ = det −1/2(η̃∇4) ≡ e− 1

2 tr log η̃∇4
, (B15)

where in principle boundary conditions should be applied
such that �J ′ vanishes on the boundary. In fact the boundary
contribution to the functional determinant is subextensive [80]
and can be neglected. Then Tr log η̃∇4 is easily evaluated in
a Fourier basis [70]:

Tr log η̃∇4 ≡ V

∫
ddq

(2π )d
log(η̃q4) = V �2

4π
log

η̃�4

e2
,

(B16)

where � is a UV cutoff in Fourier space,and the last equation
holds only in d = 2. The final result is

log Z = −Sc − V �2

8π
log

η̃�4

e2
+ O(

√
V ). (B17)

Finally, let us mention how to resolve the apparent mismatch
in the number of boundary conditions needed to apply to ψg .
Suppose that

�n · [∇ · α̌ + η̃∇(∇2ψg )] = �n · ε̂ · ∇h, (B18)

for some function h(�r ). Then we can write∫
dV ∇ · {[∇ · α̌ + η̃∇(∇2ψg )]ψ ′}
=

∫
ds �n · [∇ · α̌ + η̃∇(∇2ψg )]ψ ′

=
∫

ds �n · ε̂ · (∇h)ψ ′

=
∫

ds �n · ε̂ · ∇(hψ ′) −
∫

ds�n · ε̂ · h∇ψ ′

= 0 −
∫

ds �n · [ε̂ · h∇ψ ′], (B19)

where we used the fact that �n · ε̂ is a vector along the boundary,
so that the gradient theorem implies

∫
ds �n · ε̂ · ∇(hψ ′) = 0.

We see that the final term adds to the boundary condition
conjugate to ∇ψ ′, i.e., (B9) becomes

0 = �n · [α̌ + γ̃ σ̂c + η̃ δ̂(∇2ψc ) + h ε̂]. (B20)

The equation (B18) can be used to determine the function h by
integration [provided the left hand side of (B18) integrates to
zero around the boundary]. Then (B10) is no longer relevant,
and we have simply (B20), which is the correct number of
boundary conditions for the biharmonic equation.

If (B20) leads to an ill-posed boundary value problem, then
it is possible that boundary terms need to be added to the action
so that spurious boundary conditions are eliminated [81]. This
situation occurs in the treatment of general relativity in finite
domains, for which the Einstein-Hilbert action needs to be
supplemented by the Gibbons-Hawking-York boundary term
to make the action principle well posed [82,83].

APPENDIX C: PARTITION FUNCTION
IN THREE DIMENSIONS

We want to compute

Z =
∫

D� e−S, S =
∫

�

dV L[�]. (C1)

Although � has a nontrivial gauge freedom, this gauge group
is Abelian, so there is no need to introduce Faddeev-Popov
ghosts [70]; we can simply fix the Maxwell gauge. We have

L[�] = α̂ : σ̂ + γ det σ̂ + 1
2η tr2σ̂ + 1

2g tr σ̂ · σ̂ (C2)

= αij : (εiklεjmn∂k∂m�ln) + 1
3γ εlmn∂p[(∇ × �)lqσpmσqn] + 1

2η (εiklεimn∂k∂m�lnσjj ) + 1
2g (εiklεjmn∂k∂m�lnσij )

= ∂k (αij (εiklεjmn∂m�ln)) − (∂kαij ) : (εiklεjmn∂m�ln) + 1
3γ εlmn∂p[(∇ × �)lqσpmσqn] + 1

2η ∂k (εiklεimn∂m�lnσjj )

− 1
2η (εiklεimn∂m�ln∂kσjj ) + 1

2g ∂k (εiklεjmn∂m�lnσij ) − 1
2g (εiklεjmn∂m�ln∂kσij ). (C3)
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Continuing, we have

(∂kαij )(εiklεjmn∂m�ln) = ∂m[(∂kαij )(εiklεjmn�ln)] − (∂m∂kαij )(εiklεjmn�ln) (C4)

and

εiklεimn∂m�ln∂kσjj = ∂m(εiklεimn�ln∂kσjj ) − εiklεimn�ln∂m∂kσjj ,

εiklεjmn∂m�ln∂kσij = ∂m(εiklεjmn�ln∂kσij ) − εiklεjmn�ln∂m∂kσij . (C5)

Thus we can write

L[�] = ∇ · �J [�, α] + � : A[�, α] (C6)

with

Jk[�, α] = αij (εiklεjmn∂m�ln) − (∂mαij )(εimlεjkn�ln) + 1
3γ εlmn(∇ × �)lqσkmσqn + 1

2ηεiklεimn∂m�lnσjj

− 1
2ηεimlεikn�ln∂mσjj + 1

2gεiklεjmn∂m�lnσij − 1
2gεimlεjkn�ln∂mσij (C7)

and

Aij [�, α] = εlmi∂m∂k

[
αlnεnkj + 1

2η εlkjσnn + 1
2g εnkjσln

]
.

(C8)

After some work this can be written

Aij [�, α] = εlmiεnkj ∂m∂kαln + 1
2 (η + g)δij∇2σkk − 1

2 (η + g)∂i∂jσkk − 1
2g∇2σij . (C9)

Now we perform the same steps as in the 2D case: we let α̂ = α̂ + α̂g (�r ) where the former controls the mean stress and the latter
generates correlation functions, and we write � = �c + � ′. Then

L[�] = ∇ · �J [�c, α] + ∇ · �J [� ′, 0] + ∇ · � �J + �c : A[�c, α] + � ′ : A[� ′, 0] + � ′ : A[2�c, α] (C10)

with

� �Jk = αij (εiklεjmn∂m� ′
ln) − (∂mαij )(εimlεjkn�

′
ln) + γ εlmn(∇ × � ′)lqσc,kmσ ′

qn + γ εlmn(∇ × � ′)lqσc,kmσc,qn

+ η εiklεimn∂m� ′
lnσc,jj − η εimlεikn�

′
ln∂mσc,jj + g εiklεjmn∂m� ′

lnσc,ij − g εimlεjkn�
′
ln∂mσc,ij . (C11)

Since power counting indicates that only terms quadratic
in the fields are needed at large scales, we can take the
semiclassical limit in which (∇ × � ′)lqσc,kmσ ′

qn is subdom-
inant, being quadratic in the fluctuations. Then the classical
solution is given by solving A[2�c, α] = 0 subject to boundary
conditions

0 = nk[αij εikl + γ εjmnσc,kmσc,ln + η εjklσc,ii + g εiklσc,ij ],

(C12)

0 = nkεiml∂m[αij εjkn + η εiknσc,jj + g εjknσc,ij ], (C13)

where nk is a boundary normal. We write �c = � + �g , where
σ = ∇ × ∇ × � is constant. It is fixed by the equation of state

0 = αij + η δijσ kk + g σ ij + 1
2γ εiklεjmnσ kmσ ln. (C14)

After some manipulations Z can be written

Z = e−Sc

∫
D� e−S ′

(C15)

with

Sc = 1

2

∫
dV [α̂ : σ̂c − γ |σ̂ |]. (C16)

To find the stress correlator, we write A[2�g, αg] = 0 as

0 = ∇ × ∇ × [α̂g + ηδ̂ tr σ̂ + g σ̂ ] (C17)

which is solved in simply connected domains by

α̂g + ηδ̂ tr σ̂g + g σ̂g = ∇�u + (∇�u)t , (C18)

as shown by Beltrami [84]. Then

2∇ · �u = tr α̂g + (3η + g)trσ̂g (C19)

and

∇2 �u + ∇∇ · �u = ∇ · α̂g + η

3η + g
∇[2∇ · �u − tr α̂g].

(C20)

Taking a divergence,

2
2η + g

3η + g
∇2∇ · �u = ∇∇ : α̂g − η

3η + g
∇2tr α̂g. (C21)

For a source α̂g = α̂0δ(�r ) = − 1
4π

α̂0∇2(1/r ) we see that

2
2η + g

3η + g
∇ · �u = −1

4π

[
α̂0 : ∇∇ − ηtr α̂0

3η + g
∇2

]
1

r
+ h1(�r ),

(C22)
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where ∇2h1 = 0. Then we have

�u = �h2 + 1

∇2

[
∇ · α̂g − η

3η + g
∇trα̂g − η + g

3η + g
∇∇ · �u

]

= �h2 − 1

4π

[
α̂0 − η

3η + g
δ̂ tr α̂0

]
· ∇ 1

r

− η + g

3η + g

1

∇2
∇∇ · �u, (C23)

where ∇2 �h2(�r ) = 0. Using (C18) we obtain σ̂g . The harmonic
functions h1 and �h2 can be used to satisfy boundary conditions.

APPENDIX D: SPATIAL VERSUS
ENSEMBLE FLUCTUATIONS

Define the ensemble and spatial fluctuations as

Ce = 〈(p − 〈p〉)2〉, Cs = 〈(p − p)2〉. (D1)

Note that the full pressure fluctuations are their sum:

〈(p − 〈p〉)2〉 = Ce + Cs. (D2)

One easily sees that

∂ log Z

∂α̂
= − V 〈σ̂ 〉, ∂2 log Z

∂α̂∂α̂
= V 2〈σ̂ σ̂ 〉c,

∂ log Z

∂η
= − 1

2
V 〈tr2σ̂ 〉. (D3)

Let us write α̂ = αδ̂ + /̂α where tr /̂α = 0. Then

Ce = 1

d2V 2

∂2 log Z

∂α2
, (D4)

Cs = −2

d2V

∂ log Z

∂η
− Ce − 1

d2V 2

(
∂ log Z

∂α

)2

. (D5)

For d = 2, we have

Ce = 1

2V (2η + g + γ )
, Cs = �2

16π (η + g)
− Ce. (D6)

In d = 3, evaluating Cs would require computation of the
functional determinant.

APPENDIX E: STRICTLY REPULSIVE FORCES

We have to add terms −ν log p[ψ] and 1
2m|∇ log p[ψ]|2 to

the action. In both two and three dimensions we have

− log p[ψc + ψ ′] = − log p[ψc] − log

(
1 + p[ψ ′]

p[ψc]

)

= − log p[ψc] − p[ψ ′]
p[ψc]

+ 1
2

p[ψ ′]2

p[ψc]2
+ · · · ,

(E1)

where we have assumed |p[ψ ′]| < p[ψc], necessary for phys-
ical solutions. In two dimensions we have p = 1

2∇2ψ so that

− log p[ψc + ψ ′] + log pc

= ∇ ·
[
− 1

2pc

∇ψ ′ + 1

8p2
c

∇2ψ ′∇ψ ′
]

+ ∇
(

1

2pc

)
· ∇ψ ′ − ∇

(
1

8p2
c

∇2ψ ′
)

· ∇ψ ′ + · · ·

= ∇ ·
[
− 1

2pc

∇ψ ′ + 1

8p2
c

∇2ψ ′∇ψ ′ + ∇
(

1

2pc

)
ψ ′

− ∇
(

1

8p2
c

∇2ψ ′
)

ψ ′
]

− ∇2

(
1

2pc

)
ψ ′ + ∇2

(
1

8p2
c

∇2ψ ′
)

ψ ′ + · · · . (E2)

Similarly, in both two and three dimensions,

|∇ log(pc + p′)|2

=
∣∣∣∣∇ log pc + ∇ log

(
1 + p′

pc

)∣∣∣∣
2

= |∇ log pc|2 + 2(∇ log pc ) · ∇ p′

pc

+ ∇
(

p′

pc

)
· ∇

(
p′

pc

)

− (∇ log pc ) · ∇
(

p′2

p2
c

)
+ · · · . (E3)

Writing Lc = log pc, we have, in two dimensions,

(∇ log pc ) · ∇ p′

pc

= ∇ ·
[
∇Lc

p′

pc

− ∇2Lc

2pc

∇ψ ′ + ∇
(∇2Lc

2pc

)
ψ ′

]
− ψ ′∇2

(∇2Lc

2pc

)
, (E4)

∇
(

p′

pc

)
· ∇

(
p′

pc

)
= ∇ ·

{
p′

pc

· ∇
(

p′

pc

)
− ∇ψ ′

2pc

∇2

(
p′

pc

)
+ ψ ′∇

[
1

2pc

∇2

(
p′

pc

)]}
− ψ ′∇2

[
1

2pc

∇2

(
p′

pc

)]
, (E5)

∇Lc · ∇
(

p′2

p2
c

)
= ∇ ·

[
p′2

p2
c

∇Lc − p′∇ψ ′

2p2
c

∇2Lc + ψ ′∇
(

p′

2p2
c

∇2Lc

)]
− ψ ′∇2

(
p′

2p2
c

∇2Lc

)
. (E6)

Since the theory is now nonlinear, cross-coupling between ψc and ψ ′ cannot be entirely eliminated. The best we can do is to
eliminate coupling at first order in the fluctuations ψ ′, so that the field equation becomes

0 = ∇∇ : α̌ + η̃∇4ψc − ν∇2

(
1

∇2ψc

)
− m∇2

(∇2 log pc

2pc

)
(E7)
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with boundary conditions

0 = �n ·
[
α̌ + γ̃ σ̂c + 2η̃ δ̂ pc − δ̂

ν

2pc

− mδ̂
∇2 log pc

2pc

]
, (E8)

0 = �n ·
[
∇ · α̌ + 2η̃∇pc − ν∇

(
1

2pc

)
− m∇

(∇2 log pc

2pc

)]
, (E9)

0 = �n · [∇ log pc]. (E10)

From this we read off the equation of state

0 = α̌ + γ̃ σ̂ + 2η̃ δ̂ p − δ̂
ν

2p
. (E11)

The partition function becomes

Z = e−Sc

∫
Dψ e−S ′

(E12)

with

S ′ =
∫

dV

{
∇ · �̃J ′ + 1

2
η̃ψ ′∇4ψ ′ + ψ ′∇2

(
ν

8p2
c

∇2ψ ′
)

− 1

2
mψ ′∇2

[
1

2pc

∇2

(
p′

pc

)]
+ 1

2
mψ ′∇2

(
p′

2p2
c

∇2 log pc

)}
, (E13)

Sc =
∫

dV

[
α̂ : σ̂c + γ̃ |σ̂c| + 1

2
η̃tr2σ̂ − ν log pc + 1

2
m|∇ log pc|2

]
(E14)

where �̃J ′ collects all the boundary fluxes quadratic in ψ ′. The fluctuations give∫
Dψ e−S ′ = det −1/2

{
η̃∇4 + ν∇2[(2pc )−2∇2] − m∇2[(2pc )−1∇2(2pc )−1] + m∇2(2pc )−2(∇2 log pc )

}

≡ e− 1
2 tr log{η̃∇4+ν∇2[(2pc )−2∇2 )]−m∇2[(2pc )−1∇2(2pc )−1]+m∇2(2pc )−2(∇2 log pc )}, (E15)

where, for example, ∇2[(2pc )−2∇2] acting on f is
∇2[(2pc )−2∇2f ]. In principle boundary conditions should be
applied such that the fluxes vanish, but these are expected to
be subextensive in large systems. The determinant is nontrivial
when pc is nonconstant, in particular when computing the
correlator. At leading order we replace pc in S ′ by p, giving

Tr log[η̃R∇4(1 − ξ 2∇2)], (E16)

where η̃R = η̃ + ν/(4p2) is the renormalized η̃ and ξ =√
m

4η̃Rp2 defines a length scale. Defining the functional deter-

minant in the Fourier basis, we find

Tr log

[
η̃R∇4 − m

4p2 ∇6

]

≡ V

∫
ddq

(2π )d
log

[
η̃Rq4 + m

4p2 q6

]

= V �2

4π
log

η̃R�4

e3
+ V (1 + ξ 2�2)

4πξ 2
log(1 + ξ 2�2). (E17)

It is straightforward to apply formulas (D4) and (D5) to obtain
the modifications to the system-spanning fluctuations.

At the one-loop level, we could expand the functional
determinant in powers of the sources to obtain the fluctuation
corrections to the correlator; this is left for future work.
Already at the classical level, there are nontrivial results. Let
us outline the computation of correlators in the saddle-point
approximation.

As discussed in the main text, we solve the classical
equation (E7) with sources

α̂ = α̂ +
∑

a

α̂aδ(�r − �ra ). (E18)

With N sources we are able to compute N -body correlation
functions. For simplicity, we will restrict consideration to m =
0, as discussed in the main text. Then the saddle-point value
of the action is

Sc|m=0 =
∫ [

α̂ : σ̂c + γ̃ det σ̂c + 2η̃p2
c − ν log pc

]
(E19)

and we need

∂2Sc

∂αa
ij ∂αb

kl

= ∂σij (�ra )

∂αb
kl

+ ∂σkl (�rb )

∂αa
ij

+
∫

r

[
αmn

∂2σmn

∂αa
ij ∂αb

kl

+
(

4η̃ + ν

p2

)

× ∂p

∂αa
ij

∂p

∂αb
kl

+
(

2η̃p − ν

p

)
∂2p

∂αa
ij ∂αb

kl

+ γ̃ σ̌mn

∂2σmn

∂αa
ij ∂αb

kl

+ γ̃ εmpεnq

∂σmn

∂αa
ij

∂σpq

∂αb
kl

]
. (E20)

We evaluate the needed derivatives using the classical solution

ψc(�r ) = ψs (�r ) + 1

4πη̃

∫
d2r ′ F [h(�r ′) − S(�r ′)] log |�r − �r ′|

(E21)
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where F [h − S] = h − S +
√

(h − S)2 + 4η̃ν and S =
(2π )−1 ∑

a α̌a : ∇∇ log |�r − �ra|. The stress tensor is

σ̂c(�r ) = σ̂ − δ̂ p + 1

4πη̃

∫
d2r ′ F [h(�r ′) − S(�r ′)]

× ∇∇ log |�r − �r ′| (E22)

where

∇∇ log |�r − �r ′| = πδ̂ δ(�r − �r ′) + 1

|�r − �r ′|2 [δ̂ − 2�n�n].

(E23)

We need

∂σ̂c

∂αa
ij

= 1

4πη̃

∫
d2r ′ F ′

r ′ ∇∇ log |�r − �r ′| ∂Sr ′

∂αa
ij

, (E24)

∂2σ̂c

∂αa
ij ∂αb

kl

= 1

4πη̃

∫
d2r ′ F ′′

r ′ ∇∇ log |�r − �r ′| ∂Sr ′

∂αa
ij

∂Sr ′

∂αb
kl

.

(E25)

For the pressure-pressure correlator we need these expres-
sions only when evaluated at i = j and k = l. We see that since
∂Sr/∂αa

ii = δ(�r − �ra ), most of the integrals drop out. It is not
hard to see that

∂2Sc

∂αa
ii∂αb

kk

= A′ δ(�ra − �rb ) + γF ′
ra
F ′

rb

(4πη̃)2

×
∫

r

εmpεnq (∂m∂n log |�r − �ra|)(∂p∂q log |�r − �rb|)
(E26)

for some A′ that collects all the contact terms. In an asymptot-
ically large domain we can shift �r and rescale out |�ra − �rb| to
find

∂2Sc

∂αa
ii∂αb

kk

= 4A δ(�ra − �rb ) + γF ′
ra
F ′

rb

(4πη̃)2

1

|�ra − �rb|2 I, (E27)

where

I =
∫

r

εmpεnq (∂m∂n log |�r − �ex |)(∂p∂q log |�r|) (E28)

= −2
∫

dr

r

∫
dθ

r2 − 2r cos θ + cos 2θ

(r2 − 2r cos θ + 1)2
(E29)

= −2π

(
1 − |�ra − �rb|2

R2

)
, (E30)

where we assumed that the shifted domain is r < R/|�ra − �rb|,
and used properties of the Poisson kernel. A is a modified
coefficient that includes the contact term depending on γ . Note
that this result is only valid for |�ra − �rb| � R, since in general
we should use a domain r < R in the original nonshifted
variables, and incorporate boundary conditions.

These results are for m = 0. If we seek a perturbative
solution ψc = ψ (0)

c + mψ (1)
c + · · · , then we easily find

∇2ψ (1)
c = ∇2 log ∇2ψ (0)

c√
(h − S)2 + 4η̃ν

. (E31)

The main effect of this perturbation is to renormalize F in the
correlator:

F → FR ≡ F + m
∇2 log F√

(h − S)2 + 4η̃ν
. (E32)
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