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We study the effect of the QCD critical point on non-Gaussian moments (cumulants) of fluctuations of

experimental observables in heavy-ion collisions. We find that these moments are very sensitive to the

proximity of the critical point, as measured by the magnitude of the correlation length �. For example, the

cubic central moment of multiplicity hð�NÞ3i � �4:5 and the quartic cumulant hð�NÞ4ic � �7. We estimate

the magnitude of critical point contributions to non-Gaussian fluctuations of pion and proton

multiplicities.

DOI: 10.1103/PhysRevLett.102.032301 PACS numbers: 25.75.Nq, 05.70.Jk, 25.75.Gz

Introduction.—Mapping the QCD phase diagram is one
of the fundamental goals of heavy-ion collision experi-
ments. The QCD critical point is a distinct feature of the
phase diagram, the existence of which is a ubiquitous
property of QCD models [1] based on chiral dynamics.
Locating the point using first-principles lattice calculations
is a formidable challenge. Recent progress and results are
encouraging, but much work needs to be done to under-
stand and constrain systematic errors [2]. If the critical
point is located in the region accessible to heavy-ion
collision experiments, it can be discovered experimentally.
The search for the critical point is planned at the
Relativistic Heavy Ion Collider at Brookhaven National
Laboratory, the Super Proton Synchrotron (SPS) at CERN,
and the future Facility for Antiproton and Ion Research at
Gesellschaft für Schwerionenforschung.

This Letter focuses on the experimental observables
needed to locate the critical point in heavy-ion collisions.
Locating the point requires a scan of the phase diagram, by
varying the initial collision energy

ffiffiffi
s

p
. The characteristic

signature is the nonmonotonic behavior, as a function offfiffiffi
s

p
, of the experimental observables sensitive to the prox-

imity of the critical point to the point where freeze-out
occurs for a given

ffiffiffi
s

p
[3,4].

The characteristic feature of a critical point is increase
and divergence of fluctuations. Most fluctuation measures
discussed to date can be related to quadratic variances of
event-by-event observables, such as particle multiplicities,
net charge, baryon number, particle ratios, or mean trans-
verse momentum in the event [5] (with few exceptions [6]).
Typically, the singular contribution to quadratic variances
induced by the proximity of the critical point is propor-
tional to approximately �2, where � is the correlation
length which, in the idealized thermodynamic limit, would
diverge at the critical point [4]. The magnitude of � is
limited trivially by the system size but most stringently by
the finite-time effects due to critical slowing down [4,7].
The observation [7] that the correlation length may reach at
most the value of 2–3 fm, compared to its ‘‘natural’’ value
of 1 fm, may make discovering the critical nonmonotonic

contribution to such fluctuation measures a challenging
task, if the measures depend on � too weakly.
Higher order as well as quadratic moments of fluctua-

tions have been studied on the lattice using Taylor expan-
sion around �B ¼ 0 and in QCD models [2,8]. How
sensitive are such higher moments to the proximity of the
critical point?
In this Letter, we point out that higher, non-Gaussian,

moments of the fluctuations are much more sensitive to the
proximity of the critical point than the commonly em-
ployed measures based on quadratic moments. We explore
this observation quantitatively, calculating the critical con-
tribution to selected fluctuation observables.
We emphasize at the outset that only the critical con-

tribution to these observables is addressed here. Other
effects contributing to non-Gaussian moments are beyond
the scope of this Letter (see also concluding discussion).
Illustration.—The main point can be illustrated using a

description of the fluctuations based on the probability
distribution of an order parameter field—any field which,
by quantum numbers, can mix with the critical mode �—
the mode developing infinite correlation length at the
critical point.
We choose the maximum of the probability distribution

to be at � ¼ 0. The probability distribution P½�� can be
written as

P½�� � expf��½��=Tg; (1)

where� is the effective action (free energy) functional for
the field �, which can be expanded in powers of � as well
as in the gradients:

� ¼
Z

d3x

�
1

2
ðr�Þ2 þm2

�

2
�2 þ �3

3
�3 þ �4

4
�4 þ � � �

�
:

(2)

Near the critical point, m� � T, so the mode � can be
treated as a classical field.
Calculating 2-point correlator h�ðxÞ�ð0Þi, we find that

the correlation length � ¼ m�1
� . For correlation functions

of the zero-momentum mode �0 �
R
d3x�ðxÞ=V, we find
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�2 ¼ h�2
0i ¼

T

V
�2; �3 ¼ h�3

0i ¼
2�3T

V
�6;

�4 ¼ h�4
0ic � h�4

0i � h�2
0i2 ¼

6T

V
½2ð�3�Þ2 � �4��8:

(3)

The critical point is characterized by � ! 1. The central
observation in this Letter is that the higher moments (cu-
mulants) �3 and �4 diverge with � much faster than the
quadratic moment �2.

To be precise, the correlators scale slightly differently
than Eqs. (3) suggest, e.g., h�2

0i � �2��. Since the anoma-

lous dimension � � 0:04 is very small, the difference
between the actual asymptotic scaling and Eqs. (3) is
discernible only for very large values of �, irrelevant in
the context of this study. More importantly, the parameters
�3 and �4 also scale with � [see Eq. (12)].

Of course, the fluctuations of the critical mode are not
measured directly in heavy-ion collision experiments.
These fluctuations do, however, influence fluctuations of
multiplicities, momentum distributions, ratios, etc., of ob-
served particles, such as pions or protons, to which the
critical mode couples [4]. The purpose of this Letter is to
determine the magnitude of these effects.

Critical contribution to experimental observables.—We
shall now estimate the effect of the critical point fluctua-
tions on the observables such as the pion multiplicity
fluctuations. Using a similar approach, it should be
straightforward to construct corresponding estimates for
such observables as charge, proton number, transverse
momentum fluctuations, etc., as well as to take into ac-
count acceptance cuts.

We shall focus on the most singular contribution, pro-
portional to a power of the correlation length �. This
contribution can be found using an intuitive picture de-
scribed in Ref. [4]: One considers a joint probability dis-
tribution for the occupation numbers np of observed

particles (e.g., pions) together with the value of the critical
mode field � (more precisely, its zero-momentum mode
�0), the latter treated as classical. Because of coupling of
the critical mode of the type ���, the fluctuations of the
occupation numbers receive an additional contribution,
proportional to the corresponding correlation functions
(moments) of the fluctuations of �0 given by Eq. (3). In
this Letter, however, it will be more convenient to use
instead the more formal diagrammatic method of Ref. [9].

Cubic cumulant.—The 3-particle correlator receives the
following most singular contribution from the � fluctua-
tions, given by the diagram in Fig. 1:

h�np1
�np2

�np3
i� ¼ 2�3

V2T

�
G

m2
�

�
3 v2

p1

!p1

v2
p2

!p2

v2
p3

!p3

: (4)

Subscript � indicates that only the critical mode contribu-
tion is considered. As in Refs. [4,9], we denoted ���
coupling by G and introduced a shorthand notation for
the variance of the occupation number distribution: v2

p ¼
�npð1� �npÞ, where the ‘‘þ’’ is for the Bose particles.

Since the total multiplicity is just the sum of all occu-
pation numbers and thus

�N ¼ X
p

�np; (5)

the cubic moment of the pion multiplicity distribution is
given by

hð�NÞ3i ¼ V3
Z
p1

Z
p2

Z
p3
h�np1

�np2
�np3

i; (6)

where
R
p � R

d3p=ð2�Þ3. Since hð�NÞ3i scales as V1, it is

convenient to normalize it by the mean total multiplicity �N,
which scales similarly. Thus we define

!3ðNÞ � hð�NÞ3i
�N

(7)

and find

!3ðNÞ� ¼ 2�3

T

G3

m6
�

�Z
p

v2
p

!p

�
3
�Z

p
�np

��1
: (8)

Quartic cumulant.—The leading contribution to the con-
nected 4-particle correlator is given by the sum of two
types of diagrams in Fig. 2:

h�np1
�np2

�np3
�np4

ic;� ¼ 6

V3T

�
2

�
�3

m�

�
2 � �4

��
G

m2
�

�
4

	 v2
p1

!p1

v2
p2

!p2

v2
p3

!p3

v2
p4

!p4

: (9)

The quartic cumulant of multiplicity fluctuations is
given by

FIG. 1. Diagrammatic representation of the contribution to the
three-particle correlator from the critical mode �. Wavy lines
represent propagators of the � field, each contributing factor
1=m2

�, and crossed circles represent insertions of �np into the

correlator Eq. (4)—see Ref. [9] for details.

FIG. 2. Diagrammatic representation of the critical mode con-
tribution to the connected four-particle correlator. Same notation
as in Fig. 1.
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hð�NÞ4ic ¼ V4
Z
p1p2p3p4

h�np1
�np2

�np3
�np4

ic: (10)

This cumulant also scales as V1 in thermodynamic limit.
As in Eq. (7) we define a ratio whose V ! 1 limit is finite:
!4ðNÞ � hð�NÞ4ic= �N, and find

!4ðNÞ� ¼ 6

T

�
2
�2
3

m2
�

� �4

�
G4

m8
�

�Z
p

v2
p

!p

�
4
�Z

p
�np

��1
:

(11)

Estimate of the effect.—In order to estimate the magni-
tude of the effect, we need to estimate the values of the
coupling constants �3 and �4. The main uncertainty in the
estimate will come, however, from the uncertainty of the
value of G, which enters in a large power. This constant is
known only roughly—the estimate was made in Ref. [4].
Therefore, a crude estimate for �’s suffices.

Near the critical point, both �3 and �4 vanish with a
power of � given by (neglecting � � 1):

�3 ¼ ~�3TðT�Þ�3=2 and �4 ¼ ~�4ðT�Þ�1; (12)

where dimensionless couplings ~�3 and ~�4 are universal,
and for the Ising universality class they have been mea-

sured (see, e.g., Ref. [10] for a review). ~�3 varies from 0 to
about 8 depending on the direction of approach to the
critical point (crossover or first-order transition side). The

coupling ~�4 varies from about 4 to about 20. Since the
freeze-out occurs somewhere between these two extremes
(as illustrated in Fig. 3), we shall pick some midrange
values for our estimates. The main point is the strong
dependence of the effect on �.

Putting together estimates of �, G (from [4]), and �
(from [7]), we find for pions at T � 120 MeV [in full
acceptance, for a single pion species; see also Eq. (20)]:

!3ðN�Þ� � 1

�~�3

4

��
G

300 MeV

�
3
�

�

3 fm

�
9=2

; (13)

!4ðN�Þ� � 12

�
2~�2

3 � ~�4

50

��
G

300 MeV

�
4
�

�

3 fm

�
7
: (14)

Because of large powers of the couplingG, which is known
only poorly, the uncertainty in this result is significantly
larger than that of similar estimates of the quadratic mo-
ments of fluctuations [4].
The most significant feature of this result is the strong

dependence on � which makes the cubic and quartic cu-
mulants very sensitive signatures of the critical point.
Another example: proton multiplicity fluctuations.—The

above analysis carries over to the proton multiplicity fluc-
tuations. The fluctuations of the net proton number are a
good proxy to the baryon number fluctuations, whose
magnitude, proportional to the baryon number susceptibil-
ity, must diverge at the critical point [11]. Here, for sim-
plicity, we shall present the results for the proton only
multiplicity, which is easier to measure.
To adapt an equation such as Eq. (4) to protons, one

needs to substitute G with the coupling g of the critical
mode � to protons (times the massmp of the proton):G !
gmp. The estimate for this coupling can be taken from the

sigma model to be roughly g � mp=f� � 10. The vari-

ance of the occupation number distribution is v2
p ¼ �npð1�

�npÞ and �np ¼ ðeð!p��BÞ=T þ 1Þ�1, where �B is baryo-

chemical potential. There is also a factor of 2k�1 for !k

[as in Eq. (20)] because of the proton spin degeneracy.
Putting this together, one finds, e.g., for protons at SPS
freeze-out conditions ðT;�BÞ � ð168; 266Þ MeV [12],

!3ðNpÞ� � 6

�~�3

4

��
g

10

�
3
�

�

1 fm

�
9=2

; (15)

!4ðNpÞ� � 46

�
2~�2

3 � ~�4

50

��
g

10

�
4
�

�

1 fm

�
7
: (16)

Note that the effect is much larger on the proton multi-
plicity fluctuations, compared to the pion multiplicity.
Similar to quadratic fluctuations [11], the exponents in

Eqs. (15) and (16) agree (up to � � 1) with the critical
exponents of the baryon number cumulants dictated by
scaling and universality:

hð�NBÞkic ¼ VTk�1 @
kPðT;�BÞ
@�k

B

� �kð5��Þ=2�3: (17)

Mean transverse momentum.—From the expression for
the correlators Eq. (4) or (9), one can similarly estimate the
effect of the critical point on other observables, for ex-
ample, higher moments of the fluctuation of mean trans-
verse momentum pT . For example, the cubic moment
�3ð�pTÞ of the mean pT distribution around the all-event
mean �pT can be expressed as

�3ð�pTÞ � hðpT � �pTÞ3i
¼ X

p1;p2;p3

ð½p1�T � �pTÞð½p2�T � �pTÞ

	 ð½p3�T � �pTÞh�np1
�np2

�np3
i (18)

and estimated using Eq. (4). Normalizing this variable

crossover (λ̃3 = 0)

with max ξ

vs
√

s

1st order

freeze-out point

freeze-out points

µB

T

contours of
equal ξ

critical point

FIG. 3 (color online). Illustration of the possible relative po-
sition of the critical point and the locations of the freeze-out
points for different values of the initial collision energy

ffiffiffi
s

p
in a

heavy-ion collision.
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similarly to the variable F proposed in Ref. [4] removes N
scaling and makes it less sensitive to the effect of the flow
(‘‘blueshift’’ of momenta):

F3 �
�N�3ðpTÞ
v3=2
inc ðpTÞ

; (19)

where vincðpTÞ is the variance of the inclusive (single-
particle) pT distribution. We leave this to future work.

Comments and discussion.—It is worth noting that, even
though the � dependence of !4 is stronger, its measure-
ment involves subtraction of two contributions hð�NÞ4i �
3hð�NÞ2i2, each of which is order N times larger than their
difference, which might dilute the signal-to-noise ratio in
experimental measurement.

Since the freeze-out occurs, generically, somewhat off
the crossover line, as illustrated in Fig. 3, one should
expect the critical point contribution to fluctuations to be
skewed. In this case, the deviations from the Gaussian
shape are dominated by the cubic moment or !3.

What is the sign of !3ðNÞ�? One can anticipate it by
using the following, admittedly crude, argument. The
skewness of the distribution of the order parameter near
the critical point is a ‘‘shadow’’ of a second peak. This
peak corresponds to the phase on the other side of the first-
order transition line (quark-gluon plasma phase at higher T
and �B in Fig. 3). This phase has higher entropy and
baryon number; thus, fluctuations of these quantities
must be skewed toward higher values: !3 > 0. Since
pion and proton numbers are rough proxies to the entropy
and the baryon number, respectively, their skewness should
be also positive.

What is the natural, background value one should expect
for, e.g., !3? For a gas of classical free particles (Poisson
distribution),!3ðNÞ ¼ 1. Bose statistics increases this by a

factor !3ðNÞBE ¼ ð1þ npÞð1þ 2npÞ, e.g., approximately

1.3 for pions at T ¼ 120 MeV.
More importantly, quantum statistics correlates only

fluctuations of particles of the same species; thus,
!3ðNÞBE is the same for all charge (i.e., N ¼ N�þ þ
N��) and single charge multiplicity fluctuations. In con-
trast, the critical point contribution correlates also �þ with
��, thus making !3 4 times larger for all charge vs single
charge (for �N�þ ¼ �N��):

!kðN�þ þ N��Þ� ¼ 2k�1!kðN�þÞ�: (20)

Equation (20) can help separate critical point contribution
from contributions due to quantum statistics.

It is important to note that other sources may and do
contribute to the skewness and kurtosis: remnants of initial
fluctuations, flow, and jets—to name just a few obvious
contributors. Quantitative study of these effects might be
necessary to unambiguously identify the critical point
signal. This serves to emphasize that the energy scan of

the QCD phase diagram is needed to separate such back-
ground contributions from the genuine critical point effect,
the latter being the nonmonotonic function of the initial
collision energy

ffiffiffi
s

p
as the critical point is approached and

then passed. The fact that non-Gaussian moments have
stronger dependence on � than, e.g., quadratic moments
makes those higher moments more sensitive signatures of
the critical point.
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