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The electromotive force induced by a moving magnetic domain wall in a nanostrip has been calculated

theoretically and detected experimentally. It is found that the emf depends only on the domain wall

transformation frequency through a universal Josephson type relation, which is closely related to the

topological nature of the domain wall. Our experimental measurements confirm the theoretical prediction.
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The interplay between charge transport and spin dynam-
ics is a central theme of spintronics research. It is now well
established that an electric current can drive magnetic
domain wall (DW) motion via coupling between conduc-
tion electrons and local magnetic moments [1–5]. The
reverse of this effect, i.e., an emf induced by a DWmoving
through a stationary electron gas, has also been predicted
[6]. Recently there has been renewed interest in this effect
[7–9], and its connection with Berry phase [10] has high-
lighted important topological aspects. However, prior theo-
retical work on DW-induced emf has only treated simple
1D walls, rather than more realistic 2D wall geometries
[11,12], and no experimental detection has yet been re-
ported. In this Letter, we formalize Berger’s original result,
generalize it to 2D DWs, and report the first experimental
evidence for DW-driven emf.

To describe electron dynamics in ferromagnetic metals
we adopt the s-d model, in which conduction electrons
interact with local magnetic moments through an exchange
coupling Hsd ¼ �Jn̂ðr; tÞ � �. The unit vector n̂ denotes
the local spin direction, � is the itinerant electron spin, and
J is the coupling strength. For typical ferromagnetic metals
(Co, Fe, Ni and their alloys), s-d coupling is strong (J �
1 eV), and the conduction electron spin follows the local
spin direction during its motion. Then the spatial variation
of the local spin texture gives rise to the well-known Berry
curvature field Cðr; tÞ ¼ ð1=2Þ sin�ðr��r�Þ, where (�,
�) are the spherical angles specifying the direction of n̂.
The C-field acts on the electrons as an effective magnetic
field whose flux enclosed by a loop gives the Berry
phase of the spin-1=2 particle that moves around the loop.
This is analogous to the Aharonov-Bohm phase acquired
by a charged particle moving around a magnetic flux.
Furthermore, in analogy with the electric field that arises
from motion of a magnetic field, the C-field of a moving
spin texture also generates an effective electric field
Dðr; tÞ ¼ ð1=2Þ sin�ð@t�r�� @t�r�Þ [13]. These fields
can be derived directly from the semiclassical equation of
motion for an electron wave packet [14], where the force
on the conduction electrons from a moving spin texture can
be shown to be F ¼ �@ð _r� CþDÞ. This D-field is the
origin of the emf generated by a moving DW.

In this work, we consider a DW confined in a ferromag-
netic nanostrip. Depending on the strip size, the static
configuration of the DW can be either a (1D) transverse
DW or a vortex DW [11]. Berger’s phenomenological
approach [6] predicted a voltage Vx ¼ ð@=eÞdc =dt gener-
ated across a transverse DW-driven by a field beyond the
Walker precessional threshold [15], which was termed
ferro-Josephson effect due to its resemblance to the
Josephson relation in superconductivity. Here subscript x
labels the longitudinal direction of the nanostrip, @ is the
reduced Planck constant, �e is the electron charge, and c
is the tilt angle of the rigidly precessing DW plane.
Berger’s prediction follows rigorously from our Berry
phase approach. The D-field of a moving transverse wall,
integrated along the direction of its motion, exactly repro-
duces Berger’s result and is independent of the detailed
form of the wall.
The large magnetostatic energy associated with rigid

wall plane canting causes 1D DW models to fail at rela-
tively low fields [16,17]. In nanostrips (width w, thickness
t, wherew � t), well before the 1DWalker field is reached
[16], a vortex core periodically nucleates in a DW at the
wire edge and slowly travels across the wire [18].
Therefore the dynamic wall-structure evolution, via gyro-
tropic vortex motion, requires a fully 2D treatment of the
vortex structure. A vortex DW is characterized by a small
core region with radius a (� several nm), in which n̂
points out of the 2D plane. The Berry curvature field C is
nonzero only inside the vortex core and its integral over the
2D plane gives the topologically invariant Skyrmion
charge associated with the vortex [19], i.e.,

R
Cd2r ¼

pq�êz, which is independent of the detailed profile of
the vortex. Here p, q ¼ �1 are the polarization and vor-
ticity of the vortex, respectively.
We calculate the emf induced by the motion of a 2D

vortex DW by solving the Poisson equation r2V ¼
ð@=eÞr �D with Neumann boundary conditions (no cur-
rent leaving the sample). We find that theD-field is that of
an electric dipole P located within the vortex core,

P ¼ "0
@

e

Z
Dd2r ¼ "0

@

e
pq�êz � v; (1)
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where we use D ¼ C� v for rigid DW motion with v
being the velocity of the vortex core. Since a � w, P can
be treated as a point dipole. By the method of image
charge, we find that the longitudinal voltage drop along
the direction of the DW propagation is

Vx ¼ �
@

e

jvyj
w

: (2)

Transverse vortex motion results from the Magnus force
[20]. At low fields, this force is balanced by the confining
potential of the wire, and vy ¼ 0. Above the breakdown

transition, the Magnus force overcomes the confining po-
tential and the vortex core within a DW is driven to the wire
edge. There, it annihilates and a new vortex with opposite
polarization is emitted, and is driven to the other edge
[21,22]. Since both p and vy change sign at the edge while

q is kept, the sign of the product pqvy is conserved during

the periodic process, leading to a nonzero dc voltage across
the wall whose polarity is unchanged for a unidirectional
DW propagation (along the x direction). Its time average
depends only on the frequency f of transverse motion, i.e.
�Vx ¼ 2�ð@=eÞf. This result, together with the result for
1D DW, reveal a universal Josephson type relation with the
Josephson frequency being the frequency of DW trans-
formation. Moreover, our derivation demonstrates clearly
that this remarkable result is intimately related to the
topological nature of DW.

If the DW is driven by an applied magnetic fieldH, it has
been shown that this frequency is the Larmor frequency,
2�f ¼ �H [22,23], where � is the gyromagnetic ratio.
Then the average voltage is linear in the applied field,
with �Vx=H ¼ ð@=eÞ� � 11:6 nV=Oe. Accounting for
spin minority carriers amounts to multiplying the predicted

voltage by the spin-polarization factor P. Additional volt-
ages from nonadiabatic or dissipative effects, estimated
through force balance considerations [8,24], are found to
be at least 10 times smaller than the adiabatic contribution
above breakdown, though they are the only contribution
below breakdown.
We have detected the longitudinal voltage generated by

the motion of a single DW using the technique outlined in
Fig. 1. The DWwas confined within aNi80Fe20 (Permalloy,
Py) nanowire, 500 nm wide, 20 nm thick, and 35 �m long,
that was joined to a large Py ‘‘injection pad’’ at one end and
tapered to a point at the other. A field applied antiparallel to
the wire magnetization (which lies along its axis) reverses
the magnetically-soft pad and generates a DW at the pad-
wire junction which is of vortex type according to the
phase diagram [11]. If the field exceeds the DW injection
field Hinj, the DWenters and traverses the wire from left to

right. A nonmagnetic Pt bridge connected the pointed end
of the wire to a second large Py pad. Electrical contacts
made to the pads allowed the voltage across the wire to be
measured as the DW traveled along it.
A high-frequency (� 320 kHz) square-wave drive-field

of amplitude Hd was used to repeatedly inject and drive
DWs along the wire. The drive-field half-period T1=2 ex-

ceeded the DW transit time �DW [see Fig. 1(e)], allowing
each DW to reach the end of the wire before a new wall was
injected. The high slew-rate fields used to inject and drive
DWs generated large inductive voltages (tens of mV) in the
measurement circuit. To extract the comparatively small
voltage induced by DW motion (�100 nV), a modulation
scheme was employed. In this approach, a secondary mag-
net was used to apply two additional fields: a 317 Hz
square-wave modulation field (amplitude Hm ¼ 11 Oe)
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FIG. 1 (color online). Experiment schematic. (a) Drive, modulation, and bias field configuration with respect to sample. (b) Scanning
electron micrograph of nanowire device. (c),(d) Total field waveform for two bias field levels. Injection field Hinj indicated by

horizontal lines. Black solid lines indicate field waveform; blue indicates voltage signal expected from DW moving along nanowire.
(e) Detail of several drive-field cycles immediately before and after a step in the modulation field. Before the step, the nanowire is
saturated and no DWs travel along it. After the step, each drive-field half-cycle (duration T1=2) injects a DW that moves along the wire,

generating a voltage until it reaches the end of the wire after a time �DW.
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plus a dc bias field Hdc which can be tuned. These two
fields were used to modulate the probability that DWs were
injected by Hd. Their combined effect is like a ‘‘switch’’
which can periodically turn the DW voltage signal ‘‘on’’
and ‘‘off.’’

The sum of these fields as a function of time is shown
schematically in Fig. 1 for two values ofHdcð¼ �HmÞ. For
the negatively biased (Hdc < 0) waveform of Fig. 1(c), a
DW is injected and driven across the wire at the beginning
of the negative phase of the modulation cycle. Because the
positive-going drive-field steps are biased below the DW
injection threshold, no further DW motion occurs within
the wire until the positive phase of the modulation cycle.
During that phase, Htotal oscillates symmetrically about
zero and DWs, alternately head-to-head and tail-to-tail,
are repeatedly injected and driven to the end of the nano-
wire. Each DW travels in the same direction, leading to a
rapid sequence of voltage pulses with the same polarity and
nonzero dc level. The voltage across the nanowire was
measured using a lock-in amplifier phase-locked to the
317 Hz modulation field source [Fig. 1(a)], thereby reject-
ing rf inductive pickup at the drive frequency. The in-phase
(real) lock-in voltage component, VL, is proportional to the
difference in the average wall-induced voltage between the
positive and negative phases of the modulation field cycle.

The system has a rather high injection threshold Hinj �
37 Oe. In order to study the emf for a driving field with
Hd <Hinj, we add to the high-frequency drive-field wave-

form a short ‘‘injection pulse’’ (45 Oe peak, �60 ns
FWHM) [16] preceding each half-cycle [see Fig. 1(e)].
Each pulse briefly exceeded Hinj, injecting a DW which

then propagated under a lower field Hd. This permitted the
study of walls driven by a range of fields Hd, while main-
taining identical injection characteristics. DW injection
and propagation were probed using high-bandwidth scan-
ning Kerr polarimetry [16]. The probability of wall injec-
tion, Pinj, as a function ofHdc was detected (withHm set to

zero here). At Hdc ¼ 0, each injection pulse exceeds Hinj,

and Pinj ¼ 1. When a bias jHdcj> 8 Oe is applied, Pinj

drops as either the positive or negative-going injection
pulse is shifted below the (full) injection threshold. When
the injection pulse is omitted, at least one side of the drive
waveform is always below the DW injection threshold for
any Hdc, so Pinj ¼ 0 and no DW-induced voltage is

expected.
The modulation field Hm ¼ 11 Oe was used to toggle

Pinj, thereby modulating the DW-induced voltage. The

detected lock-in voltage VL should be proportional to the
difference in Pinj between the positive and negative phases

of the modulation cycle, weighted by the average DW-
induced voltage in each of those phases. The lock-in
voltage VL at Hd ¼ 20 Oe is shown in Fig. 2(a) as a
function of the dc bias field Hdc. We observe that it is
more complex than that expected from motion of a single
DW along the nanowire. The large offset voltage is due
primarily to inductive pickup of the modulation field by the

measurement loop, and it scales linearly with the modula-
tion field frequency and amplitude. The dependence of VL

onHdc, particularly when injection pulses are omitted from
the drive-field waveform, points to additional sources of
modulated voltage. The contact or injection pads are mag-
netic, and likely contribute in nontrivial ways to the mea-
sured signal. For example, DW motion within the pads
could contribute a net emf, and stray magnetostatic fields
could lead to a bias field-dependant flux through the mea-
surement loop.
To discriminate between voltage generated by DW mo-

tion along the nanowire, and other parasitic contributions,
we exploit the fact that unidirectional DW motion gener-
ates a voltage with definite polarity that does not depend on
the sign of the total driving field [cf. discussion following
Eq. (2)]. Hence any DW-induced contribution to VL must
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FIG. 2 (color online). (a) Lock-in voltage versus Hdc for the
drive-field waveforms with Hd ¼ 20 Oe with/and without injec-
tion pulse. (b) Odd components of the curves in (a).
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Hm for drive-field waveforms of varying half-period T1=2 (half-

cycles shown in inset). Solid line is fit to 1=T1=2.
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be odd in Hdc: comparing Figs. 1(c) and 1(d), the modu-
lated DW voltage has the same amplitude for �Hdc, but it
is in-phase with the modulation field for negative bias, and
out of phase for positive bias. This phase difference mani-
fests as a sign change in the DW contribution to VL.

Figure 2(b) shows the odd component ~VL of the data in
Fig. 2(a). When the drive-field includes injection pulses,
VL contains an odd component that closely follows the
modulated DW injection probability measured experimen-
tally. When injection pulses are omitted from the drive
waveform, and hence DW motion does not occur within
the nanowire, there is no voltage contribution with this
symmetry. Based on its symmetry and its correlation with
Pinj, we interpret ~VL as arising from DW motion along the

nanowire.
This identification is supported by additional systematic

tests that correlate the magnitude of ~VL with the motion
of the DW. The contribution to ~VL by DWs traversing
the nanowire is proportional to the ratio �DW=T1=2 [cf.

Fig. 1(e)]. �DW will be the same for each drive-field half-
cycle if we set Hdc ¼ Hm such that the drive-field wave-
form has zero offset during the on phase of the modulation
cycle, and each injected wall is driven by a field of ampli-
tude �Hd [cf. Figs. 1(c) and 1(d)]. Figure 3 shows ~VL

measured at Hdc ¼ Hm for a series of drive-field wave-
forms with varying period. ~VL varies inversely with T1=2,

except for T1=2 < 0:7 �s, where ~VL drops precipitously.

This crossover time corresponds to the independently mea-
sured wall transit time �DW. At T1=2 ¼ �DW, DWs generate

voltage over the full duration of each drive-field cycle. For
T1=2 < �DW, a DW injected into a uniform wire generates

voltage during the first drive-field half-period, but before it
reaches the end of the wire, Hd changes polarity. A new
DW is injected and moves forward while the initial wall
moves back, giving zero net voltage. Averaged over a full
drive-field cycle, ~VL should drop, consistent with Fig. 3.

~VLðHdcÞ was also measured for a series of drive-field
waveforms with the same injection pulse, but with varying
Hd. The curves followed Fig. 2(b), varying only in ampli-
tude. At Hdc ¼ Hm, ~VL is proportional to the voltage VDW

generated by a DW driven by a field jHdj, i.e., VDWðHdÞ ¼
CðT1=2=�DWÞ ~VL½Hdc ¼ Hm	, where C�1 ¼ 4=� is the

weight of the fundamental Fourier component of a
square-wave. The average DW velocity, shown in Fig. 4,
was independently-measured, yielding �DW. The depen-
dence of VDW on Hd is shown in Fig. 4 [25]. VDW varies
in proportion to field, with a slope of �10 nV=Oe. This is
close to the predicted slope �@=e ¼ 11:6 nV=Oe, and
suggests a spin-polarization P� 0:85, somewhat higher
than expected but within reasonable experimental bounds.
In summary, we have developed a general theory to

calculate the emf generated by the motion of an arbitrary
spin texture and obtained a universal ferro-Josephson rela-
tion for a DW moving in a nanostrip. The theory yields a
universal result Vx=H ¼ 11:6 nV=Oe for a field-driven
DW, independent of the details of its internal structure.
We have detected experimentally the voltage generated
during the motion of a single domain wall over a range
of driving field and find a result that agrees well with this
prediction.
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