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It is often argued that entanglement is at the root of the speedup for quantum compared to classical

computation, and that one needs a sufficient amount of entanglement for this speedup to be manifest. In

measurement-based quantum computing, the need for a highly entangled initial state is particularly ob-

vious. Defying this intuition, we show that quantum states can be too entangled to be useful for the

purpose of computation, in that high values of the geometric measure of entanglement preclude states

from offering a universal quantum computational speedup. We prove that this phenomenon occurs for a

dramatic majority of all states: the fraction of useful n-qubit pure states is less than expð�n2Þ. This work
highlights a new aspect of the role entanglement plays for quantum computational speedups.
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A classical computer endowed with the power to per-
form measurements on certain entangled many-body states
is strongly believed to be exponentially more power-
ful than a classical machine alone. Indeed, a com-
puter having access to local measurements on a cluster
state [1–3] or the class of states identified in Refs. [4–8] can
efficiently simulate any quantum computation. The best-
known classical algorithm for this task requires superpo-
lynomial run time, and it is strongly believed that no sub-
stantial improvement is possible. It is in this sense that cer-
tain many-body states possess strong computational power.
More precisely, the particular states mentioned above are
computationally universal in that they enable a classical
machine to efficiently solve any problem in the complexity
class BQP [9].

The key question that we ask in this work is: How
common is the property of offering universal computa-
tional speedups and what is the role of entanglement in
this context? All previous results which rule out computa-
tional universality of certain quantum systems seem to do
so by either (i) showing that the systems are not entangled
enough to support a universal quantum calculation [10–14]
or (ii) relying on stringent symmetries [15–17]. It is there-
fore reasonable to conjecture, by extrapolating from the
current lines of research, that in generic situations ‘‘more
entanglement’’ will imply ‘‘more computational power.’’

Going further, it has been realized (using sundry tech-
niques known under the label of the ‘‘probabilistic
method’’ or the ‘‘concentration of measure phenomenon’’
[18,19]), that generic quantum states are extremely highly
entangled from many points of view [20–22]. For example,
a typical state is almost maximally entangled with respect
to any partition of its systems into two parties. It follows
that most states are excellent resources for some quantum
information protocols, e.g., teleportation with respect to
any bipartition. Thus, it is plausible to suspect that offering

a computational speedup is a generic feature of quantum
states, if only advanced enough classical control schemes
could be devised to utilize their power.
Main result.—The arguments presented above turn out

to be fallacies. In a first step, we will show that families of
states with a high degree of geometric entanglement [23–
25] cannot be universal. Recall that the geometric measure
of entanglement Egð�Þ is defined as

Egðj�iÞ ¼ �log2 sup
�2P

jh�j�ij2;

where the supremum is taken over the set of all product
states, P . For the purpose of this Letter, we will always
quantify entanglement by means of Eg. In a second step,

we proceed to demonstrate that our criterion for large
entanglement is fulfilled by typical quantum states with
overwhelming probability: they are too entangled to be
useful in this sense.
The proof involves substituting the quantum resource by

a fair coin. In that sense, we show that even if one has
complete knowledge about the state used and is capable of
designing the most sophisticated measurement scheme
specifically tailored to that state, the distribution of the
measurement outcomes is not sufficiently different from
that of a random string to afford a universal speedup. This
observation is the basis for related results made indepen-
dently in Ref. [26].
Intuitively, the strategy of proof in the first step is as fol-

lows: one realizes that a high value of Eg implies that every

particular outcome in a local measurement scheme has low
probability of occurring. Therefore—irrespective of the
measurement strategy used—the distribution of outcomes
will be ‘‘very random’’; so random indeed that one may
sample from it efficiently using purely classical means.
To outline the proof in more detail: We assume that a

classical computer assisted by local measurements on a
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highly entangled state can efficiently identify both the
solution to a problem F in NP [27], and a certificate for
the solution. Under this assumption, we construct a purely
classical algorithm accomplishing the same task. Hence,
highly entangled states cannot cause a significant speedup
for these particular problems. For concreteness, one may
think of F as the paradigmatic FACTORING problem: given
an integer N and an interval ½k; l�, decide whether N has a
factor contained in ½k; l�. A certificate for the solution is
provided by the prime decomposition of N. Since there is
an efficient quantum algorithm identifying the prime de-
composition [28], it follows that highly entangled states
cannot be universal (unless FACTORING is in P, which is
generally believed to be highly unlikely).

Theorem 1 (Uselessness of quantum states).—Let j�ni
be an n qubit state with geometric measure of entangle-
ment Egðj�niÞ> n� �. Consider a classical computer
augmented by the power to perform local measurements
on j�ni. Assume this joint system is capable of finding and
certifying a solution to an NP problem F after t time steps,
with probability of success at least 1=2. Then there exists a
purely classical algorithm which identifies a solution to F
after CðnÞ2�þ1 lnð1=pfÞ time steps with probability of
success at least 1� pf. Here, CðnÞ is the time it takes to

verify the certificate on a classical computer.
Note that C is a polynomial function of n (this being the

defining property of NP problems). The theorem implies
that a family of states j�ni cannot provide a superpolyno-
mial speedup whenever their geometric measure is of the
form Egðj�niÞ ¼ n�Oðlog2ðnÞÞ. A priori, it is unclear
that states with such an extreme geometric entanglement
exist at all. It turns out that not only do they exist, but that
this property is shared by the vast majority of all many-
body states.

Theorem 2 (Almost all states are useless).—The fraction
of state vectors on n � 11 qubits with geometric mea-
sure of entanglement less than n� 2log2ðnÞ � 3 is smaller

than e�n2 .
It immediately follows that the fraction of universal

resources among n qubit pure states is less than e�n2 .
To prove Theorem 1, we assume that the classical part of

the algorithm is deterministic, which does not restrict
generality, since any probabilistic parts may be imple-
mented by using quantum measurements as coins. In the
course of the calculation, the computer will perform up to n
local single-qubit projective measurements with two out-
comes each, obtaining one of 2n possible sequences of
outcomes. There is a set G of ‘‘good’’ outcomes, which
will cause the computer to output a valid solution to the
problem F after t � n time steps. By assumption, the
probability of obtaining an outcome from G is larger
than 1=2. Each element of G is labeled by a product state
j�i corresponding to the local measurement outcomes. The
probability of the event associated with j�i to occur is

jh�j�ij2 � 2�Egðj�iÞ � 2�nþ�. Hence,

1=2 � ProbðGÞ � jGj2�nþ� ) jGj � 2n���1:

Thus, the ratio of good outcomes to the total number obeys

jGj=2n � 2���1: (1)

To simulate the procedure on a classical computer, use
the following algorithm: Instead of performing a physical
measurement, choose the outcome of the measurements
randomly using a fair coin, to generate a random string.
This string is fed into the same classical postprocessing
algorithm as before. If the random string causes the clas-
sical part of the computation to output a result after t time
steps, check whether it solves the problem F. The problem
being in NP, this is efficiently possible. If the result is
valid, output it and abort. Otherwise, repeat the procedure
with another random string. The probability of not having
obtained a valid outcome after k trials is bounded above by

ð1� 2���1Þk < e�k2���1
, using Eq. (1) of the cardinality of

the set of ‘‘good’’ outcomes. Set k ¼ 2�þ1 lnð1=pfÞ to

achieve a probability of failure smaller than pf. The claim

of Theorem 1 is now immediate. h
The proof of Theorem 2 requires two technical ingre-

dients. The first is a concentration of measure result: Let
j�i be a normalized vector in Cd, and let j�i be drawn
from the unit sphere according to Haar measure. Then,

Prob fjh�j�ij2 � "g< exp½�ð2d� 1Þ"�: (2)

This statement follows easily from standard bounds to be
found, e.g., in Refs. [29,30]. Second, we require the con-
cept of an "-net [18,20,21]. An "-netN ";k on the set P of

product states on k qubits is a set of vectors such that

sup
�2P

inf
~�2N ";k

kj�i � j~�ik< "=2: (3)

We claim such a net exists whose cardinality is bounded by
jN ";kj � ð5k="Þ4k. Indeed, from Ref. [20], we know that

there is an ð"=kÞ-net M on the space of single qubit state
vectors, where jMj � ð5k="Þ4. Set N ";k ¼ fj~�1i � . . . �
j~�ki:j~�ii 2 Mg. Now let j�i ¼ N

k
i j�ii be a product

vector. By definition of M, for every i, there exists j~�ii 2
M, such that jh�ij~�iij2 � 1� "2=4k. Hence, for j~�i ¼N

ij~�ii,

jh�j~�ij2 �
�
1� "2

4k

�
k � 1� "2

4
;

which implies Eq. (3) [20].
Proceeding to prove Theorem 2, we let " ¼ 2�l for some

yet-to-be-determined number l. Let N ";n be as above.

Employing the standard union bound, we find

Probf sup
j~�i2N ";n

jh~�j�ij2�2�lg<exp½�ð2nþ1�1Þ2�l�jN";nj

<expð�2n�lþ2nlÞ (4)

< expð�2n�l þ 2n2Þ (5)

where the estimate (4) is valid if 2nl½1� lnð2Þ�> 4 lnð5nÞ.
Choosing l ¼ n� log2ð3n2Þ, the condition above is satis-
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fied when n � 11. Further, Eq. (5) becomes expð�n2Þ.
Now let j�i be a general product vector and j~�i be the
closest element in the "-net. Then, using the operator norm
k:k1,
jjh�j�ij2 � jh~�j�ij2j ¼ jtr½ðj�ih�j � j~�ih~�jÞj�ih�j�j

� kj�ih�j � j~�ih~�jk1
� kj�ih�j � j~�ih~�jk1 � " ¼ 2�l:

Here, we have used that for the trace norm k:k1, kj�i�
h�j � j~�ih~�jk1 � 2kj�i � j~�ik (see, e.g., Ref. [20]). It

follows that sup�2P jh�j�ij2 � 2�lþ1 < 2�nþ2log2ðnÞþ3

with probability greater than 1� e�n2 . h
CQ universality and POSTBQP.—References [7,10] in-

troduced a more stringent benchmark for universal re-
source states. The authors ascribe the quality of ‘‘CQ
universality’’ to a resource state if—up to local unitary cor-
rections—any pure state on k qubits can be prepared out of
a sufficiently large n > k qubit resource by means of local
measurements on the remaining n� k sites. As has been
shown in Ref. [4,5], efficient CQ universality is a strictly
stronger requirement than the notion of universality used in
the present Letter. Hence, the results presented above al-
ready imply that generic states are not CQ-universal.
However, we can strengthen the statement: Most states
fail to be CQ-universal, even if we assume we had the
power to choose the local measurement outcomes.

To put this into perspective, recall that models of quan-
tum computing with the assumed capability of choosing
the outcome of at least one measurement have been ana-
lyzed under the label of post-selected quantum computing
[31]. The complexity class of decision problems efficiently
decidable on post-selected computers is POSTBQP. It is
known [31] that PostBQP ¼ PP � NP—which implies
that the capability to postselect dramatically increases the
computational strength of quantum computers (unless
PP � BQP).

For generic states in the CQ-setting, however, postse-
lection does not seem to help. Indeed, the dramatic major-
ity of states are not efficiently CQ-universal, even if we
(i) assume the power to choose the outcome of the local
measurements, (ii) allow for any fixed error " in the output
fidelity, (iii) ask only for the capability to prepare a single
product state, and (iv) make no a priori assumption on
which sites the final state should end up in.

We proceed to prove the claim. Fix a subset K of k sites
(the ‘‘output register’’) of a given n-qubit resource state
j�i. Combining Lemma III.5 in Ref. [21] with Theorem 2
above, we find that for a random resource j�i and fixed
" > 0,

sup
�;�

ln
jðh�j � h�jÞj�ij2

k h�j�i k2 < 2 lnn� k� lnð1� "Þ þ 3

with probability at least 1� e�n2 þ e�c2k"2 . The supre-
mum is over product states j�i on K and j�i on KC.
There are fewer than nk choices for K 	 f1; . . . ; ng of

cardinality k. Hence, the preceding bound is true for all
such K simultaneously with probability no smaller than

1� ðe�n2þk lnn þ e�c2k"2þk lnnÞ. The claim follows by
taking n ! 1 and n ¼ polyðkÞ.
Efficiently preparable states and concrete examples.—

While conceptually relevant, generic Haar-random states
on large systems cannot be efficiently prepared. In this
section, we demonstrate that the effect that ‘‘too much
entanglement’’ impedes computational efficiency can
also be identified in more physically relevant states.
First, we exhibit a family of efficiently preparable states

j�ni on n qubits, for which limn!1Egðj�niÞ=n ¼ 1. These

values of the geometric measure are high enough to rule
out the possibility that such families offer an exponential
speedup for the kind of problems considered above.
Constructing explicit states which cannot cause even a
superpolynomial increase in computational power remains
an open problem. Fix a dimension d and choose a unitary
U 2 UðCdÞ. Define V:Cd ! Cd � Cd by Vj�i ¼ Uj0i �
j�i. For every k, we construct the state j�ki on n ¼ 2k

qudits by concatenating the maps V in a treelike fashion as
shown in Fig. 1. Now set d ¼ polyðkÞ and choose Uk 2
UðCdÞ randomly for every k. Recall that, by the Solovay-
Kitaev theorem [32], general unitaries in UðCmÞ can be
efficiently approximated by a quantum circuit in a time
polynomial in m and polylogarithmic in the error.
Employing once more standard concentration of measure
arguments [21], one easily finds that

lim
k!1

sup
�1;�2;�

jh�1; �2jVkj�ij2 ¼ 1=dðkÞ:

Thus, Vy
k maps any product state j�1i � j�2i to a vector

j�i with kj�ik2 � 1=dðkÞ (asymptotically). It follows that
the lowest layer of Vy’s in the definition of j�ki sends any
unit-norm product vector on n qudits to a product vector on

n=2 qudits, with squared norm at most dðkÞ�n=2. Inducting
over all layers and using the appropriate base-d logarithm
in the definition of geometric measure, we conclude

lim
k!1

�1

nðkÞ logdðkÞ sup�2P
jh�j�kij2 ¼

X1

i¼1

2�i ¼ 1:

|0〉 |0〉 |0〉 |0〉

|0〉 |0〉

|0〉 |0〉

FIG. 1 (color online). The tree-tensor network [11,13,34] that
gives rise to states with high geometric entanglement. Each of
the boxes represents a unitary.
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Turning to the CQ setting, it is easy to identify states
whose efficiency as a resource is limited by the presence of
correlations which can, on average, not be removed by
means of local measurements. Consider the ground state
j�i of a critical model with two-point correlation func-
tions between the sites j, k fulfilling h�jMj �Mkj�i �
h�jMjj�ih�jMkj�i> f½distðj; kÞ�, with fðxÞ ¼
1=polyðxÞ. Assume we could prepare a three-qubit cluster
state jCl3ihCl3j on some ‘‘output register.’’ We allow for
local unitary corrections and an average trace-norm error

of " so that with � ¼ plU
ðlÞ
j �UðlÞ

i �UðlÞ
k jCl3ihCl3jðUðlÞ

j �
UðlÞ

i �UðlÞ
k Þy, it holds that ktrnfj;i;kgðj�ih�jÞ � �k1 � ".

Here, pl is the probability of obtaining a certain sequence
of measurement outcomes. Noting that the qubits associ-
ated with sites j, k are uncorrelated for jCl3i, one easily
derives that the size of the resource must scale as
O½f�1ð"Þ�. This observation complements the results of
Ref. [7], where different arguments for the fact that critical
ground states may not be well-suited as CQ resources were
presented.

Summary and outlook.—We have shown that entangle-
ment for universal resource states must ‘‘come in the right
dose.’’ Future work should aim to identify a greater variety
of physically relevant states exhibiting the phenomenon of
being ‘‘too entangled.’’ For example, it would be interest-
ing to quantify to which degree output states of random,
polynomially sized quantum circuits are subject to this
effect. Also, the results underscore the importance of sys-
tematically understanding relevant classes of the few states
that are in fact universal. This work highlights the quite
intriguing role entanglement plays in quantum computing:
As with most good things, it is best consumed in
moderation.
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