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We show the following: a randomly chosen pure state as a resource for measurement-based quantum

computation is—with overwhelming probability—of no greater help to a polynomially bounded classical

control computer, than a string of random bits. Thus, unlike the familiar ‘‘cluster states,’’ the computing

power of a classical control device is not increased from P to BQP (bounded-error, quantum polynomial

time), but only to BPP (bounded-error, probabilistic polynomial time). The same holds if the task is to

sample from a distribution rather than to perform a bounded-error computation. Furthermore, we show

that our results can be extended to states with significantly less entanglement than random states.
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In measurement-based (or ‘‘one-way’’) quantum com-
putation, two very different resources are used: one is a
multiqubit state j�i; the other is a classical algorithm
used to determine how to measure the qubits, in which
order and in which local basis [1]. This clear separation
of quantum and classical resources gives rise to the ques-
tion: Which combinations of quantum states and classical
control algorithms yield an advantage over classical
computation?

In this Letter, we show that the efficiency requirements
on classical processing of measurement data in
measurement-based models severely limits the class of
quantum states which offer a computational speedup over
classical computers. In particular, we demonstrate that the
set of languages that can be decided by randomly chosen
pure states together with polynomial-sized classical con-
trol circuits is the same (with high probability) as the set of
languages that could be decided by polynomial-sized clas-
sical circuits and classical randomness alone [that is BPP
(bounded-error, probabilistic polynomial time)]. Our intu-
ition is that random pure states simply have too many
uncorrelated parameters to allow for a computational
speedup over classical processors. In support of this intui-
tion, we extend our main theorem to cover states which do
not share the entanglement properties of typical states.

Much of the literature has focused on identifying par-
ticular states, or classes of states, for which universal
quantum computation can be performed by utilizing a
small set of single-qubit measurements and a simple clas-
sical control algorithm. This is generally done by recog-
nizing certain ‘‘nice’’ properties of a state which allow
measurement outcomes to be interpreted as having applied
a quantum gate to some predefined input state.

One can take a constructive approach, such as in [2,3]
where the authors use techniques for the classical simula-
tion of quantum systems to find simple rules that describe
the effects of certain measurements. These rules apply to a

wide range of entangled states and can be used to show that
a large variety of systems can support measurement-based
quantum computation. From a more physical perspective,
other work has considered how ground or thermal states of
natural systems can be used for measurement-based quan-
tum computation [4–6].
Alternatively, one can identify general physical require-

ments that must be satisfied in order for it to be universal
for quantum computation [7,8]. In these papers, the authors
demonstrate that if the amount of entanglement in a family
of states does not grow sufficiently quickly with the num-
ber of qubits, then there is no deterministic LOCC (local
operations and classical communication) protocol that can
prepare a family of cluster states.
The line of thinking in our paper is more in the vein of

[9] where the authors examine how classical control com-
puters of varying computational power are boosted by the
addition quantum resources. For instance, they demon-
strate GHZ (Greenberger-Horne-Zeilinger) states enhance
classical control devices which are only capable of calcu-
lating parities to BPP.
Very recently Gross, Flammia, and Eisert [10] have also

shown, like in the current Letter, that random states (in
fact, highly entangled states) cannot be used for universal
measurement-based quantum computation. They demon-
strate this by proving that for certain problems in BQP
(bounded-error, quantum polynomial time) which are
thought to not be in BPP, highly entangled states offer no
advantage over classical randomness even given an oracle
which supplies the ‘‘best’’ set of single-qubit measure-
ments to be performed.
Abstract measurement-based computation model.—We

begin our analysis by defining the following general model
of computation—one which seems to capture all computa-
tionally efficient possibilities of using measurements on a
quantum state to drive a computation. See [11] for a formal
exposition.
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Definition 1 A model of abstract measurement-based
quantum computation (AMBQC) consists, for each nmea-
suring the input length, of a pairs (j�i, C), where j�ni is a
state on q qubits, and C is a classical circuit on w bits and
having at most v logical gates (each of which may involve
up to 3 bits). In practice, we ask for q, v, and w to be
polynomially bounded in n, but it will turn out that it is
enough to require that they are not ‘‘too big.’’

The purpose of the circuit C is twofold: First, during the
computation, it acts as a control which determines, based
on the input string x and previously generated measure-
ment outcomes m1; . . . ; mk on qubits ‘1; . . . ; ‘k, which
qubit ‘kþ1 to be measured next and with which measure-

ment POVM (positive operator valued measure) ðLð�Þ
� Þ�.

Second, at the end of the computation (k ¼ q), to deter-
mine the output y 2 f0; 1g as a function of x and the
m1; . . . ; mq, ‘1; . . . ; ‘q. The probability that y ¼ 1 over

all histories (i.e., the probability that the computation
accepts) is denoted Cxð�Þ.

Note that our state j�i has q qubits, and exactly q
measurements are made. We shall from now on implicitly
restrict to AMBQCs (j�i, C) in which all histories end up
measuring all q qubits (or equivalently, there is no actually
occurring history where some qubit is measured twice). An
AMBQC obeying this condition we call complete; it is
naturally fulfilled in all known specific models.

We say that ðj�i; CÞ ¼ ðj�ni; CnÞ computes a (partial)
function f: f0; 1gn ! f0; 1g with bounded error, if

fðxÞ ¼ 1) Cxð�Þ � 2=3; fðxÞ ¼ 0) Cxð�Þ � 1=3:

Note that, even though in practice this will be an im-
portant restriction, we impose no uniformity on the Cn, nor
on the states j�ni.

If we are interested in collective properties of all
AMBQCs with all possible inputs (as we shall be shortly),
we may even disregard the n-bit input x, as a slightly
longer control circuit starting off in the all-zero input can
first prepare the input x and then do the actual computation
described above.

These two points mean that we shall actually only look
at particular finite sized n, q, v, and w.

Random states are not universal.—As promised, the
question we want to address is whether a generic (i.e.,
randomly chosen) state j�i is of any good use to an
AMBQC? The way we think of this is a little different
from the usual MBQC, where the resource state can typi-
cally be prepared easily in a quantum computer—since
random states have enormous time complexity to prepare
in a quantum computer [12] we think of j�i as being
handed to us by an all-powerful, Merlinesque character.
Since we are similarly not even able to study a description
of the state (as it is too long to read in time polynomial in n
[12]), we cannot be expected to come up with the control
circuit C on our own. Instead, it is described to us by a
helpful Merlin, too, giving us the control circuit C that best
exploits the properties of j�i.

In simple terms, our main result states that for a typical
random state, there is no short control circuit that can do
anything with j�i which cannot be simulated to sufficient
precision using classical random bits.
Theorem 2 For a random state j�i on n qubits, consider

classical Boolean control circuits C of width w and having
at most v gates, let Cð�Þ be the probability of acceptance
of the AMBQC (j�i, C), and similarly Cð2�q1Þ the proba-
bility of acceptance when instead of � the maximally
mixed state 2�q1 is used. Then, for any � > 0,

Pr �f9CjCð�Þ � Cð2�q1Þj> �g � ð88wÞ3ve�c�22q ; (1)

where c ¼ 1
9�3 is a universal constant. (Observe that the

existential quantifier implicitly restricts to complete
AMBQCs.)
So, whenever v lnw ¼ oð2qÞ—e.g., for all polynomially

bounded circuits—the right-hand side of Eq. (1) goes to
zero exponentially, and hence for most states, the measure-
ment results coming from � can be replaced by classical
independent randomness: this changing the acceptance
probability by at most �, regardless of the circuit used.
Proof For a given two-outcome POVM with operators

P � 0 andQ ¼ 1� P � 0 acting on ðC2Þ�q, a straightfor-
ward application of Levy’s Lemma [13] yields

Pr �fjh�jPj�i � 2�q TrPj> �g � 4e�c�22q ; (2)

where c ¼ 1
9�3 . The reason is that for any 0 � P � 1, the

function j�i � h�jPj�i has Lipschitz constant 1.
Now, observe that every control circuit effectively de-

scribes such a two-outcome POVM: the circuit starts mak-
ing measurements on the system, and for each sequence of
previous outcomes decides on the next measurement; at the
end, the complete data obtained—the sequence ‘ ¼
‘1 . . . ‘q of qubits measured, the local measurements � ¼
�1 . . .�q and the outcomes m ¼ m1 . . .mq—is used to

decide acceptance or rejection. Thus, we find the accepting
and rejecting operators,

P ¼ X
ð‘;�;mÞ

acc:history

Oq
k¼1

ðLð�kÞ
mk

Þ‘k ;

and Q ¼ 1� P. In this way, clearly, Cð�Þ ¼ h�jPj�i.
The number of possible circuits to consider is at most

½88ðw3Þ�v � 1
6 ð88wÞ3v, so we put together Eq. (2) with the

union bound to obtain Eq. (1), observing the simple equa-
tion Cð2�q1Þ ¼ 2�q TrP.
Finally, we have to explain why the latter probability can

be sampled efficiently classically. But that is straightfor-
ward, since the maximally mixed state 2�q1 is a tensor
product of single-qubit maximally mixed states 1

21, so
indeed each measurement result of a local POVM ðL�Þ�
may be sampled independently with probability 1

2 TrL� for

outcome �, which can be done efficiently thanks to the
classical description of the POVM.
Remark.— For traditional MBQC, the local measure-

ments are simply von Neumann measurements, i.e., con-
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sisting of two orthogonal basis projectors. In that case, the
measurement outcomes are simply replaced by indepen-
dent random bits.

It is clear that the above can be generalized without any
difficulty to qudits as elementary systems. Equivalently,
models that consider measurements on bounded-sized sets
of qubits could also be considered.

Note furthermore that the step-by-step simulation above
produces a probability distribution over the same computa-
tional histories as the original AMBQC. We do not claim,
however, that these two distributions are close (which is
not true in general), but only that the efficient coarse
grainings represented by the output bit y are.

Sampling of a t-bit string.—If the object of the compu-
tation is to produce a sample from distribution on, say, t-bit
strings, we denote by Cð�Þ the resulting distribution. If
t � q, we can apply Levy’s Lemma to all 2t probability
values of Cð�Þ—and in a generalization of Theorem 2 we
can show via the same counting argument as in Theorem 2,
enhanced by an additional union over all sample strings y,
that

Pr �f9CkCð�Þ � Cð2�q1Þk1 > �g � 2tð88wÞ3ve�c�22q�2t
;

(3)

where c ¼ 1
9�3 is as before.

In other words, as long as 22ttv lnw ¼ oð2qÞ, it is ex-
ponentially unlikely for a random state to provide any
advantage for AMBQC over a maximally mixed state.
We note that this condition is typically fulfilled in ‘‘tradi-
tional’’ cluster state models, where both t and the depth of
the quantum circuit are polynomial in the input size n, so q
is a higher order polynomial in n than t.

Schmidt-rank-K states.—It is natural to wonder which
exact property makes a random state so particularly useless
for AMBQC. Two answers might come to mind: first,
random states have, with high probability, almost maximal
description complexity [12]. Another is that typical ran-
dom states are highly entangled: indeed, Gross et al. [10]
show that the geometric measure of entanglement on q ¼
qðnÞ qubits,

Egðj�iÞ ¼ � log max
j’i¼N

j
j’ðjÞi

jh’j�ij2;

is with high probability � q� 2 logq�Oð1Þ. Then they
show (similar to our approach above) that in performing a
computation with only one-sided and bounded error, the
measurement outcomes of such states may be replaced by
independent random bits. The resulting probabilistic com-
putation still has bounded, one-sided error.

This motivates the following definition and theorem.
Definition 3 (Random Schmidt-rank K states) Construct

the following random state � on q ¼ qðnÞ qubits, called
random Schmidt-rank K state. We define its distribution by
a sequence of random experiments: let

R :¼ XK
j¼1

jc ð1Þ
j ihc ð1Þ

j j � � � � � jc ðqÞ
j ihc ðqÞ

j j; (4)

where all the qK unit vectors jc ð‘Þ
j i are chosen indepen-

dently at random from anymeasure on the pure states ofC2

such that Ec ð‘Þ
j ¼ 1

21. Now pick a unit vector j�0i from
the support of R according to the unitary invariant measure,
and finally let

j�i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih�0jRj�0i
p ffiffiffiffi

R
p j�0i: (5)

Theorem 4 For a random Schmidt-rank K state j�i on q
qubits, with 64 � K � 2q (which implies q � 6), consider
classical Boolean control circuits C of width w and having
at most v gates. Then, for any � > 0,

Pr�f9CjCð�Þ � Cð2�q1Þj> �g � ð2q þ ð88wÞ3vÞ
� e�c0�2K1=3

; (6)

and where c0 ¼ 1
1296�3 is a universal constant.

In other words, whenever qþ v lnw ¼ oðK1=3Þ—e.g.
for all polynomially bounded circuits and superpolynomial
K—the right-hand side of Eq. (4) goes to zero exponen-
tially, and hence, for most Schmidt-rank K states, the
measurement results coming from � can be replaced by
classical independent randomness: this changes the accep-
tance probability by at most �, regardless of the circuit
used.
To prove this, we shall use Levy’s Lemma [13] once

again, but we also need two further concentration results,
which we only state, referring to [11] for proofs:
Lemma 5 For the random operator R in Eq. (4) such that

K � 4:2k and 2 � k � q,

PrR

�
kRk1 > 2

K

2k

�
� 2qe�K2�k=3:

Lemma 6 For the random operator R in Eq. (4), and 0 �
P � 1,

Pr R

���������
1

K
TrRP� 1

2q
TrP

��������>�

�
� 2e�2�2K:

We are now ready for the Proof of Theorem 4. Picking
the random state j�i, we have implicitly already con-
structed the operator R in Definition 3.
First, according to Lemma 5, and choosing k ¼ b23 �

logKc, we get
kRk1 � 4K1=3; (7)

except with probability � 2qe�K1=3=3.
Second, according to Lemma 6, we have for all mea-

surement POVMs (P, 1� P) constructed by the allowed
classical control circuits [of which there are M �
1
6 ð88wÞ3v—see the proof of Theorem 2,��������

1

K
TrRP� 2�q TrP

��������� �; (8)

except with probability � 2Me�2�2K.
Third, assuming Eq. (7) holds for a particular R, appli-

cation of Levy’s Lemma [13] to the same POVM elements
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P is possible, noting that the Lipschitz constant of the

function j�0i � Tr
ffiffiffiffi
R

p
�0

ffiffiffiffi
R

p
P is � � 8K1=3. We find

that for all these P,��������Tr
ffiffiffiffi
R

p
�0

ffiffiffiffi
R

p
P� 1

K
TrRP

��������� �; (9)

except with probability � 4Me�c�2K=�2
, with c ¼ 1

9�3 , as

in Theorem 2. The special case P ¼ 1 is trivially included:

jTr ffiffiffiffi
R

p
�0

ffiffiffiffi
R

p � 1j � �; (10)

i.e.,
ffiffiffiffi
R

p j�0i is already almost normalized.
Putting the three steps together, we find that if Eqs. (7)–

(10) hold, then for all eligible control circuits,

jCð�Þ � Cð2�q1Þj � 3�:

As noted above, however, this will be the case except with
probability bounded above by

2qe�K1=3=3 þ 2Me�2�2K þ 4Me�c�2K=�2
:

Redefining � � �=3 concludes the proof. h
It is intuitive (and not difficult to show) that with high

probability, a random Schmidt-rank K state satisfies
Egðj�iÞ � logK þOð1Þ, and since j�i is always a super-
position of K product states, also the descriptive (quantum
Kolmogorov) complexity of the state is bounded by an
exponential in K (this follows from a straightforward
counting argument, cf. [12]). Hence, even these states,
though failing the criterion of [10], are useless for
AMBQC. We would like to say that this is due to the
complexity of a random choice of pure state, but have to
stress that it is not the descriptive complexity of [12].
Rather, it is the fact that all degrees of freedom given to
the state are exhausted uniformly.

Note that the number of degrees of freedom sufficient for
this is anything growing superpolynomially in n, if the
control circuit and q are polynomially bounded. But it is
also necessary, because if K is polynomial, then j�i al-
ways has an efficient classical description, and so have all
the states occurring through the course of the computation;
in other words, the state is useless for AMBQC for another
reason, as it is simulable in P.

Conclusion.—We have shown that for decision problems
with bounded-error probability (and more generally for the
task of approximately sampling a distribution on ‘‘few’’
bits), a generic quantum state is (with overwhelming
probability) not more useful as a resource to a classical
control mechanism for a generalized measurement-based
model, than a random bit string. The only condition on the
classical control is that it can be built as a Boolean circuit
of subexponential depth. In other words, unless BQP ¼
BPP, such states will not yield universal quantum compu-
tation when used in any reasonable environment control-
ling the sequence of measurements. However, the result is
not limited to BQP, it also encompasses promise problems,

as long as the AMBQC is supposed to be polynomially
efficient and has bounded error; furthermore, the complex-
ity may essentially be anything strictly smaller than ex-
ponential. (Observe that an exponential classical control
could simulate the whole state, so its power is also not
increased by having access to j�i.)
Finally, even decidedly ‘‘nonrandom’’ states (in the

sense that their distribution is not unitary invariant) still
have the same property if only they are drawn from a large
enough manifold, as we have demonstrated with random
states of bounded Schmidt rank.
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