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We introduce a class of states, called minimally entangled typical thermal states, designed to resemble a

typical state of a quantum system at finite temperature with a bias towards classical (minimally entangled)

properties. These states reveal in an intuitive way properties such as short-range order which may often be

hidden. A finite-T density matrix renormalization group algorithm is presented which is only modestly

slower than the T ¼ 0 density matrix renormalization group.
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What is a typical wave function of a quantum system at a
finite temperature? The fundamental proposition of statis-
tical mechanics is that the density matrix of a system at
inverse temperature � with Hamiltonian H is � ¼
expð��HÞ. One can regard � ¼ expð��HÞ as arising
from several different physical situations: from an en-
semble average of pure states, from the long time average
of one system, from quantum mechanical entanglement
with a heat bath which produces mixed states, or from
some combination of these effects. The resulting predic-
tions of statistical mechanics depend only on �. On the
other hand, statistical mechanics is an idealization; a real
physical system has a specific history and environment
which may favor thinking about it in one way over another.
Here we will focus on the ensemble-of-pure-states point of
view. We have in mind equilibrating the system with weak
coupling to a heat bath and then moving the heat bath far
from the system, removing any couplings. From this view-
point, our question is a natural one. In this Letter, we
propose a set of idealized states which we argue are useful
to think of as ‘‘typical’’ and whose ensemble generates
� ¼ expð��HÞ. In addition, the algorithm we introduce to
generate them provides a substantially more efficient route
to determining finite temperature properties of lattice mod-
els when using diagonalization, density matrix renormal-
ization group (DMRG) [1], and tensor product wave
function approaches [2,3].

What do we mean by typical? We mean that there is a set
of states fj�ðiÞig with unnormalized probabilities PðiÞ,
from which we can select states, with

X
i

PðiÞj�ðiÞih�ðiÞj ¼ e��H: (1)

Then the expectation value of any Hermitian operator A
can be determined by an unweighted average of
h�ðiÞjAj�ðiÞi, with each j�ðiÞi chosen at random accord-
ing to PðiÞ. We also impose looser criteria based on phys-
ics: that one can imagine some physical thermalization
process which might generate the fj�ðiÞig and that the
fj�ðiÞig do not exhibit special ‘‘atypical’’ physical charac-

teristics. We do not require that every state in the Hilbert
space be included in the fj�ðiÞig.
For classical systems on a lattice, the only reasonable

typical states are the classical product states (CPSs) jii ¼Q
sites ‘ji‘i, where i‘ labels the states of a site. For example,

for an Ising model, a CPS is a spin configuration, e.g., jii ¼
j"##" . . .i. These states are often generated numerically and
provide an intuitive understanding of a system’s properties
which would be difficult to obtain from the system’s den-
sity matrix. For quantum spin systems, one can generate
CPSs, but they are not typical wave functions; e.g., at
T ¼ 0, the typical wave function should be the ground
state, not a CPS.
The energy eigenvalues Es and eigenstates jsi satisfy

� ¼ P
se

��Es jsihsj and thus Eq. (1). However, they should
not be thought of as typical states. Schrödinger called this
idea ‘‘altogether wrong’’ and ‘‘irreconcilable with the very
foundations of quantum mechanics’’ [4]. For a large sys-
tem, excluding very low temperature, equilibration pro-
cesses do not drive the system to any single eigenstate. Any
such process would take an exponentially long time (in the
number of particles N) because of the exponentially small
energy level spacing. The eigenstates are also exponen-
tially sensitive to uncertainties in the Hamiltonian.
Nevertheless, more recent introductions to statistical me-
chanics than Schrödinger’s often give the impression that
the typical thermal wave function is an eigenstate of the
Hamiltonian [5].
It is easy to construct other states satisfying Eq. (1). Let

fjiig be any complete orthonormal basis of the system.
Define the normalized (but not orthogonal) set of typical
states

j�ðiÞi � PðiÞ�1=2 expð��H=2Þjii; (2)

PðiÞ � hij expð��HÞjii ¼ Trf�jiihijg: (3)

Note that the partition function is given by Z ¼ Tr� ¼P
iPðiÞ. We see Eq. (1) immediately follows, and

hAi � Z�1Trf�Ag ¼ Z�1
X
i

PðiÞh�ðiÞjAj�ðiÞi: (4)
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Similar results are obtained if the states fjiig are not ortho-
normal, provided there exists a positive set of weights pðiÞ
such that

P
ipðiÞjiihij ¼ 1, and similarly for a continuous

distribution of states.
The energy eigenstates can serve as the set jii, in which

case j�ðiÞi ¼ jii. Another choice is to select the fjiig as
random normalized vectors in the Hilbert space, selected
using the Haar measure. Both of these approaches are
intractable computationally except on the smallest sys-
tems. The first would be unsuitable even for a Lanczos
approach because of the small level spacings—a full diago-
nalization of H would be required. These choices are also
poor from a physical point of view. In a broken symmetry
phase, these states would be highly nonclassical super-
positions of many states with different values of the order
parameter. If the system consisted of two widely separated
noninteracting subsystems, the random vector approach
would give highly entangled states of the two subsystems.
These choices ignore decoherence effects, which tend to
eliminate highly nonclassical entanglement.

We take as our favored typical states fj�ðiÞig the ones
with the least entanglement, generated by taking fjiig to be
a CPS. By entanglement we mean that we consider divid-
ing the system into two parts, say, by taking a dividing
plane, and calculating the von Neumann entanglement
entropy S between the two parts. A CPS has S ¼ 0 for
any division. At nonzero � we expect the resulting j�ðiÞi
to have minimal entropy within this general class of states,
and so we call them minimally entangled typical thermal
states (METTS). METTS have a number of nice properties.
AMETTS for a system with noninteracting subsystems is a
product of METTS for the subsystems. For systems with
long-range order, METTS break symmetries, choosing an
order parameter at random. Even for systems without
broken symmetries, METTS reveal underlying short-range
order.

We give two approaches to the calculation of METTS.
The ancilla method [6,7] uses a set of auxiliary sites acting
as a heat bath and has been used to simulate finite tem-
peratures using time-dependent DMRG methods [8]. Its
adaptation to produce METTS resembles a highly ideal-
ized physical thermalization process. The pure-state
method does not use a heat bath and is more efficient.

To describe the ancilla method [6], let us take the system
A to be composed of N spins with S ¼ 1=2. The heat bath
B is also composed of N S ¼ 1=2 spins (called ancilla),
and we pair up the spins in A andB—for a 1D system, think
of a ladder. Label the sites by ‘, and let ji‘iA label the local
states of the system site at ‘, and similarly for B. The initial
unnormalized pure state of Aþ B which describes infinite
temperature is

jc ð� ¼ 0Þi ¼ X
i1

. . .
X
iN

ji1iAji1iB . . . jiNiAjiNiB: (5)

This state is a product of site-ancilla pair states, with each

pair maximally entangled. If one traces out the ancilla from
jc ihc j, one obtains the infinite temperature density matrix
1. The Hamiltonian of Aþ B is that of A alone: there are no
A-B or B-B terms. Let

jc ð�Þi ¼ expð��H=2Þjc ð0Þi: (6)

We find TrBjc ð�Þihc ð�Þj ¼ expð��HÞ. Alternatively,
one can measure any operator O of A as hOi ¼
hc ð�ÞjOjc ð�Þi. The calculation of jc ð�Þi for 1D systems
is easily performed using imaginary time-dependent
DMRG [8], with initial state jc ð� ¼ 0Þi.
To obtain a pure state for A from the entangled state of

Aþ B, we perform a physical measurement of all of the
spins of B. A physical measurement projects the wave
function into one eigenstate of the measured operator,
with the appropriate probability. Specifically, to measure
one particular spin in the z direction, compute Pð"Þ ¼
hSzi þ 1

2 , let Pð#Þ ¼ 1� Pð"Þ, and set

jc i !
�
Pð"Þ�1=2j"ih"jc i probPð"Þ;
Pð#Þ�1=2j#i h#jc i probPð#Þ: (7)

We get the same probability distribution whether we mea-
sure the sites sequentially or jointly all at once, but sequen-
tially is much more convenient numerically, taking one
half-sweep in DMRG [9]. We are free to measure each
spin with respect to any axis, all the same or different,
randomly or predetermined. The probability of the final
CPS jiiB is given by Eq. (3). The measurement puts the
combined system into the product state

PðiÞ�1=2jiiBhijBc ð�Þi ¼ jiiBj�ðiÞiA: (8)

At this point, one can ignore B. Note that the initial perfect
entanglement takes the place of the coupling one would
have in a real thermalization process.
In the pure-state method, we start with any CPS jii and

apply expð��H=2Þ. We then physically measure a new
CPS ji0i from this state and apply expð��H=2Þ to it, etc.
We call one iteration a ‘‘thermal step.’’ This process re-
sembles Monte Carlo sweep, but with the quantum mea-
surement process taking the place of the usual spin flips.
The set of METTS are a fixed point of this process: con-
sider an infinite ensemble of such systems, initially with jii
distributed with probability PðiÞ. Then by Eq. (4), the
ensemble of j�ðiÞi correctly reproduces all thermody-
namic measurements, so a set of ji0i determined from it
is correctly distributed with probability Pði0Þ.
To study METTS in more detail, we consider the one-

dimensional S ¼ 1
2 Heisenberg model, with Hamiltonian

H ¼ X
‘

~S‘ � ~S‘þ1 (9)

and with open boundary conditions. We implement the
algorithms using time-dependent DMRG with a second-
order breakup and with a time step of 0.05. The physical
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measurements generating the jii were done at different
random orientations for each spin and thermal time step.

In Fig. 1, we show that the two algorithms give the same
(numerically exact) results for the energy on a 100-site
Heisenberg chain. The main figure shows that, for the pure-
state method, one reaches the equilibrium distribution
for the energy very precisely after 5–10 thermal steps,
starting from a random configuration. This suggests that
the thermal-step autocorrelation time (similar to a
Monte Carlo autocorrelation time) is very short, the key
to efficient sampling. In practical calculations (inset), one
does one long run with many thermal steps, discarding the
first results as being a warm-up, say, about 10 steps.
Averaging over only 100 METTS obtained in N� ¼ 100
thermal steps (þ10 for the warm-up), we obtain the total
energy to a relative accuracy of about 10�5. The fluctua-
tions in the total energy are quite small; one can obtain
reasonable results with only one METTS.

With DMRG, particularly for low temperatures and
modest accuracies, the pure-state METTS method is
much faster than the ancilla method for obtaining thermal
averages. (For averages, there is no point in generating
METTS with the ancilla method, since averages can be
measured directly.) Suppose for a specified accuracy a
system requires m0 states per block for a T ¼ 0 standard
DMRG calculation. In pure-state METTS we solve the
imaginary-time-dependent Schrödinger equation from 0
to�=2. We find that, for pure-state METTS, them required
starts at 1 for small imaginary time and saturates to m0 for

very large imaginary times, which are needed only for
large �. The calculation time scales as Nm3

0�N�, where

N is the number of sites. In the ancilla method, in the limit
of low temperatures, the heat bath and the system both
independently encode the ground state, as a product state
but with their sites intermingled. This means that DMRG
requires m2

0 states, and the calculation time scales as

Nm6
0�, bigger by a factor of m3

0=N� compared to the

pure-state METTS approach. Typical values of m0 are
50–5000 for systems ranging from simple 1D spin chains
to 2D clusters with width 8–10. Consequently, takingN� ¼
10–100, the pure-state METTS method is faster by a factor
of 103–1010.
In Fig. 2, we show properties of some METTS for a

Heisenberg chain. All of the measurements show substan-
tial randomness, which diminishes at lower temperatures
as the METTS approach the ground state. Since the model
is antiferromagnetic, we multiply the spin measurements
by ð�1Þ‘ to make twisting of the antiferromagnetic order
more apparent. For example, for � ¼ 8, pronounced twist-

ing is visible near ‘ ¼ 105–110. The values of h ~S � ~Si show
an increase in dimerization in the same region. Similar
twisting and dimerization is visible at � ¼ 3 near ‘ ¼
100–108. At a finite temperature, the system has a finite
spin-spin correlation length; this could come about (we
imagine) via random twisting of the spin order, by regions
with strong dimerization, or by some combination. In these
METTS both effects occur, with twisting being some-
what more pronounced. The open squares measure
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FIG. 1 (color online). Energy of a 100-site Heisenberg chain at
various temperatures. The dashed lines label the results of the
ancilla approach, considered exact. The symbols are derived
from repeated use of the pure-state method, with each use
starting from a new completely random state jii and proceeding
10 thermal steps. For a fixed thermal step, we averaged over the
ensemble. The inset shows one long pure-state calculation. The
open circles show energies of individual METTS, while the solid
line shows the moving average.
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FIG. 2 (color online). Properties of METTS for a 200-site
Heisenberg chain, central 30 sites. Each panel shows properties
of a METTS generated for the indicated temperature (the
METTS in the different panels are unrelated). The three solid
lines (red, black, and green) without symbols show ð�1Þ‘hS�i,
for � ¼ x; y; z (which line is x, etc., is arbitrary). The open

squares at the top show C‘. The open circles show h ~S � ~Si on each
bond.
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C‘ � ðhSx‘i2 þ hSy‘i2 þ hSz‘i2Þ1=2. C‘ measures how classi-

cal a spin is—how entangled it is within the METTS. For
an isolated S ¼ 1=2 in any pure state, C‘ ¼ 1=2. Any total
S ¼ 0 wave function would give C‘ ¼ 0 for every ‘. The
METTS are biased to be classical, which makes C‘ mean-
ingful. It is surprising how little variation there is in C‘
from site to site.

The METTS can be evolved in real time (say, with real-
time DMRG). The ensemble averages of METTS states are
time-independent, but the METTS themselves are not.
Much as a single particle with a narrowly peaked wave
function would spread out in time, METTS evolve to states
with much higher entanglement entropy. In Fig. 3, we show
the growth of S with time for several different tempera-
tures. In the higher temperature cases, the entropy starts
smaller but grows more rapidly. The same effect is seen in
the results for an ancilla system, for which the typical
entropy is roughly twice that of the METTS, in agreement
with the behavior of m, with m� expðSÞ. The behavior of
the entropy as a function of time determines the effective-
ness of the real-time DMRG to calculate finite temperature
spectral functions [10]. Our results show that METTS will
be able to reach longer times than the ancilla approach
[10].

The rapid growth of entanglement with time for METTS
raises the question of whether METTS (at t ¼ 0) really are
typical wave functions of real systems. The answer is very
likely no; typical wave functions have more entanglement
than METTS, with eventual entanglement growth perhaps
limited by decoherence. One can evolve an ensemble of
METTS to some fixed time t; the resulting set of states also
satisfy Eq. (1), would exhibit more entanglement, and thus
could be considered as being more realistic physically.
However, the METTS themselves are more useful
computationally.

We briefly note several other approaches to finite tem-
peratures. A quite different (but powerful) finite tempera-
ture DMRG approach for infinite, translationally invariant
1D systems is the transfer matrix DMRG [11,12]. More
closely related to our work are two approaches adapted for
Lanczos calculations [13,14] and one recent DMRG ap-
proach [15]. METTS has a more rigorous foundation than
these approaches, e.g., not dependent on any completeness
properties of the Lanczos or DMRG basis and applicable to
any temperature. The ground state DMRG can currently
treat 2D clusters with fermions or frustration with about
100–200 sites. Because the computational effort with
METTS is modest, of order (�=time step) times that of
the ground state DMRG, we expect to be able to treat such
systems at a finite temperature for the first time. METTS
may also reveal short- or long-range order which was not
expected and not looked for in correlation functions even at
zero temperature.
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FIG. 3 (color online). Entanglement entropy at the center bond
of a 40-site Heisenberg chain as a function of real time. Each
solid line is for a single METTS, while the dashed lines are for
an ancilla system with 40 sites and 40 ancilla.
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