
Entropy Exchange in a Mixture of Ultracold Atoms

J. Catani,1,2 G. Barontini,1 G. Lamporesi,1 F. Rabatti,1 G. Thalhammer,1 F. Minardi,1,2 S. Stringari,3 and M. Inguscio1,2

1LENS—European Laboratory for Non-Linear Spectroscopy and Dipartimento di Fisica, Università di Firenze,
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We investigate experimentally the entropy transfer between two distinguishable atomic quantum gases

at ultralow temperatures. Exploiting a species-selective trapping potential, we are able to control the

entropy of one target gas in presence of a second auxiliary gas. With this method, we drive the target gas

into the degenerate regime in conditions of controlled temperature by transferring entropy to the auxiliary

gas. We envision that our method could be useful both to achieve the low entropies required to realize new

quantum phases and to measure the temperature of atoms in deep optical lattices. We verified the

thermalization of the two species in a 1D lattice.
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In recent years, an intense research of quantum phases
common to condensed matter systems and atomic quantum
gases has made remarkable progresses [1]. Some of these
phases can only be reached provided that the temperature is
suitably low. However, in strongly correlated quantum
systems, even the temperature measurement can be a chal-
lenging task. If so, to ascertain whether a given quantum
phase is accessible, it is convenient to focus on the critical
value of entropy, rather than temperature. The advantage is
especially clear when the strongly correlated regime is
reached by sufficiently slow, entropy-preserving, transfor-
mations of the trapping potential, as it is often the case for
atoms in deep optical lattices [2]. For these reasons, it is
important to determine and grasp control of the entropy of
degenerate quantum gases [3–5]. In this work, we demon-
strate the reversible and controlled transfer of entropy
between the two ultracold, harmonically trapped Bose
gases, which is based on the use of a species-selective
dipole potential (SSDP), i.e., an optical potential experi-
enced exclusively by one species (Fig. 1) [6,7]. In particu-
lar, we drive the target gas across the threshold for Bose-
Einstein condensation, by a reversible transfer of entropy
to the auxiliary gas.

The main idea can be understood from textbook ther-
modynamics. Let us consider two distinguishable gases
filling an isolated box, exchanging neither particles nor
energy with the outside, and imagine that only one gas
(target) is compressed, e.g., through a piston permeable to
the second gas (auxiliary). The temperature will increase
and, in thermal equilibrium, heat, hence entropy, will trans-
fer from the target to the auxiliary uncompressed gas. In
the limit of the auxiliary gas containing a large number of
particles, it stands as a thermal bath. In a more formal way,
for an ideal gas ofN particles, the entropy S is proportional
to N logð�=NÞ, where the number of accessible single-
particle states � increases with the energy density of states
and with the average energy, i.e., the temperature. In an

adiabatic compression of one single gas, the reduction of
the energy density of states is compensated by a tempera-
ture raising such that �, hence S, remains constant. If we
add the uncompressed auxiliary gas in thermal contact, the
temperature raising must be lower: � decreases for the
target gas (and increases for the auxiliary component). In
our experiment, the gases are trapped by adjustable har-
monic potentials, but the underlying physics is the same.
To make quantitative predictions, we start from the

entropy of an ideal gas at temperature T in a harmonic
potential with angular frequency ! [8]: S ¼
kBNth½4g4ðzÞ=g3ðzÞ � logðzÞ�, where Nth denotes the num-
ber of thermal atoms and the polylogarithmic functions are
defined as gnðzÞ ¼

P
k�1z

k=kn. Above the BEC critical
temperature Tc, Nth equals the total atom number N, and
the fugacity z is implicitly given by the relation N ¼
g3ðzÞðkBT=@!Þ3. Below Tc, z ¼ 1 and only the thermal
atoms contribute to the entropy, each with a quantity equal
to 4kB�ð4Þ=�ð3Þ, �ðnÞ ¼ gnð1Þ, so that

FIG. 1 (color online). Schematic of our experimental proce-
dure. Left: the harmonic magnetic potential is common to both
gases, auxiliary (red, larger) and target (blue, smaller). Right: the
species-selective dipole beam compresses the target sample and
drives it into the degenerate regime. Trapping potentials for the
auxiliary Rb (dashed line) and the target K gas (solid line) are
sketched on the background panels together with the K density
distributions.
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�
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�
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@!

�
3
: (1)

Thus, below Tc, the entropy is independent of the total
number of atoms N.

The above results refer to a noninteracting Bose gas. For
high atomic densities, the interatomic interactions modify
low energy spectrum and must be taken into account: a
theoretical analysis is given in Ref. [9]. We evaluate nu-
merically the implicit expression contained therein and
find that, in our experimental circumstances, the interac-
tions increase the ideal gas values of entropy by at most
20% for condensate samples. An expression for the en-
tropy, easy-to-use and more faithfully approximating the
results of [9] than Eq. (1), is obtained by replacing ðT=TcÞ3
in Eq. (1) with the thermal fraction 1� fc with fc taken
from a semi-ideal model [9,10]

fc ¼ 1� t3 � �½�ð2Þ=�ð3Þ�t2ð1� t3Þ2=5: (2)

Here, t ¼ T=Tc, � ¼ �=kBT and the zero-temperature

chemical potential � ¼ ð@!=2Þð15Nas=ahoÞ2=5 depends

on as, the scattering length, and aho ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
@=m!

p
. In our

experimental conditions, � ranges from 0.30 to 0.33 for
condensed samples. This approximation is especially
helpful for high condensate fractions (fc > 0:5), where
the ideal gas formula Eq. (1) seriously underestimates
the gas entropy. However, in the explored range fc < 0:3,
Eq. (1) stands as a reasonably good approximation. For
thermal samples above the BEC threshold, the interaction
energies are negligible with respect to the temperature.
This is also the case for interspecies interactions, since
the auxiliary sample, always thermal for the reported data,
has low density. For this reason, we simply add the single-
species contributions to obtain the total entropy of the
mixture, S ¼ SK þ SRb.

In our experiment, we load a mixture of 87Rb and 41K in
a millimetric magnetic trap and sympathetically cool the
mixture [11]. The magnetic trap provides a harmonic
confinement with frequencies ð!x;!y;!zÞ ¼ 2��
ð24; 297; 297Þ Hz for K and a factor 1.46 smaller for Rb.

The geometric mean frequencies ! ¼ ð!x!y!zÞ1=3 equal
to, and we have ð!Rb; !KÞ ¼ 2�� ð88; 128Þ Hz. To se-
lectively act on the potential experienced by the K atoms
(target gas) alone, we use a laser beam tuned to an inter-
mediate wavelength between the D1 and D2 lines of Rb
(auxiliary gas), such that the dipole forces on Rb due to
these two transitions cancel out [7]. The beam, linearly
polarized, with a waist of 55 �m, propagates along the
horizontal y direction (Fig. 1). We experimentally deter-
mine the wavelength value to be 789.85(1) nm, by mini-
mizing the efficiency of the Raman-Nath diffraction
caused by a pulsed standing wave on a Rb condensate
[12]. We also measured the residual potential acting on
Rb to be VRb=VK ¼ 0:08ð1Þ. Such a residual potential
weakly deforms only a small central region of the Rb
density. From the measured temperature increase caused

by the SSDP on Rb alone, we estimate a residual effective
increase of !Rb lower than 7%, hereafter neglected.
On the K sample, the additional confinement induced by

the SSDP beam is instead a harmonic potential whose
frequencies add in quadrature to those of the magnetic
trap. The compression occurs mainly along the weak
x axis of the magnetic trap (!x increases up to a factor
5), slightly along the z direction (!z increases less than
8%), and is utterly negligible along the propagation y axis
of the SSDP beam. Overall, the dipole beam raises the !K,
hence the K critical temperature, up to a factor 1.7.
We raise the power of the SSDP beam with an exponen-

tial ramp lasting 200 ms for maximum compression of the
trap frequency !K;f ¼ 2�� 216 Hz. The adiabaticity is

preserved since the ramp is longer than the trapping peri-
ods of 41K, i.e., (41,3.4,3.4) ms. Thermal equilibrium be-
tween the two gases is maintained throughout by making
all transformations slow with respect to the interspecies
collision times, a few ms in typical experimental condi-
tions: we verified that the temperatures of the two species
are always equal, within our statistical uncertainty. Our
observables are the number of thermal atoms Nth, the
number of condensed atoms Nc, and the temperature T of
the two species that are measured by resonant absorption
imaging after all confining potential are removed and the
atomic clouds have expanded. For each species, the en-
tropy is either computed from the measured temperature
and atom number for samples above BEC or obtained from
the condensate fraction below BEC.
In Fig. 2, we show that, upon selective compression, the

K sample crosses the BEC threshold; thus, its entropy
manifestly drops. Starting with 9:5� 105 Rb atoms and
2� 105 K atoms at 0:410ð15Þ �K, we measure the K
condensate fraction at different compression ratios.
Because of the large size of the SSDP beam compared to
the K cloud, we observe that, in the absence of Rb, the

FIG. 2 (color online). BEC fraction of the K sample as a
function of the K harmonic frequency after the compression.
Data (circles) are compared to the theoretical predictions based
on the numerical (solid line) and analytical approximate (dashed
line) solutions of Eq. (3). On the right axis, the approximated
value S=ðNkBÞ ¼ 4½�ð4Þ=�ð3Þ�ð1� fcÞ is shown. The inset dis-
plays absorption images of the K sample before (a) and after
(b) the compression.
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compression does not increase the K degeneracy, differ-
ently from the ‘‘dimple’’ configuration, where a tightly
localized dipole trap is used to bring a single species to
BEC [13].

For a comparison of the observed condensate fraction
after compression with the theoretical predictions, we first
calculate the final temperature and then obtain the conden-
sate fraction from Eq. (2). The final temperature Tf of the

mixture after the transformation !K;i ! !K;f satisfies the

equation:

SðTi;!K;i;NKÞþSðTi;!Rb;NRbÞ ¼ SðTf;!K;f;NKÞ
þSðTf;!Rb;NRbÞ (3)

where Ti is the initial temperature. In our experimental
circumstances, the transformation starts with a thermal Rb
sample and a K sample at the BEC threshold or below.
Therefore, we solve Eq. (3) numerically for Tf. We also

find an analytical approximate solution for Tf [14]:

Tf ¼ Tið!K;f=!K;iÞfW½ð!K;i=!K;fÞ3�e��=�g1=3 (4)

where � ¼ 4�ð4ÞðkBTi=@!K;iÞ3=NRb and WðyÞ is the

Lambert’s function defined as the inverse of y ¼ xex. In
Fig. 2, we plot the condensate fraction, and the related
entropy per particle, as a function of the K harmonic
frequency at the end of the compression. The data points
are well in agreement with the numerical results that differ
from the simple analytical solution obtained from Eq. (2)
and (4) by only 10% in our range of compressions.

We now illustrate how the interspecies exchange of
entropy can be used to explore the entropy-temperature
diagram of a sample of 1:1ð2Þ � 105 K atoms, shown in
Fig. 3. Notice that here we focus on the properties of the
target K gas, but the presence of the auxiliary Rb gas is
essential for some transformations. At each data point, the
entropy of the gas is determined in the following way:
above Tc, we compute the entropy per particle by the
formula S=NkB ¼ 4� log½Nð@!=kBTÞ3� obtained by
truncating the polylogarithmic functions at the first order
in z; below Tc, we calculate the entropy from the measured
condensate fraction S=NkB ¼ 4½�ð4Þ=�ð3Þ�ð1� fcÞ.

By combining sympathetic cooling and control of the
harmonic frequencies, we can follow different trajectories
in the S-T diagram. In particular, we compare the effi-
ciency of three trajectories indicated as A, B, C in Fig. 3.
Trajectory A corresponds to plain sympathetic cooling in
the magnetic trap. Along B, instead, we raise the SSDP
beam to maximum power when the temperature of the
samples reaches 0:6 �K, and we proceed with evaporation
of Rb and sympathetic cooling of K. When the Rb is
exhausted, at 0:41 �K, we extinguish the SSDP beam
intensity, thus decompressing the trapping potential, and
reach the same final point of the previous trajectory. Finally
along C, we raise the SSDP when the K sample is close to
BEC at 0:34 �K and cross threshold by selective compres-

sion as in Fig. 2. The end point of all trajectories is reached
when the Rb sample is either exhausted (B) or depleted to
the point that further sympathetic cooling is inefficient,
NRb=NK � 2 (A, C). The three described paths have similar
efficiencies, since the end values of entropy are approxi-
mately equal. It is important to notice that, for larger
NRb=NK, all cooling processes are more efficient, and
lower S=N values are likely attainable. By means of the
SSDP compression in presence of the auxiliary Rb gas, we
perform isothermal transformations. Vice versa, with a
single species, an adiabatic variation of the trapping fre-
quencies corresponds to an isoentropic transformation that
does not increase the gas degeneracy.
The degree of reversibility of the SSDP transformations

across the K BEC threshold is investigated by performing
multiple compression and decompression cycles. The
SSDP beam intensity is repeatedly ramped up and down
in an exponential fashion (� ¼ 45 ms) with a period of
0.43 s. As shown in Fig. 4, the BEC threshold is crossed for
5 cycles at maximum compression. The K condensate
fraction decreases over successive compressions because,
at each cycle, the number of Rb atoms is reduced and the
temperature slightly increased. Even in absence of com-
pression, our Rb sample experiences a heating rate of the
order of 0:7 �K=s which we reduce by an order of magni-
tude by means of a microwave shield [15], removing
trapped Rb atoms with energy E=kB > 5:5 �K. As a con-
sequence, the Rb atom number decreases at a rate of
2:5ð5Þ � 105 s�1. Starting with approximately 8:5� 105

Rb atoms and 2� 105 K atoms at 0:4 �K, we obtain a
finite K condensate fraction over a time span of 2 s. After 5
cycles, the entropy exchange still occurs, but its efficiency
is undermined by the lower Rb atom number and the
temperature before the compression is too high to cross
the BEC threshold. Our data can still be described by the
theoretical analysis summarized in Eq. (2) and (4), pro-

FIG. 3 (color online). Trajectories in the entropy-temperature
diagram of the K sample (see text). For the experimental data,
the entropy is determined with the formulas in text. The dashed
lines show the ideal entropy for a sample of 1:1� 105 K atoms at
the harmonic frequencies of the magnetic trap (!K ¼
2�� 128 Hz) and of the SSDP maximally compressed trap
(!K ¼ 2�� 216 Hz). The shaded boxes highlight the isother-
mal SSDP compressions.
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vided we take into account that successive cycles occur
from different initial conditions.

The independent manipulation of two atomic species
opens also new perspectives for the thermometry of cold
gases in optical lattices. As a first application, we have
investigated the thermalization of the two species when the
SSDP forms a 1D lattice for K only. The SSDP standing
wave along the x weak axis of the magnetic trap is ramped
in 200 ms, kept constant for 20 ms, and then linearly
extinguished in 1 ms. The magnetic trap is abruptly
switched off immediately afterwards, and the atoms ex-
pand freely for 10 ms (K) and 15 ms (Rb). We observe that
Rb x and y rms sizes do not depend on the SSDP lattice
depth and either can be used to extract the gas temperature.
We also find that the K temperature obtained from the y
size increases with the lattice strength, but it is always
equal to Rb within our statistical uncertainty of 10%. This
shows that, in a 1D lattice configuration, up to a strength of
20 recoil energy, the auxiliary gas allows to read out the
system temperature and to validate proposed methods to
extract the temperature of a gas in an optical lattice [16].

In summary, we have experimentally demonstrated a
method to exchange entropy between two gases, whereby
we can precisely reduce the entropy of an ultracold atomic
sample and drive it across the BEC threshold in a reversible
manner. Earlier experiments demonstrating reversible
BEC, or simply gain in phase-space density, featured either
hydrogen films [17], a single species gas in a ‘‘dimple’’
potential [13] or multiple spin components in the same
harmonic potential [18]. Our method is similar in principle
to the ‘‘dimple’’ configuration of Ref. [13], where the
single gas can be thought as consisting of two components
distinguished by their extension. The use of two atomic
species combined with the SSDP, however, offers outstand-
ing flexibility and can be easily extended to different
configurations, e.g., lattices, and to different mixtures. In
particular, the species-selective potential works best for

mixtures that combine atoms with widely spaced D1 and
D2 transitions and largely different resonant wavelengths.
Our method can be applied also to reduce the entropy of an

ideal degenerate Fermi gas, S=N ¼ ð�2k2BTÞ=ð@!
ffiffiffiffiffiffiffi
6N3

p Þ for
harmonic trapping. In the limit of isothermal transforma-
tions, the entropy of the target Fermi gas decreases as the
inverse of harmonic frequency compression ratio Sf=Si ¼
!i=!f, less than in the case of a condensate Sf=Si ¼
ð!i=!fÞ3.
A species-selective optical lattice has important appli-

cations for the thermometry of an atomic Mott insulator,
filling the need of convenient experimental techniques
[19]. Preliminarily, we have verified thermalization to
occur in a 1D SSDP lattice. In addition, the auxiliary
component could be used as coolant to dissipate the Mott
excitations [20]. Alternatively, dilute atoms localized by a
species-selective lattice might be used as disordered scat-
terers for lattice-insensitive matter waves [21].
This work was supported by MIUR PRIN 2007, Ente
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FIG. 4 (color online). Cycles of compressions and decompres-
sions, the K condensate fraction changes in a reversible manner
as we modulate the K harmonic frequency over time from 128 to
216 Hz (the solid line guides the eye). The inset shows the
relative intensity of the SSDP beam.
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