
Hexagonal Warping Effects in the Surface States of the Topological Insulator Bi2Te3

Liang Fu*

Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
(Received 12 August 2009; revised manuscript received 21 October 2009; published 21 December 2009)

A single two-dimensinoal Dirac fermion state has been recently observed on the surface of the topo-

logical insulator Bi2Te3 by angle-resolved photoemission spectroscopy. We study the surface band struc-

ture using k � p theory and find an unconventional hexagonal warping term, which is the counterpart of

cubic Dresselhaus spin-orbit coupling in rhombohedral structures. We show that this hexagonal warping

term naturally explains the observed hexagonal snowflake Fermi surface. The strength of hexagonal

warping is characterized by a single parameter, which is extracted from the size of the Fermi surface. We

predict a number of testable signatures of hexagonal warping in spectroscopy experiments on Bi2Te3. We

also explore the possibility of a spin-density wave due to strong nesting of the Fermi surface.
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Recently a new state of matter called a topological
insulator has been observed in a number of materials [1–
5]. A topological insulator has a time-reversal-invariant
band structure with nontrivial topological order, which
gives rise to gapless surface states bound to the sample
boundary [6–8]. The two-dimensional surface band has a
unique Fermi surface that encloses an odd number of Dirac
points in the surface Brillouin zone [6], which is prohibited
in conventional materials by fermion doubling theorem [9].
Soon after the theoretical prediction [10], the semiconduct-
ing alloy BixSb1�x was found to be a topological insulator
having a Dirac surface band as well as other electron and
hole pockets [1]. Subsequently, a family of materials Bi2X3

(X ¼ Se and Te) was found to be topological insulators
with a single Dirac-fermion surface state [3–5]. The ob-
servation of an undoubled Dirac fermion is not only of
great conceptual interest but also paves the way for study-
ing unusual electromagnetic properties [10,11] and realiz-
ing topological quantum computation [12]. Therefore
surface states of Bi2X3 are being intensively studied in
transport and spectroscopy experiments [13,14].

In this work, we study the electronic properties of sur-
face states in Bi2Te3 using k � p theory. Our motivation is
to understand the shape of Fermi surface observed in recent
angle-resolved photoemission spectroscopy (ARPES) ex-
periments [4,5], reproduced in Fig. 1. By considering the
crystal symmetry of Bi2Te3, we find an unconventional
hexagonal warping term in the surface band structure,
which is the counterpart of cubic Dresselhaus spin-orbit
coupling in rhombohedral structures. This hexagonal
warping term naturally explains the snowflake shape of
the Fermi surface, and its magnitude is extracted from the
size of the Fermi surface. We predict that hexagonal warp-
ing of the Fermi surface should have important effects in
several spectroscopy experiments. Finally, we observe that
the Fermi surface ofBi2Te3 is nearly a hexagon with strong
nesting for an appropriate range of surface charge density.
This motivates us to explore theoretically a possible spin-

density wave (SDW) phase. We discuss various types of
SDW order in a Landau-Ginzburg theory.
Bi2Te3 has a rhombohedral crystal structure with space

group R3 �m. In the presence of a [111] surface, the sym-
metry of the crystal is reduced to C3v, which consists of a
threefold rotationC3 around the trigonal z axis and a mirror
operation M : x ! �x where x is in �K direction. Two
surface bands are observed to touch at the origin of the
surface Brillouin zone �. The degeneracy is protected by
time-reversal symmetry and the doublet jc ";#i forms a

Kramers pair. We choose a natural basis for the doublet
according to total angular momentum J ¼ Lþ S ¼ �1=2

so that C3 is represented as e�i�z�=3. Since M2 ¼ �1 for
spin 1=2 electron and MC3M

�1 ¼ C�1
3 , the mirror opera-

tion can be represented as M ¼ i�x by defining the phase
of jc ";#i appropriately. The antiunitary time-reversal op-

eration � is represented by i�yK (K is complex conjuga-

tion) and commutes with both M and C3. Here the
pseudospin �i is proportional to the electron’s spin: hszi /
h�zi and hsx;yi / h�x;yi.
The Kramers doublet is split away from � by spin-orbit

interaction. We study the surface band structure near �
using k � p theory. To lowest order in k, the 2� 2 effective

FIG. 1 (color online). (i) Snowflakelike Fermi surface of the
surface states on 0.67% Sn-doped Bi2Te3 observed in ARPES.
(ii) A set of constant energy contours at different energies. From
Y. L. Chen et al., Science 325, 178 (2009). Reprinted with
permission from AAAS.
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Hamiltonian readsH0 ¼ vðkx�y � ky�xÞ, which describes
an isotropic 2D Dirac fermion. The form of H0 is strictly
fixed by symmetry. In particular, the Fermi velocity v in x
and y directions are equal because of theC3 symmetry. The
Fermi surface of H0 at any Fermi energy is a circle.
However, the Fermi surface observed in ARPES, repro-
duced in Fig. 1(i), is noncircular but snowflakelike: it has
relatively sharp tips extending along six �M directions and
curves inward in between. Moreover, as shown in Fig. 1(ii)
(we refer the reader to the original work [4] for better
resolution), the shape of constant energy contour is
energy-dependent, evolving from a snowflake at E ¼
0:25 eV to a hexagon and then to a circle near the Dirac
point. Throughout this Letter, energy is measured with
respect to the Dirac point.

The observed anisotropic Fermi surface can only be
explained by higher order terms in the k � p Hamiltonian

Hð ~kÞ that breaks the emergingUð1Þ rotational symmetry of

H0. The form of Hð ~kÞ is highly constrained by crystal and
time-reversal symmetry. Under the operation of C3 andM,
momentum and spin transform as follows:

C3 : k� ! e�i2�=3k�; �� ! e�i2�=3��; �z ! �z

M : kþ $ �k�; �x ! �x; �y;z ! ��y;z;
(1)

where k� ¼ kx � iky and �� ¼ �x � i�y. Hð ~kÞ must be

invariant under (1). In addition, time-reversal symmetry
gives the constraint

Hð ~kÞ ¼ �Hð� ~kÞ��1 ¼ �yH�ð� ~kÞ�y: (2)

We then find that Hð ~kÞ must take the following form up to

third order in ~k:

Hð ~kÞ ¼ E0ðkÞ þ vkðkx�y � ky�xÞ þ �

2
ðk3þ þ k3�Þ�z;

(3)

where E0ðkÞ ¼ k2=ð2m�Þ generates particle-hole asymme-
try and the Dirac velocity vk ¼ vð1þ �k2Þ contains a
second-order correction. The last term in (3), which we
call Hw, is most important. Unlike the other terms, Hw is
only invariant under threefold rotation (as the Bi2Te3
crystal structure does) and therefore is solely responsible
for the hexagonal distortion of the otherwise circular Fermi

surface. We note that Hwð ~kÞ vanishes in mirror-symmetric

direction �M because �z is odd under mirror, and Hwð ~kÞ
reaches maximum along �K. The surface band dispersion

of Hð ~kÞ is

E�ð ~kÞ ¼ E0ðkÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
kk

2 þ �2k6cos2ð3�Þ
q

: (4)

Here E� denote the energy of upper and lower band, and �

is the azimuth angle of momentum ~k with respect to the x
axis (�K). Although the HamiltonianH is threefold invari-
ant, the band structure is sixfold symmetric under � !
�þ 2�=6 because of time-reversal symmetry.

The hexagonal warping term Hw describes cubic spin-
orbit coupling at the surface of rhombohedral crystal sys-
tems, and, to the best of our knowledge, it has not been
reported before. It is instructive to compare Hw with the
well-studied trigonal warping in graphene [15]. Although
graphene’s band structure also has Dirac points and its

k � p Hamiltonian HKð ~kÞ has C3v symmetry, the warping
term in graphene is of a completely different form. This is
because time-reversal operation � acts differently for spin
1=2 (� ¼ i�yK) and spinless fermions (� ¼ K). In gra-

phene time-reversal symmetry takes the latter form, and,

together with inversion symmetry, leads to HKð ~kÞ ¼
�xH

�
Kð ~kÞ�x (�z ¼ �1 denote two sublattices), as opposed

to its partner Eq. (2) in Bi2Te3. As a result, a different
trigonal warping term (k2þ�þ þ k2���) is symmetry-
allowed in graphene.
We now show that Hw naturally explains the observed

energy-dependent shape of the Fermi surface in Bi2Te3.

Using (4) we plot a set of constant energy contours ofHð ~kÞ
for 0<E< 2E� in Fig. 2, where E� � v=a and a � ffiffiffiffiffiffiffiffiffi

�=v
p

are the characteristic energy and length scale introduced by
hexagonal warping. For simplicity, we have discarded E0

and the quadratic correction to velocity, since they do not
change the shape of the Fermi surface significantly. By

plotting the kx and ky axis in the unit of
ffiffiffiffiffiffiffiffiffi
v=�

p
, Fig. 2 is

obtained with no free parameter. As shown in the figure,
the Fermi surface starts to deviate considerably from a
circle and becomes more hexagonlike around E ¼
0:55E�. When E> Ec �

ffiffiffi
7

p
=63=4E� � 0:69E�, the edge

of the hexagon curves inward so that Fermi surface ceases
to be purely convex. As E further increases, rounded tips
start to develop at the vertices of the hexagon, which
eventually become sharper, making the Fermi surface
snowflakelike. The evolution of the Fermi surface with
respect to energy matches well with the ARPES result
shown in Fig. 1. Moreover, it follows from (4) that the
vertices of the hexagon—where the Fermi surface extends
outmost—always lie along �M independent of the sign of
�, in agreement with ARPES data.

FIG. 2 (color online). (a) Constant energy contour of Hð ~kÞ. kx
and ky axis are in the unit of

ffiffiffiffiffiffiffiffiffi
v=�

p
. (b) Constant energy contour

at E ¼ 1:2E� is superimposed on the Fermi surface of Bi2Te3.
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Comparing the set of Fermi surfaces in Fig. 2(a) with the
real Fermi surface in 0.67% Sn-doped Bi2Te3 (Fig. 1), we
find the Fermi surface at EF ¼ 1:2E� is almost identical to
the one measured in ARPES, as shown by superimposing
the two in Fig. 2(b). By fitting the theoretical value of
Fermi momentum along �M (1:2=a) to the experimental

one (0:11 �A�1), we find a ¼ 10:9 �A. Using the measured

Fermi velocity v ¼ 2:55 eV � �A, we obtain the magnitude

of the hexagonal warping term: � ¼ 250 eV � �A3. From
that we find E� ¼ 0:23 eV and EF ¼ 1:2E� ¼ 0:28 eV
which agrees fairly well with the measured Fermi energy
0.25 eV [shown in Fig. 1(ii)]. The quantitative agreement
between theory and experiment suggests that the
Hamiltonian (3) describes the surface band structure of
Bi2Te3 quite well in a wide energy window at least up to
0.25 eV. As an independent check of the theory, we con-
sider the nonlinear correction to surface band dispersion
near �. Equation (4) predicts that the leading order correc-
tion due to Hw starts at fifth order in k and is angle-
dependent:

�Eðk; �Þ ¼ va4k5cos2ð3�Þ=2: (5)

Since the surface band dispersions along �K and �M
directions have been measured in ARPES [4,5], Eq. (5)
can be tested by fitting to E�MðkÞ � E�KðkÞ, which also
gives an independent way of obtaining �. The two other

parameters m� and � in Hð ~kÞ can also be extracted by a
careful fitting to the band dispersion.

From now on, we predict a variety of important effects
of hexagonal warping in Bi2Te3. First, becauseHw couples
to �z, the spin polarization of surface states should have an
out-of-plane component sz / h�zi. Since spin polarization
along �M has been found to be almost 100% polarized in a
very recent ARPES experiment [5], we conclude that the
doublets jc ";#i at � are almost pure spin eigenstates, i.e.,

sz � h�zi, which agrees with a theoretical band structure

calculation [16]. sz is then calculated from (3): sz ¼
cosð3�Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2ð3�Þ þ 1=ðkaÞ4p
. The out-of-plane spin po-

larization is momentum-dependent and can reach as high
as 60% of the full polarization along �K for the Fermi
surface in Fig. 1. We hope this pattern of out-of-plane spin
polarization can be tested in future spin-resolved ARPES.

Second, hexagonal warping gives a novel mechanism for
opening up an energy gap at the Dirac point. Consider an
in-plane magnetic field Bk, which only couples to the spin

Hk
Zeeman ¼ gk ~Bk � ~�. From (3) we find the Dirac point is

shifted away from � to ~k� � gkẑ� ~Bk=v. In addition to

that, a mass term is generated at ~k�: M�z ¼ ðgkBkÞ3 �
sinð3’Þ�z=E

�2 (’ is the angle between ~Bk and �K), which
opens up an energy gap. When the Fermi energy is tuned,
e.g., by doping [4,5], to lie within the gap, the insulating
state at the surface realizes quantum Hall effect without
Landau levels [17].

Third, hexagonal warping of the Fermi surface has
drastic effects on the Friedel oscillation of local density

of states (LDOS) around a nonmagnetic point defect in
STM. The LDOS oscillation at a fixed energy decays
algebraically as a function of distance away from the
defect. In a normal 2D metal, the leading order (1=x) decay
of LDOS in a given direction x̂ comes from scattering
between states at ‘‘stationary points’’ on the Fermi surface,
where the Fermi velocity is parallel to x̂ [18]. For a convex
constant energy contour below Ec as shown in Fig. 3(a),

only a single pair of stationary points exists at ~k and � ~k.

However, since the two states at ~k and � ~k here carry
opposite spins, scattering between them is forbidden by
time-reversal symmetry—a fundamental property of sur-
face states on a topological insulator. The LDOS oscilla-
tion then vanishes at leading order. Now consider a
nonconvex constant energy contour above Ec. As shown
in Fig. 3(b), multiple pairs of stationary points exist. Since
interpair scattering is still allowed, the LDOS oscillation
will be restored at leading order. Therefore, according to
the convexity of constant energy contour, two types of
Friedel oscillation patterns should appear at different
ranges of bias voltage.
In the last part of this work, we explore the possibility of

a SDW phase on the surface of Bi2Te3. We note that the
Fermi surface is nearly a hexagon for 0:55E� <E< 0:9E�.
The almost flat pieces on the edges of the hexagon lead to
strong nesting at wave vectors Qi ¼ 2kFei, i ¼ 1; . . . ; 3,
where kFei is the Fermi momentum in three equivalent �K
directions. A density-wave ordered phase may then exist at

a finite interaction strength. Since the surface states at ~k

and� ~k have opposite spins, a charge-density wave cannot
connect them and is thus disfavored. We are therefore
motivated to consider possible SDW phases.
We now discuss the phase diagram of SDW in a Landau-

Ginzburg theory based on general symmetry considera-
tions. We define the order parameters of the SDW as

FIG. 3 (color online). Illustration of scattering processes due to
a point defect that causes the oscillation of LDOS. In a given
direction x̂ along �M, the oscillation is dominated by scattering
between stationary points marked by dots, where the Fermi
velocity is parallel to x̂. (a) A convex constant energy contour

has a single pair of stationary points at ~k and � ~k. (b) A non-
convex constant energy contour has three pairs of stationary
points. Intrapair scatterings in (a) and (b) are forbidden by time-
reversal symmetry. But interpair scatterings in (b), for example,
those between k2 and k3, are allowed. Therefore, the LDOS
oscillation at leading order is absent in (a) but exists in (b).
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follows,

�ik ¼
X

k

hcykþQi
ei � ~�cki;

�i? ¼ i
X

k

hcykþQi
ðẑ� eiÞ � ~�cki

�iz ¼ i
X

k

hcykþQi
�zcki;

(6)

where cyk ¼ ðcy"k; cy#kÞ are electron creation operators. For

each Qi, we have chosen a local frame for in-plane spin
components labeled by k and ? which are parallel and
perpendicular to Qi, respectively. The order parameters
thus defined transform nicely under the operations of ro-
tation, mirror, time reversal, and translation:

C3: �i	 ! �iþ1;	

�: �i;	 ! ��i;	

Mx: �1	 $ ��
1	;�2	 $ ��

3	;

Td: �i	 ! eiQi�d�i	; 	 ¼k;?; z:

(7)

We remark that because spin and momentum are locked by
spin-orbit coupling, there is no SUð2Þ symmetry for spin
alone. Thanks to the appropriate choice of order parame-
ters, symmetry operations (7) only act in the space of
ordering wave vectors labeled by i index.

The Landau free energy F must be invariant under these
symmetry operations. Only terms with even powers of�i	

can exist because of time-reversal symmetry. At second
order, we have

F2 ¼ 1

2

	�

X3

i¼1

��
i	�i�; (8)

where the susceptibility matrix 
	� is real and symmetric

because of mirror symmetry. 
	� is positive definite in the

normal state. When the temperature is lowered below Tc,
one of the eigenvalues of 
	� first becomes negative, and

the surface undergoes a transition to a SDW. The spin
configuration is then determined by the corresponding
eigenvector v	. For example, for a stripe SDW along the

x direction, ~Sðx; yÞ ¼ ðvk cosðQxÞ; v? sinðQxÞ; vz sinðQxÞÞ
with an appropriate choice of origin.

The free energy (8) to second-order has an emerging
Uð3Þ symmetry �i	 ! Uij�j	. So single- and multiple-Q

SDWs are degenerate. We now show that higher order
terms in F break the Uð3Þ symmetry and pick out a
particular spatial ordering pattern. For that purpose, it is
convenient to write�i	 ¼ �iv	;

P
ij�ij2 ¼ 1 and use �i as

a new set of order parameters, which also transforms
according to (7). At fourth order, we find an anisotropy
term F4 ¼ u

P
3
i¼1 j�ij4. The sign of u determines the

relative weight of �i in the ordered phase. For u < 0,

only one of �i, say, �1, is nonzero. The resulting SDW
forms a one-dimensional stripe, which breaks C3 but is
invariant under mirror symmetry. For u > 0, j�1j ¼ j�2j ¼
j�3j in the ordered phase, so that SDW forms a two-
dimensional lattice. Each individual phase of �i depends
on the choice of origin. Only the global phase of �1�2�3 is
gauge invariant and is fixed by the sixth-order term of the
form Cð�1�2�3Þ2 þ C�ð��

1�
�
2�

�
3Þ2 in F.

This work was initiated at University of Pennsylvania.
We thank Charlie Kane for inspiring discussions. We are
especially indebted to Bertrand Halperin for many insight-
ful discussions and helpful comments on the manuscript.
We thank Zahid Hasan and David Hsieh for numerous
discussions on ARPES, as well as Aharon Kapitulnik,
Anton Akhmerov, and especially Cenke Xu for useful
conversations. This work was supported by the Harvard
Society of Fellows and NSF Grant No. DMR-0605066.
Note added.—During the final stage of this work, we

learned that Alpichshev et al. [19] imaged with STM the
standing wave of surface states on Bi2Te3 near a line defect
(instead of a point defect considered in this work). The
LDOS oscillation was found to exist in the energy range
with snowflakelike constant energy contour, but strongly
suppressed in the range with circular constant energy con-
tour. This supports our explanation of the correlation be-
tween LDOS oscillation and convexity of constant energy
contour.
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