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Novel simple properties of the monopole component of effective nucleon-nucleon interactions are

presented, leading to the so-called monopole-based universal interaction. Shell structures are shown to

change as functions of N and Z, consistent with experiments. Some key cases of this shell evolution are

discussed, clarifying the effects of central and tensor forces. The validity of the present tensor force is

examined in terms of the low-momentum interaction Vlowk and the Qbox formalism.
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Exotic nuclei provide us with new phenomena not found
in stable nuclei. One of them is the evolution of shell
structure as a function of the proton number (Z) or neutron
number (N) [1]. The evolution ends up, in some cases, with
the appearance of new magic numbers and/or the disap-
pearance of conventional ones. As Z increases, there are
more exotic isotopes between the �-stability line and the
drip line, creating a wider frontier. Most of such exotic
nuclei are far inside the drip line, being well bound. The
driving force behind the change in their structure should be
the combination of the unbalanced Z=N ratio and the
nuclear force [2]. Thus, it is crucial to see robust basic
features of the nuclear force in exotic nuclei. We present in
this Letter novel simple properties of the monopole com-
ponent of shell-model interactions which can reproduce
experimental data. While the shell evolution due to the
tensor force has been suggested in [3], we introduce here
an interaction which includes the central force also, mov-
ing closer to the complete picture.

We start with selected shell-model nucleon-nucleon
(NN) interactions which are successful in describing ex-
perimental data. These interactions were obtained based on
so-called microscopic interactions, derived, for example,
with the G-matrix approach [4,5] starting from a bare NN
interaction and incorporating short-range repulsion and
core polarization. In order to reproduce experimental
data, however, the microscopic interaction has to be modi-
fied empirically, as is the case for the families of the USD
[6], KB3 [7] and GXPF1 [8] interactions. We shall take
pf-shell first, and analyze the GXPF1A interaction [9] and
the corresponding G-matrix interaction [5].

The monopole matrix element of a given two-body
interaction V is defined as

vm;j;j0 ¼
X

k;k0
hjkj0k0jVjjkj0k0i

�X

k;k0
1; (1)

where j denotes a single-particle orbit with k being its
magnetic substate and h� � � jVj � � �i is the antisymmetrized
two-body matrix element. The monopole component of V
is written, for j � j0, as

P
j;j0vm;j;j0njnj0 , where nj is the

occupation number (operator) of orbit j [10]. The mono-
pole component is nothing but the average over all orien-
tations. It was introduced by Bansal and French [11], while
its relevance to the effective shell-model interaction was
discussed by Poves and Zuker [7]. Recently, the monopole
component of the spin-isospin interaction has been shown
to modify even the magic structure in exotic nuclei [2], and
the specific and substantial role of the tensor force was
shown in Ref. [3]. Note that vm;j;j0 is defined either with

isospin, T ¼ 0 or 1, or in the proton-neutron scheme, while
‘‘j, j0’’ may be omitted for brevity.
The importance of the monopole interaction for exotic

nuclei originates in its linearity. As the orbit j0 is occupied,
the single-particle energy (SPE) of an orbit j, �j, is

changed by [10],

��j ¼ vm;j;j0nj0 : (2)

For j0 ¼ g9=2 as an example, nj0 takes values up to 10.

Thus, the effect of the monopole component can be mag-
nified considerably. By moving along the nuclear chart,
one can indeed change a particular nj0 substantially. This

highlights the physics of exotic nuclei compared to that of
stable nuclei, and it is of keen and urgent interest to clarify
general and robust features of the monopole interaction. At
shell closures, the monopole component produces effects
according to Eq. (2), whereas effects of other multipole
components vanish. The monopole component governs
(spherical) SPEs on top of closed (sub)shells. In open shell
systems, its effects can be viewed through Eq. (2) as
effective SPEs. As the surface deformation with low exci-
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tation energies is a Jahn-Teller effect, the SPEs are crucial
for collectivity too.

Figure 1(a) shows vm;j;j0 for isospin T ¼ 0 from the

GXPF1A interaction, the G-matrix interaction [5] and the

tensor force in the pf shell. The tensor force refers, in all
parts of Fig. 1, to the �þ � meson exchange force used in
[3]. The orbits (j, j0) are grouped as (f, f), (p, p), and
(f, p). In Fig. 1(a), we find two distinct kinks in the tensor-

force values for the (f, f) and the (p, p) groups, and the

same kinks appear also in the GXPF1A and the G-matrix
results. Note that each kink is a consequence of the general
rule suggested in [3]. The similarities are remarkable. To
shed more light on this, in Fig. 1(b) we subtract the tensor-

force contribution from the GXPF1A and the G-matrix
values. This results in almost flat curves. The (f, f) and
(p, p) cases show almost the same values, while the (f, p)
shows higher but still nearly flat values. This can be under-
stood in terms of radial integral of the central force: in the
former case the radial wave functions are the same between
j and j0, while they are different in the latter. The flatness
suggests a longer-range central force. In order to incorpo-
rate these features, we introduce a central Gaussian inter-
action as

Vc ¼
X

S;T

fS;TPS;T expð� ðr=�Þ2Þ; (3)

where SðTÞ means spin (isospin), P denotes the projection
operator onto the channels (S, T) with strength f, and r and
� are the internucleon distance and Gaussian parameter,
respectively. Figure 1(b) shows results obtained by f0;0 ¼
f1;0 ¼ �166 MeV and � ¼ 1:0 fm. The agreement with

GXPF1A is remarkable, considering the simplicity of the
model. Thus, we can describe the monopole component by
two simple terms: the tensor force generates ‘‘local’’ var-
iations, while the Gaussian central force produces a flat
‘‘global’’ contribution. It is worth mentioning that � ¼
1:0 fm is reasonable from the viewpoint of NN interaction,
and deviations from it, including the zero-range limit,
worsen the agreement.
Figure 1(c) shows vm’s for T ¼ 1. They are grouped for

pairs of j ¼ j0 and the rest. The former corresponds to the
standard BCS-type pairing cases. We first stress that the
basic scale is quite different between T ¼ 0 and 1: vm’s of
GXPF1A are in the range �2:5 to �1 MeV for T ¼ 0,
whereas for T ¼ 1 they are in the range �0:3 to
þ0:2 MeV. The sharp rise for j ¼ j0 ¼ p1=2 occurs in all

three interactions as a characteristic fingerprint of the
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FIG. 1 (color online). Monopole matrix elements of various forces for (a)–(d) pf and (e)–(h) sd shells. In (b),(d),(f),(h), the tensor-
force effect is subtracted from the others, and results from a Gaussian central force are shown.
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tensor force. Note that vm’s for the GXPF1A interaction
(G matrix) are mostly repulsive (attractive) for j � j0. We
subtract the tensor contribution as was done in Fig. 1(b),
and show the result in Fig. 1(d) as well as those of the
Gaussian central force with f0;1 ¼ 0:6f0;0 and f1;1 ¼
�0:8f0;0. The basic feature can be reproduced, while T ¼
1 j ¼ j0 cases need a certain attention as they show some
deviations also in sd shell as shown below.

Figures 1(e)–1(h) exhibit vm’s in the sd shell, similar to
what is shown in Figs. 1(a)–1(d). The SDPF-M interaction
[12] is taken as the realistic interaction. All features dis-
cussed for the pf shell are seen, and the tensor-subtracted
values are reproduced by the same Gaussian central force.
One sees repulsive corrections to vm’s from the G matrix
for T ¼ 1 and j � j0, similar to our findings in the pf
shell. This correction is linked with the oxygen drip line, its
origin has been a puzzle, but has recently been resolved
[13].

Based on the above results, we introduce the monopole-
based universal interaction, VMU. As shown in Fig. 2, VMU

consists of two terms. The first term is the Gaussian central
force discussed so far, and should contain many compli-
cated processes including multiple meson exchanges. The
second one is the tensor force comprised of � and �meson
exchanges [3]. The VMU interaction resembles Weinberg’s
original model for chiral perturbation theory [14], if one

replaces Fig. 2(a) by contact terms and 2(b) by the one-�
exchange potential.
Figure 3 shows applications of VMU, with the parameters

fixed above, to the shell evolution assuming a filling con-
figuration. Figure 3(a) depicts neutron SPEs around N ¼
20 for Z ¼ 8–20. Starting from SDPF-M SPEs at Z ¼ 8,
one sees the evolution of the N ¼ 20 gap, in a basically
consistent manner with other shell-model studies [12,15].
While the change is monotonic without the tensor force,
the tensor force produces a sharp widening from Z ¼ 8 to
14, and then stabilizes the gap towards Z ¼ 20. It is worth
mentioning that the normal SPEs arise at Z ¼ 20, whereas
at Z ¼ 8 the inversion between f7=2 and p3=2 occurs and

d3=2 is rather close to p3=2, leaving the major gap at N ¼
16. The central force lowers the neutron d3=2 SPE more

than the f7=2 SPE as protons occupy the sd shell due to

larger overlaps, yielding a wide N ¼ 20 gap at 40Ca. The
N ¼ 20 gap at Z� 14 is, however, largely due to the tensor
force, and becomes smaller if protons are excited to d3=2.
Figure 3(b) shows proton SPEs for the Z ¼ 28 core of

68–78Ni, by starting from empirical values [16] at N ¼ 40.
The SPE of p1=2 is not known empirically, and is placed

above p3=2 by the energy difference predicted by the

GXPF1A interaction. The orbit f5=2 crosses p3=2 at N ¼
45 consistently with a recent experiment [17], and the
f7=2 � f5=2 splitting is reduced by 2 MeV from N ¼ 40

to 50. For both, the tensor force plays crucial roles. This
lowering of f5=2 is seen in other shell-model results, while

the change is about a half of the present value [18].
Figure 3(c) shows neutron SPEs relative to d5=2 on top of

90Zr–100Sn, starting from empirical values at Z ¼ 40 ob-
tained by averaging with spectroscopic factors [19]. The
lowering of g7=2 is remarkable [20]. If there were no tensor-

force effects, g7=2 and h11=2 do not repel, ending up with

quite a different shell structure for 100Sn, making this
nucleus much softer. The closer spacing of g7=2 and d5=2
in 101Sn seems to be seen experimentally [21].
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FIG. 3 (color online). Single-particle energies calculated by VMU interaction. The dashed lines are obtained by the central force only,
while the solid lines include both the central force and the tensor force. Some states, e.g. f7=2 in (b), are hole states.
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FIG. 2 (color online). Diagrams for the VMU interaction.
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We note that the proton g7=2 � h11=2 spacing in Sb

isotopes becomes wider by �2 MeV in going from N ¼
64 to 82 in agreement with experiment [22].

We now discuss whether or not the simple tensor force in
VMU can be explained microscopically. We take the AV8’
interaction [23] and examine how the tensor force obtained
by the spin-tensor decomposition changes in the following
processes. We derive a low-momentum interaction Vlowk

[24] and calculate vm’s, as shown in Figs. 4(a) and 4(b) for
T ¼ 0, 1, varying the cutoff parameter �. For the usual
value � ¼ 2:1 ðfm�1Þ, the result is very close to the bare
AV8’ tensor-force contribution. We then perform the third-
order Q-box calculation with folded diagram corrections
[5], in order to include medium effects like core polariza-
tion. The result still resembles vm’s of the bare tensor part.
Thus we can confirm that the treatments of the short-range
correlation and the medium effects do not change much
vm’s of the tensor force. This near independence may be
interpreted in terms of specific and complicated angular
momentum coupling in the tensor force. For instance, the
second-order perturbation by two tensor forces yield
mainly a central force. For unusual values like � ¼
1 ðfm�1Þ, deviations arise, as expected.

The central force depends strongly on �. For � ¼
2:1 ðfm�1Þ, vm’s of the central part of Vlowk are scattered

around the values of Fig. 1(b). This result is promising, but
more studies are needed.
In summary, we have presented novel general properties

of the monopole interactions, and introduced the VMU

interaction consisting of simple central and tensor forces.
The persistency of the bare tensor force is examined by the
Vlowk and Qbox formalisms. The VMU produces a variety of
the shell evolution, connecting stable and exotic nuclei,
e.g., exotic Ne-Mg with 40Ca, 68Ni with exotic 78Ni, and
90Zr with exotic 100Sn. The shell structure appears to vary
considerably in exotic nuclei. As VMU has been introduced
based on monopole properties, tests of its validity by full
shell-model calculations and possible refinements includ-
ing multipole components are of great interest, as well as
more predictions by VMU.
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FIG. 4 (color online). Tensor forces in AV8’ interacton, in low-
momentum interactions obtained from AV8’, and in the third-
order Qbox interaction for (a) T ¼ 0 and (b) T ¼ 1.
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