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We show that three dimensional superconductors, described within a Bogoliubov–de Gennes frame-

work, can have zero energy bound states associated with pointlike topological defects. The Majorana

fermions associated with these modes have non-Abelian exchange statistics, despite the fact that the braid

group is trivial in three dimensions. This can occur because the defects are associated with an orientation

that can undergo topologically nontrivial rotations. A feature of three dimensional systems is that there are

‘‘braidless’’ operations in which it is possible to manipulate the ground state associated with a set of

defects without moving or measuring them. To illustrate these effects, we analyze specific architectures

involving topological insulators and superconductors.
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A fundamental feature of quantum theory is the quantum
statistics obeyed by identical particles. For ordinary parti-
cles, Bose and Fermi statistics are the only possibilities.
Emergent excitations in correlated many particle systems,
however, can exhibit fractional [1–4] and non-Abelian [5]
statistics. The simplest non-Abelian excitations, known as
Ising anyons [6], are Majorana fermion states associated
with zero energy modes that occur in the Bogoliubov–
de Gennes (BdG) description of a paired condensate [7].
They have been predicted in a variety of two dimensional
(2D) electronic systems, including the � ¼ 5=2 quantum
Hall effect [8], chiral p-wave superconductors (SCs) [9],
and SC-topological insulator (TI) structures [10]. The
ground state of 2N Ising anyons has a 2N degeneracy,
and when identical particles are exchanged the state under-
goes a non-Abelian unitary transformation [11,12]. Recent
interest in non-Abelian statistics has been heightened by
the proposal to use these features for topological quantum
computation [13].

Fractional and non-Abelian statistics are usually asso-
ciated with 2D because in 3D, performing an exchange
twice is topologically trivial. In this Letter, we show that in
3D, Majorana fermion states are associated with pointlike
topological defects, and that they obey non-Abelian ex-
change statistics, despite the triviality of braids. Our mo-
tivation came from the study of 3D SC-TI structures, where
Majorana fermions arise in a variety of ways, such as
(i) vortices at SC-TI interfaces [10], (ii) SC-magnet inter-
faces at the edge of a 2D TI [14–16], and (iii) band
inversion domain walls along a SC vortex line. While the
Majorana fermions in these cases can be identified using
1D or 2D effective theories, they must occur in a more
general 3D theory. To unify them, we introduce a Z2

topological index that locates the zero modes in a generic
3D BdG theory. We then study a minimal 8-band model in
which the defects can be understood as hedgehogs in a
three component vector field. Ising non-Abelian exchange
statistics arise because the hedgehogs have an orientation
that can undergo nontrivial rotations. We will illustrate the

intrinsic three dimensionality of the Majorana states by
considering specific architectures involving SCs and TIs. A
feature in 3D is the existence of ‘‘braidless’’ operations, in
which the quantum information encoded in the Majorana
states can be manipulated without moving or measuring
[17] them.
To determine whether a Majorana mode is enclosed in

a volume V, we topologically classify BdG Hamiltonians
on @V, the 2D surface V. We assume the Hamiltonian
varies slowly, so we can consider adiabatic changes as a
function of two parameters r characterizing @V. The prob-
lem is then to classify particle-hole (PH) symmetric BdG
Hamiltonians H ðk; rÞ, where k is defined in a 3D
Brillioun zone (a torus T3) and r is defined on a 2-sphere
S2. PH symmetry is defined by an antiunitary operator �
satisfying �2 ¼ 1 and H ðk; rÞ ¼ ��H ð�k; rÞ��1.
Assuming no other symmetries, this corresponds to class
D of the general scheme [18,19]. Since V may or may not
enclose a zero mode, we expect a Z2 classification—a fact
that can be established using methods of K theory.
A formula for the topological invariant can be derived

using a method similar to Qi, Hughes, and Zhang’s [20]
formulation of the invariant characterizing a 3D strong TI
[21]. We introduce a one parameter deformation
~H ð�;k; rÞ that adiabatically connects H ðk; rÞ at � ¼ 0
to a trivial Hamiltonian independent of k and r at � ¼ 1,
while violating PH symmetry. PH symmetry can then be

restored by including a mirror image ~H ð�;k; rÞ ¼
�� ~H ð��;�k; rÞ��1 for �1< �< 0. For � ¼ �1, k,
r can be replaced by a single point, so the 6 parameter
space ð�;k; rÞ � �ðT3 � S2Þ (� denotes the suspension)

has no boundary. ~H defined on this space is characterized
by its integer valued third Chern character [22],

Ch 3½F � ¼ 1

3!

�
i

2�

�
3 Z

�ðT3�S2Þ
Tr½F ^F ^F �: (1)

Here, F ¼ dAþA ^A follows from the non-Abelian
Berry’s connection Aij ¼ huijdjuji associated with the
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negative energy eigenstates of ~H . Because of PH symme-
try, the contributions to (1) for � > 0 and � < 0 are equal.
Moreover, since it is a total derivative, Tr½F 3� ¼ dQ5

(omitting the ^’s), where the Chern-Simons 5 form is [22]

Q 5 ¼ Tr½A ^ ðdAÞ2 þ ð3=2ÞA3 ^ dAþ ð3=5ÞA5�:
(2)

The integral over � > 0 can be then be pushed to the
boundary � ¼ 0 so that

Ch 3½F � ¼ 2

3!

�
i

2�

�
3 Z

T3�S2
Q5: (3)

A different deformation ~H can change Ch3½F �, but PH
symmetry requires the change is an even integer. Likewise,
the right hand side of (3) is only gauge invariant up to an
even integer. The parity of (3) defines a Z2 topological
invariant. We write it as

� ¼
Z
S2
!ðrÞ � dA mod 2 (4)

where the gauge dependent Chern-Simons flux ! ¼
ð!1; !2; !3Þ is defined by integrating out k,

1

2
�ijk!

iðrÞdxj ^ dxk ¼ 1

3

�
i

2�

�
3 Z

T3
Q5: (5)

It is natural to associate � with the presence of a zero
mode—a fact that will be checked explicitly below.

We now introduce a minimal model that leads to an
appealing physical interpretation for !ðrÞ. Since � is
based on Ch3½F �, we expect a minimum of 8 bands is
required. Consider a model parameterized by a three com-
ponent vector field n of the form,

H ¼ �i�a@a þ �anaðrÞ: (6)

Here, �a and �a (a ¼ 1, 2, 3) are 8� 8 Dirac matrices
satisfying f�a;�bg ¼ f�a; �bg ¼ 2�ab and f�a; �bg ¼ 0.
H respects PH symmetry provided ��a�

�1 ¼ ��a

and ��a�
�1 ¼ �a. For nðrÞ ¼ n0, H has eigenvalues

EðkÞ ¼ �ðjkj2 þ jn0j2Þ1=2 so that for n0 � 0, there is a
gap 2jn0j. The seventh Dirac matrix �5 � i

Q
a�a�a is not

an allowed mass term because ��5�
�1 ¼ �5. A more

general Hamiltonian could also involve products of the
Dirac matrices, but such Hamiltonians can be homotopi-
cally deformed to the form of (6) without closing the gap
[19]. To regularize (6) at jkj ! 1, we include an addi-
tional term �jkj2�3, so k can be defined on a compact
Brillouin zone S3. The analysis is simplest for � ! 0,
where the low energy properties are isotropic in n.

H can be physically motivated by considering a BdG
Hamiltonian describing ordinary and topological insulators
coexisting with superconductivity. The Dirac matrices are
specified by three sets of Pauli matrices: ~� for PH space, ~	
for spin, and ~� for an orbital degree of freedom. We
identify ~� ¼ �z�z ~	, �1 ¼ �x, �2 ¼ �y, and �3 ¼ �z�x,

along with � ¼ 	y�yK. n is then (�1, �2, m), where � ¼
�1 þ i�2 is a SC order parameter and m is a mass describ-
ing a band inversion. For� ¼ 0, (6) is a doubled version of
the model for a 3D TI discussed in Ref. [20]. For � > 0,
m> 0 describes a trivial insulator, whilem< 0 describes a
TI with a band inversion near k ¼ 0. An interface wherem
changes sign corresponds to the surface of a TI, which has
gapless surface states. Introducing � � 0 to the interface
then describes the proximity induced SC state [10].
To locate the zero modes, we take nðrÞ to vary slowly

with r and evaluate!ðrÞ using (1)–(5). This can be done by
noting that H defines a 6 component unit vector given by

the direction d̂5ðk; rÞ of (k1, k2, k3, n1 þ �jkj2, n2, n3) on
S5. The deformed Hamiltonian ~H can be defined by add-

ing ��5 to H so that ~H defines a vector on S6 given by

d̂6 ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
d̂5; �Þ. Ch3½F � is the volume on S6 swept

out by d̂6ð�;k; rÞ. Then, RQ5 is the volume in the ‘‘north-

ern hemisphere’’ of S6 swept out by d̂5ðk; rÞ, which is
confined to the ‘‘equator,’’ � ¼ 0. This is then related to

the area on S5 swept out by d̂5ðk; rÞ. Performing the
integral on k for � ! 0 gives

!iðrÞ ¼ 1

8�
�ijkn̂ � @jn̂� @kn̂; (7)

where n̂ ¼ n=jnj. Thus, the topological charge that signals
a zero mode inside V is the parity of the S2 winding number
of n̂ on @V. Zero modes are associated with hedgehogs in
n̂ðrÞ. A simple example of a hedgehog is an SC vortex at
the interface between a TI and an insulator. Though the
hedgehog topological charge can be any integer, an even
integer in (4) can be unwound by a k and r dependent
gauge transformation.
The presence of a zero mode associated with a hedgehog

can be demonstrated with a simple linear model naðrÞ ¼
Mabrb, which has a hedgehog with charge sgnðdet½M�Þ at
r ¼ 0. This is solved by expressing M in terms of its
principle axes: M ¼ OT

1 diagðM1;M2;M3ÞO2, where O1

and O2 are orthogonal matrices that diagonalize MMT

and MTM, respectively. Defining r0a ¼ O1abrb, n0a ¼
O2abnb, �

0
a ¼ OT

1ab�b, and �0
a ¼ OT

2ab�b, it is straightfor-

ward to express H 2 as three independent harmonic oscil-
lators,

H 2 ¼ X
a

Mað2na þ 1� 
aÞ (8)

where na are oscillator quantum numbers and 
a ¼ i�0
a�

0
a

are commuting operators. There is a single zero energy
state with na ¼ 0 and 
a ¼ 1. This zero mode is the non-
degenerate eigenstate with eigenvalue 3 of

P
a
a ¼

i
P

a;b�aOab�b, where O ¼ O1OT
2 .

A key feature of the zero mode is its dependence on the
relative orientation O of the principle axes in r and n
space. This can lead to a non trivial holonomy when M
(and hence O) varies. We construct the zero mode by
starting with j�0i which satisfies

P
ai�a�aj�0i ¼ 3j�0i
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and then doing a unitary transformation that takes �a to
Oab�b. If we parameterize the rotation O with a vector �
specifying the axis and angle j�j � �, then

j�ð�Þi ¼ e�abc�a�b�c=4j�0i: (9)

This gauge satisfies h�ð�Þjd�ð�Þi ¼ 0 for j�j<� but
is not globally defined because j�ð�Þi ¼ �j�ð��Þi
when j�j ¼ �. This reflects the nontrivial topology of
SOð3Þ, characterized by the homotopy �1½SOð3Þ� ¼ Z2.
When O varies along a nontrivial loop in SOð3Þ, the wave
function of the zero mode changes sign. The associated
Majorana operator �i (not to be confused with the Dirac
matrix �a) also changes sign. This is one of our central
results, and it is this fact that allows Ising non-Abelian
statistics in 3D. A simple example of a nontrivial loop
is the 2� rotation that occurs when the SC phase advances
by 2�.

Though we derived it with the linear 8 band model, our
conclusion that there is nontrivial holonomy for defects is
more general. A formulation based on (4) will appear
elsewhere. In the 8-band model, a general defect history
is characterized by nðr; tÞ, where r is on a surrounding
surface S2 and t varies on a closed path S1. These are
classified by the homotopy of maps S2 � S1 ! S2, which
were first analyzed by Pontrjagin [23], and have appeared
in other physical contexts [24]. When the hedgehog’s
topological charge is �p, the classification is Z2p. This

is related to the integer Hopf invariant for maps S3 ! S2

which applies when p ¼ 0. Like the Hopf invariant, it can
be understood in terms of the linking of curves in S2 � S1

[25]. The discussion below resembles the analysis of
Wilczek and Zee [2] of the statistics of Skyrmions in the
ð2þ 1ÞD nonlinear 	 model with a Hopf term.

To study the exchange statistics of the Majorana modes,
we consider the adiabatic evolution of the state when they
are exchanged. We thus consider a 3þ 1D history n̂ðr; tÞ
satisfying n̂ðr; TÞ ¼ n̂ðr; 0Þ with hedgehogs at friðtÞg with
r1ð2ÞðTÞ ¼ r2ð1Þð0Þ. To visualize n̂ðr; tÞ, it is useful to con-

sider the inverse image paths in r space that map to two
specific points on S2. Such paths begin and end on hedge-
hogs, and a crucial role will be played by their linking
properties. Figure 1 depicts four hedgehogs, where the top
two (positive) hedgehogs are interchanged. At the first step
in (b), the locations of the hedgehogs have been inter-
changed. Since the inverse image paths have been
‘‘dragged,’’ n̂ðrÞ is not the same as its original configura-
tion. Panels (c)–(f) show a sequence of smooth deforma-
tions that untangle n̂ðrÞ. The key point is that the two paths
(which map to different points on S2) can never cross each
other. However, a path can cross itself and ‘‘reconnect,’’ as
in (c), (d), (e). The deformations from (a)–(e) preserve the
orientation of the hedgehogs, but leave behind a twist. To
return n̂ðrÞ to its original configuration in (f) requires a 2�
rotation of one of the hedgehogs. This results in an inter-
change rule for the Majoranas,

T12: �1 ! �2; �2 ! ��1 (10)

analogous to the rules [11,12] for braiding vortices in 2D
and can be represented by T12 ¼ exp½��1�2=4�. Note that
in (d), (e), the twist could have been left on the other side,

which would have led to T21 ¼ Ty
12. The two choices for

T12 correspond to physically distinct interchange trajecto-
ries that generalize the right- and left-handed braiding
operations in 2D.
Performing the same interchange twice leads to a non-

trivial operation, since T2
ij ¼ �i�j changes the sign of both

�i and �j. This is natural in 2D because it is a noncon-

tractable braid. In 3D, however, T2
ij can be smoothly de-

formed into an operation in which all particles are held
fixed. Thus, there is an operation, specified by a history
n̂ðr; tÞ, that rotates any pair of stationary hedgehogs by 2�,
and implements the operation �i�j. The existence of such

‘‘braidless’’ operations is a feature of Ising non-Abelian
statistics in 3D. Although these operations form an admit-
tedly limited Abelian subgroup, they nonetheless offer a
method for manipulating the quantum information en-
coded in the Majorana fermions without moving or mea-
suring them.
We now illustrate these effects using specific architec-

tures involving TIs and SCs. It is easiest to engineer
Majorana modes using structures involving interfaces or
vortex lines, where ! is confined to lines or planes.
Nonetheless, such structures can exhibit intrinsically 3D
effects. Consider first the structure in Fig. 2(a), which
involves two disconnected spherical TIs surrounded by a
SC and connected to each other by a Josephson junction.
Suppose that each sphere has a single� pair of vortices so
that there are 4Majorana states on the spheres. The internal
state of the Majorana fermions can be represented in a
basis of eigenstates of n ¼ i�1�2 and n0 ¼ i�3�4. For an
isolated system, the parity of nþ n0 is fixed so the system
is a single qubit with basis vectors jnn0 ¼ 00; 11i. The state
can be initialized and measured in this basis with a probe
that couples to both �1 and �2. Suppose �3 is adiabatically
transported around �1 as shown. This is similar to a 2D
braid, and it implements T2

13, which interchanges j00i and

γ1 γ2

γ3 γ4

γ2 γ1

γ3 γ4

γ2 γ1

γ3 γ4

γ2 γ1

γ3 γ4

γ2 γ1

γ3 γ4

−γ2 γ1

γ3 γ4

+ +

− −

+ +

− −

+ +

− −

+ +

− −

+ +

− −

+ +

− −

)c()b()a(

(f))e()d(

FIG. 1 (color online). Inverse image paths depicting the inter-
change of two hedgehogs, as described in the text. (a)–(e) show a
sequence of continuous deformations of nðrÞ that preserve the
orientation of the hedgehogs. In (f), a 2� rotation is required to
return to the original configuration.
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j11i. Note, however, that this ‘‘braid’’ can be smoothly
contracted to zero by sliding the path around the other side
of the sphere. In the process, however, the path crosses the
junction connecting the spheres, resulting in a 2� phase
slip. Thus, the braiding operation can be smoothly de-
formed into a ‘‘braidless’’ operation, where �1, �3 are
held fixed, but the phase difference between the two SCs
advances by 2�.

A similar but more feasible version of the braidless
operation occurs for the Josephson junction structure in
Fig. 2(b), which involves Majorana modes at a SC-magnet
interface at the edge of a 2D TI. As argued in Ref. [15],
when the phase difference across the junction is advanced
by 2�, the fermion parity associated with i�1�2 changes,
resulting in a fractional Josephson effect.

Figure 2(c) shows a TI coated on the top and bottomwith
SC films. In a magnetic field, Majorana states occur at
vortices on both the top and bottom. If the SC films are
thinner than the penetration depth, the field is constant, so
the top and bottom vortices are independent. If the TI is
thin, there will be a weak vertical coupling that splits
nearby Majorana modes according to n ¼ i�1�2 and n0 ¼
i�3�4. The states jnn0i will have slightly different charges,
which may allow n, n0 to be measured with a sensitive
charge detector. Suppose the state is initially j00i.
Interchanging �1, �3 on the top keeping the bottom fixed

leads to the entangled state ðj00i þ j11iÞ= ffiffiffi
2

p
. A variant on

this geometry [Fig. 2(d)] is a thin film of a bulk SC weakly
doped TI, in which the surface states acquire SC similar to
the proximity induced state. In this case, the interchange of
�1, �3 involves a reconnection of the vortex lines (which in
principle have a finite energy gap) connecting them.

Recently, SC has been observed in CuxBi2Se3 for
x� 0:15 [26]. It will be interesting to determine whether
this material is in the weakly doped regime, with Majorana
modes at the ends of vortex lines, or a more conventional

SC, which could be used in Fig. 2(c). There are certainly
technical challenges associated with manipulating the vor-
tices and measuring their charge state. Nonetheless, we
hope that the prospect of detecting 3D non-Abelian statis-
tics in such a system will provide motivation for further
exploration.
We thank Liang Fu for insightful discussions and Bryan
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Pontrjagin invariant. This work was supported by NSF
Grant No. 0906175.

[1] J.M. Leinaas and J. Myrheim, Nuovo Cimento Soc. Ital.
Fis. B 37, 1 (1977).

[2] F. Wilczek and A. Zee, Phys. Rev. Lett. 51, 2250 (1983).
[3] B. I. Halperin, Phys. Rev. Lett. 52, 1583 (1984).
[4] D. Arovas, J. R. Schrieffer, and F. Wilczek, Phys. Rev.

Lett. 53, 722 (1984).
[5] G. Moore and N. Read, Nucl. Phys. B360, 362 (1991).
[6] C. Nayak et al., Rev. Mod. Phys. 80, 1083 (2008).
[7] N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).
[8] M. Greiter, X.G. Wen, and F. Wilczek, Nucl. Phys. B374,

567 (1992).
[9] S. Das Sarma, C. Nayak, and S. Tewari, Phys. Rev. B 73,

220502(R) (2006).
[10] L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).
[11] C. Nayak and F. Wilczek, Nucl. Phys. B479, 529 (1996).
[12] D. A. Ivanov, Phys. Rev. Lett. 86, 268 (2001).
[13] A. Kitaev, Ann. Phys. (N.Y.) 303, 2 (2003).
[14] A. Kitaev, arXiv:cond-mat/0010440.
[15] L. Fu and C. L. Kane, Phys. Rev. B 79, 161408(R) (2009).
[16] J. Nilsson, A. R. Akhmerov, and C.W. J. Beenakker, Phys.

Rev. Lett. 101, 120403 (2008).
[17] P. Bonderson, M. Freedman, and C. Nayak, Phys. Rev.

Lett. 101, 010501 (2008).
[18] A. P. Schnyder, S. Ryu, A. Furusaki, and A.W.W. Ludwig,

Phys. Rev. B 78, 195125 (2008); AIP Conf. Proc. 1134, 10
(2009).

[19] A. Kitaev, AIP Conf. Proc. 1134, 22 (2009);
arXiv:0901.2686.

[20] X. L. Qi, T. L. Hughes, and S. C. Zhang, Phys. Rev. B 78,
195424 (2008).

[21] L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98,
106803 (2007); J. E. Moore and L. Balents, Phys. Rev. B
75, 121306(R) (2007).

[22] M. Nakahara, Geometry, Topology and Physics (Adam
Hilger, Bristol, 1990).

[23] L. S. Pontrjagin, Rec. Math. [Mat. Sbornik] N.S. 9, 331
(1941); http://mi.mathnet.ru/eng/msb6073.
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FIG. 2 (color online). Architectures demonstrating 3D
Majorana states using SCs and TIs. (a) Braiding 3 around 1
can be deformed into a braidless operation. (b) A geometry for
implementing braidless operations with a Josephson junction
device [15]. (c), (d) Thin film geometries for interchanging
and measuring Majorana states. (c) shows a layered SC-TI-SC
structure, while (d) shows a thin film of a SC weakly doped TI.
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