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Torsional oscillator experiments on solid 4He show frequency changes which suggest mass decoupling,

but the onset is broad and is accompanied by a dissipation peak. We have measured the elastic shear

modulus over a broad frequency range, from 0.5 Hz to 8 kHz, and observe similar behavior—stiffening

and a dissipation peak. These features are associated with a dynamical crossover in a thermally activated

relaxation process in a disordered system rather than a true phase transition. If there is a transition to a dc

response, e.g., to a supersolid state, it must occur below 55 mK.
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As the most quantum of solids, helium is a likely can-
didate for supersolidity, but it was not until 2004 that
experimental evidence for supersolidity appeared in tor-
sional oscillator (TO) measurements [1,2]. The key obser-
vation was an increase in the TO frequency at temperatures
below 200 mK, suggesting that some of the solid helium
decoupled from the oscillator, the ‘‘nonclassical rotational
inertia’’ (NCRI) which characterizes a supersolid.
However, the onset of NCRI in TO experiments is broad
and is always accompanied by a dissipation peak, features
typical of a dynamical crossover in a relaxation process.
Does the gradual onset represent the dc response associated
with a phase transition to a new state, broadened perhaps
by disorder, or is it a frequency dependent effect, for
example, due to flow in a vortex liquid [3] or glasslike
relaxation [4–6]? Measurements over a broad frequency
range can distinguish between these possibilities and help
identify possible relaxation mechanisms, but are almost
impossible with TOs.

We have studied the mechanical susceptibility of solid
helium directly, by measuring the real and imaginary parts
of its elastic response (shear modulus and dissipation),
analogous to the TO frequency and dissipation. This has
advantages over a TO: the measurement is direct, the
modulus changes are large and, most importantly, the
technique is nonresonant so we could measure � over 4
orders of magnitude in frequency. We see a dissipation
peak associated with the previously reported [7,8] shear
stiffening. The peak and the onset of stiffening shift to
lower temperatures as the frequency decreases, with an
activation energy around 0.7 K. A broad range of activation
energies is needed to fit the data—the relaxation must
occur in a highly disordered system.

The frequency of a TO is usually considered to be a
direct probe of moment of inertia (and thus of any mass
decoupling) but things are more complicated when the
helium is solid. Helium affects a TO through the ‘‘back
action’’ force it exerts on its walls [4], which could be
purely elastic or might require a more complicated model
[3–6,9]. The period and damping of the TO (real and

imaginary parts of the angular susceptibility) are deter-
mined by the magnitude and phase of this force. A decrease
in the helium’s moment of inertia reduces the elastic stress
at the walls and increases the frequency. An increase in its
shear modulus would also raise the TO frequency by
making the composite TO/helium system stiffer, thus mim-
icking mass decoupling, but this effect is too small to
explain the observed frequency changes [10]. Elastic
forces are in phase with the TO drive and affect only the
real part of the response, but any out-of-phase stresses will
produce dissipation. Dissipation, e.g., the peak which ac-
companies NCRI [1,6,11,12], will affect the TO frequency
even without mass decoupling [4]. However, the frequency
change predicted for a simple Debye relaxation peak is
nearly always much smaller than the observed increase,
suggesting that most of the apparent decoupling may still
be due to supersolidity [6]. More complicated response
functions give better fits to the TO data [5], but involve
additional parameters. Varying the measurement frequency
would provide a much more stringent test of any model of
the helium’s response, but this is difficult with a TO. It has
been possible to operate a TO off resonance, but the
frequency range was very limited (575 Hzþ=� 10%)
[13]. The clearest evidence of frequency dependence
comes from a TO designed with two modes [12]—at
496 Hz, the NCRI began at lower temperatures than at
1173 Hz.
Elastic measurements [7,8,14,15] on solid helium show

effects which are clearly related to the TO behavior. The
shear modulus � increases by as much as 20%, with the
same dependence on temperature, amplitude, and 3He
impurity concentration as the NCRI [7]. This confirms
the unusual nature of solid 4He, although these measure-
ments do not directly address the question of whether the
low temperature state is supersolid. In this Letter, we
extend our shear modulus measurements [7,8] to much
lower frequencies, below 1 Hz, and we simultaneously
measure the dissipation. In some cases, we also measured
the frequency fr and width of an acoustic resonance,
extending our frequency range to 8 kHz.
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Measurements were made as in Ref. [8]. Crystals were
grown from 4He (0.3 ppm 3He) over about 1 h (using the
blocked capillary technique), filling a gap of thickness D
(0.2 to 0.5 mm) between two transducers with area A
(1 cm2). An ac voltage V with angular frequency ! ¼
2�f was applied to one transducer (with piezoelectric
coefficient d15), generating a shear displacement �x ¼
d15V at its surface, a strain � ¼ �x=D in the helium, and
a stress � on the detecting transducer. This produced a
charge q which was measured as a current I ¼ !q, giving
the shear modulus as � ¼ �

� ¼ ð D
2�d2

15
A
Þð I
fVÞ. For purely

elastic deformations, stress is in phase with the applied
strain, but in general, the stress lags the strain by a phase
angle�which is related to the dissipation by 1=Q ¼ tan�
( � � for small dissipation). The amplitude and phase of
the current thus give the real and imaginary parts of the
helium’s shear modulus, although electronic phase shifts
prevent us frommeasuring absolute values of 1=Q. All data
in this Letter were taken in the linear response regime, at
strains � < 10�8 where there is no amplitude dependence
or hysteresis [7,16]. We measured the modulus at frequen-
cies between 0.5 and 2500 Hz.

Figure 1(a) compares the shear modulus � and acoustic
resonance frequency fr (for a 33.3 bar sample) with the

torsional oscillator NCRI (for a 65 bar sample [1]).
Figure 1(b) shows the corresponding dissipation, deter-
mined from the phase angle between stress and strain,
the width of the resonance peak [8], and the TO amplitude.
The shear modulus (measured at 200 Hz) and the NCRI (at
910 Hz) both increase below 200 mK, with very similar
temperature dependence, and both have dissipation peaks
below 100 mK. The acoustic resonance shows essentially
the same behavior. The increase in fr is half as large as the
increase in � (3.7% vs 7.4%), as expected since fr scales
with the transverse sound speed, i.e., as

ffiffiffiffi

�
p

. The acoustic

resonance dissipation peak is roughly the same size as for
the modulus but is broader and shifted to higher tempera-
ture. Figure 2 shows the frequency dependence of � and
1=Q in a 38 bar crystal. Similar behavior was observed in
other samples [7], including the crystal of Fig. 1. The total
modulus change is independent of frequency. It is larger,
��
�0

� 15%, than that for the crystal of Fig. 1, but the

temperature dependence is similar. A dissipation peak is
centered near the temperature where the modulus is chang-
ing most rapidly. The peak and the modulus change shift to
lower temperatures as the frequency decreases—the be-
havior expected for a thermally activated relaxation pro-
cess. For a simple Debye process with relaxation time �,
the modulus � and dissipation 1=Q are related to the real
and imaginary parts of the shear modulus [17]

�

�0
¼ 1� ��

�0

1

1þ ð!�Þ2 (1)

1

Q
¼ ��

�0

!�

1þ ð!�Þ2 (2)

where�0 is the ‘‘unrelaxed modulus’’ (!� � 1) and�0 �
�� is the ‘‘relaxed modulus’’ (!� � 1). The strength of

the relaxation determines the total change ��
�0

. For a ther-

mally activated process, �ðEÞ ¼ �0e
E=T where E is the

activation energy. The crossover from unrelaxed to relaxed
modulus occurs at the temperature where !� ¼ 1; at this
point, the dissipation is maximum, and 50% of the modulus
change has occurred. These points (indicated by circles in
Fig. 2) can be used to determine the temperature depen-
dence of �. Figure 3 is an Arrhenius plot (1=T vs log !) of
the crossover temperatures marked on Fig. 2. We also show
the corresponding points (plus a point from the acoustic
resonance dissipation peak at 8 kHz) for the 33.3 bar
crystal of Fig. 1. Although there is some scatter, the
relaxation processes are clearly thermally activated. The
data for the 38 and 33.3 bar samples have similar slopes,
corresponding to activation energies E� 0:77 and 0.73 K,
respectively, but are offset vertically, indicating that they
have different attempt times �0 (consistent with sample-to-
sample variations [7]). We can check whether a simple
Debye relaxation describes the modulus and dissipation in
solid 4He by comparing Eqns. (1) and (2) to the 200 Hz

FIG. 1 (color online). Mechanical response in the 33.3 bar
(20:4 cm3=mole) 4He crystal from Ref. [7]. (a) Shear modulus
(at 200 Hz) and acoustic resonance frequency (left axis) and TO
NCRI (right axis). (b) Dissipation corresponding to Fig. 1(a).
Solid (red) lines are fits described later in the text. The 200 Hz
dissipation and fit are vertically offset for clarity.
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data of Fig. 1. The dashed (blue) line in Fig. 4(a) is the
modulus at 200 Hz, calculated from Eqn. (1) using the
value of the activation energy from Fig. 3 (E ¼ 0:73 K)

and the modulus change ��
�0

¼ 0:074. The value of �0

(25 ns) is chosen to make the modulus change midpoint
agree with the data. It is clear that the actual crossover is
much broader than for a simple Debye relaxation. We can
get a better fit to the modulus data with a smaller activation
energy (requiring a larger attempt time). The dotted (black)
curve in Fig. 4(a) is for E ¼ 0:175 K and �0 ¼ 65 �s.
Despite the good fit, it cannot be correct. First, this value
of E is inconsistent with the frequency dependence shown
in Fig. 3. Second, the predicted dissipation peak [dotted
black curve in Fig. 4(b)] is too large by a factor of 2.5. This
is also true for the fit with E ¼ 0:73 K and �0 ¼ 25 ns
(dashed blue curve), which in addition is much narrower
than the measured peak. No choice of E and �0 can resolve
this discrepancy since Eqns. (1) and (2) imply that the total
modulus change and the height of the dissipation peak are

directly related by ð1QÞpeak ¼ 1
2
��
�0

.

However, if the relaxation process has a distribution of
activation energies rather than a single value, then the
crossover will be broader and the height of the dissipation
peak will be reduced (Ref. [17], Chapter 4). We can fit the
200 Hz modulus data using a distribution of activation
energies with characteristic energy � and width W

nðEÞ ¼ Be�½ðlnE�ln�Þ2=W2� (3)

where B is the normalization factor. This distribution has a
long tail at large E and approaches zero for small E. The
modulus and dissipation are found by multiplying nðEÞ by

FIG. 2 (color online). Frequency dependence of (a) shear
modulus and (b) dissipation for an hcp 4He crystal at 38 bar
(20:1 cm3=mole). Curves have been vertically shifted for clarity
(the modulus scale is for the 2000 Hz data). Dots are transition
midpoints plotted in Fig. 3.

FIG. 3 (color online). Frequency dependence and thermal ac-
tivation for the crystals of Figs. 1 and 2. Open symbols are the
temperatures at which 50% of the modulus change has occurred;
closed symbols are for the dissipation peaks (as in Fig. 2). Lines
correspond to activation energies of 0.73 and 0.77 K.

FIG. 4 (color online). Fits of thermally activated relaxation
process to (a) the shear modulus and (b) the dissipation at 200 Hz
for the 33.1 bar crystal of Fig. 1. Fits are explained in the text.
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the contributions from Eqns. (1) and (2) and integrating
over all energies E.

The solid (red) curve in Fig. 4(a) shows the modulus
using this distribution with � ¼ 0:73 K and W ¼ 0:45.
The fit is much better than for a single activation energy
of 0.73 K (dashed blue curve). The predicted dissipation
peak [solid red curve in Fig. 4(b)] has approximately the
right height and width, although there is additional dissi-
pation above the peak (nearly constant above 0.25 K). This
distribution also gives the correct frequency dependence.
The solid (red) curves in Fig. 1 show the predicted fre-
quency fr and dissipation for the acoustic resonance at
8 kHz (and for � and 1=Q at 200 Hz) using these parame-
ters (� ¼ 0:73 K, �0 ¼ 9 ns, and W ¼ 0:45). The fit to fr
is good, showing that frequency dependence retains its
Arrhenius form with the broadened distribution of activa-
tion energies. The predicted dissipation peak for the acous-
tic resonance has approximately the correct height and
width, but again there is additional dissipation at tempera-
tures above the peak.

In both TO and shear modulus measurements, the
change in the real part of the response is accompanied by
damping, and the onset temperature decreases as the fre-
quency is reduced [12], but the dissipation peak is signifi-
cantly smaller than a simple Debye relaxation would
predict [6]. This behavior is consistent with a thermally
activated process if there is a broad range of relaxation
times [5]. In contrast to TO measurements, the wide fre-
quency range of our measurements allows us to reliably
determine the characteristic activation energy for the first
time and, using this value, �� 0:7 K, to fit the tempera-
ture and frequency dependence of both the modulus and
dissipation using a distribution of activation energies. The
onset of stiffening and the broad dissipation peak are not
signatures of a phase transition near 150 mK, but rather of a
frequency dependent crossover in an activated relaxation
process. The temperature of this crossover continues to
decrease with frequency down to at least 55 mK (at
0.5 Hz)—if there is a true phase transition reflected in,
e.g., the dc elastic response, it must be at a lower
temperature.

The effects of annealing on shear modulus and TO
behavior [8,11] show that defects are involved. It is also
clear that 3He impurities are important since the onset of
stiffening [7] (and of TO decoupling [18]) shifts to lower
temperature with reduced 3He concentration (in recent
experiments with extremely low 3He concentrations [19],
the onset of stiffening was at even lower temperature, close
to 40 mK). The large shear modulus changes we observe
are very difficult to understand except from dislocation
motion [7,8,17], and the role of 3He atoms is to bind to
and immobilize dislocations at low temperatures. As the
temperature is raised, they unbind thermally, allowing the
dislocations to move and relax the applied stress, thus
reducing the shear modulus. In this picture, the observed

activation energy is the binding energy for a 3He atom on a
dislocation; the value �� 0:7 K is consistent with esti-
mates from previous experiments [20,21]. The value of
�0 ¼ 9 ns is comparable to the inverse of a thermal fre-
quency, kBT=h (1 ns at 50 mK). The broad range of
energies needed to fit our data indicates that the relaxation
is occurring in a highly disordered network of pinned
dislocations. This system might exhibit glassy dynamics,
as has been suggested based on the TO response [5]. The
‘‘blocked annulus’’ experiment [1], which implies that the
decoupling seen in TO experiments is associated with
long-range order, cannot be explained by local dynamics
of dislocation motion and remains the strongest evidence
for supersolidity. Our measurements cannot rule out an
intrinsic phase transition, e.g., one associated with rough-
ening due to kinks on dislocations [22], but it would have
to occur below 55 mK.
This work was supported by NSERC Canada.
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