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Berg and Purcell [Biophys. J. 20, 193 (1977)] calculated how the accuracy of concentration sensing by

single-celled organisms is limited by noise from the small number of counted molecules. Here we

generalize their results to the sensing of concentration ramps, which is often the biologically relevant

situation (e.g., during bacterial chemotaxis). We calculate lower bounds on the uncertainty of ramp

sensing by three measurement devices: a single receptor, an absorbing sphere, and a monitoring sphere.

We contrast two strategies, simple linear regression of the input signal versus maximum likelihood

estimation, and show that the latter can be twice as accurate as the former. Finally, we consider biological

implementations of these two strategies, and identify possible signatures that maximum likelihood

estimation is implemented by real biological systems.
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Cells are able to sense concentration gradients with high
accuracy. Large eukaryotic cells such as the amoeba
Dictyostelium discoideum and the budding yeast
Saccharomyces cerevisiae can sense very shallow spatial
gradients by comparing concentrations across their lengths
[1]. By contrast, small motile bacteria such as Escheri-
chia coli detect spatial gradients indirectly by measuring
concentration ramps (temporal concentration changes) as
they swim [2], and can respond to concentrations as low as
3.2 nM—about three molecules per cell volume [3]. The
noise arising from the small number of detected molecules
sets a fundamental physical limit on the accuracy of con-
centration sensing, as originally shown in the seminal work
of Berg and Purcell [4,5]. This approach was recently
extended to derive a fundamental bound on the accuracy
of direct spatial gradient sensing [6]. However, no theory
exists for the physical limit of ramp sensing, which is what
bacteria actually do when they chemotact. In this Letter,
we present such a theory for different measurement de-
vices, from a single receptor to an entire cell. We contrast
two strategies: linear regression (LR) of the input signal (in
line with Berg and Purcell) and maximum likelihood esti-
mation (MLE) [7,8], a method from statistics to optimally
fit a model to data, revealing an up to twofold advantage for
the latter. Finally, we introduce a biochemical signaling
network, similar to the E. coli chemotaxis system, that
outputs an estimate of the ramp rate. Consistent with the
derived theoretical bounds, we find that a mechanism
emulating MLE yields twofold higher accuracy than one
emulating LR. However, this improved performance has a
cost: either storage of signaling proteins near the receptors
or irreversibility of the receptor cycle with concomitant
energy consumption.

Sensing small numbers of molecules implies relative

noise �n�1=2, where n is the number of detected mole-

cules. Berg and Purcell (BP) calculated how this noise
affects the accuracy of concentration sensing [4]. They
considered three types of measurement devices: a single
receptor, a perfectly absorbing sphere, and a perfectly
monitoring sphere. Following their approach, we investi-
gate ramp sensing by these three devices when presented
with a concentration cðtÞ ¼ c0 þ c1t, as schematized in
Fig. 1.
A single receptor [Fig. 1(a)] binds particles at rate kþcðtÞ

and unbinds them at rate k�. Following BP, we assume that
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FIG. 1. Schematic of measurement devices and corresponding
time traces for linearly increasing concentration cðtÞ ¼ c0 þ c1t.
(a) Left: a single receptor binds a particle at rate kþcðtÞ, and
releases it at rate k�. Right: the binary time series of receptor
occupancy is depicted as a telegraph process. (b) Left: particles
are incident on an absorbing sphere with average flux 4�DacðtÞ.
Right: sequence of times when a particle hits the sphere. (c) Left:
a monitoring sphere counts the number of particles inside its
volume without hindering their diffusion. Right: number NðtÞ of
particles inside the sphere as a function of time.
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diffusion is fast enough that the receptor never rebinds the
same particle. An ideal observer has access to the binary
time series sðtÞ of receptor occupancy between �T=2 and
T=2, which can described by a telegraph process. The
lengths of bound and unbound intervals have exponential
distributions with means 1=k� and 1=kþc, respectively.
Throughout, we assume that the ramp is shallow, c1T �
c0, and that the observation time is long compared to
receptor kinetics, T � 1=k�, 1=kþc. In BP, the true con-
centration c is estimated from the fraction of time the

receptor is bound, �s ¼ 1
T

RT=2
�T=2 dtsðtÞ, which is equal to

the equilibrium occupancy in the limit of large times (but
with c1T � c0):

�s � hsi ¼ kþc=ðk� þ kþcÞ; (1)

where h�i represents an ensemble average. Following a
similar strategy, we can estimate the ramp rate by perform-
ing the linear regression of sðtÞ to s0 þ s1t:

s0 ¼ 1

T

Z T=2

�ðT=2Þ
dtsðtÞ; s1 ¼ 12

T3

Z T=2

�ðT=2Þ
dttsðtÞ; (2)

from which the concentration and the ramp rate are esti-
mated using (1) as

cLR0 :¼ k�
kþ

s0
1� s0

; cLR1 :¼ cLR0
s1

s0ð1� s0Þ : (3)

The uncertainties of these estimates can be calculated from
the time correlations of receptor occupancy [9], yielding

hð�cLR0 Þ2i
c20

¼ 2

n
;

hð�cLR1 Þ2i
ðc0=TÞ2

¼ 24

n
; (4)

where n is the total number of binding events in the time T.
Note that the result for c0 is precisely that of BP [4,8].

In [8], it was shown that the accuracy of concentration
sensing could be improved using maximum likelihood
estimation. In this scheme, the parameters of the model
are chosen to maximize the probability (‘‘likelihood’’) that
the observed data were generated by the model. Can we
also improve the accuracy of ramp sensing over LR by
using this method? The time trace sðtÞ can be characterized
by the series of binding (tþi ) and subsequent unbinding (t�i )
times, i ¼ 1; . . . ; n. The likelihood of the data within our
model is [8]

P ¼ e�k�Tbe
�kþ

P
i

Rtþ
iþ1
t�
i

dtcðtÞ
kn�

Yn
i¼1

kþcðtþi Þ; (5)

where Tb is the total bound time over time T. The concen-
tration and the ramp rate, c0 and c1, are the model parame-
ters. Given the times of the events, the likelihood is
maximized with respect to c0 and c1 by solving @P=@c0 ¼
0 and @P=@c1 ¼ 0, from which the maximum likelihood
estimate (cMLE

0 , cMLE
1 ) is obtained. In general, these equa-

tions have no simple solution, but we can obtain the
average behavior by exploiting the fact that binding and
unbinding are fast with respect to concentration changes,
i.e., that the receptor remains adiabatically in equilibrium
with the concentration cðtÞ. We can thus simplify the sum

and product in (5):

Xn
i¼1

Z tþiþ1

t�i
dtcðtÞ �

Z T=2

�ðT=2Þ
dt½1� hsðtÞi�cðtÞ; (6)

Xn
i¼1

logcðtþi Þ �
Z T=2

�ðT=2Þ
dtk�hsðtÞi logcðtÞ; (7)

where hsðtÞi is the equilibrium occupancy at time t, given
by (1) with c ¼ ~c0 þ ~c1t, where ~c0 and ~c1 are the true
parameters that generated the data. Applying this approxi-
mation to @P=@c0, @P=@c1, we confirm that cMLE

0 ¼ ~c0 and
cMLE
1 ¼ ~c1 for T ! 1 [9]. For finite times, the errors in
cMLE
0 , cMLE

1 can be estimated by the Cramér-Rao bound

[10], which states that the variance of parameter estimates
exceeds the inverse of the Fisher information, and ap-
proaches equality in the limit of long time series:

h�cT�ci * �½@Tc@c logP��1; (8)

where �c ¼ ðcMLE
0 � ~c0; c

MLE
1 � ~c1Þ and @c ¼

ð@=@c0; @=@c1Þ. Again we can use the adiabatic approxi-
mation to compute the Hessian of the log-likelihood on the
right-hand side of (8), to obtain

hð�cMLE
0 Þ2i
c20

¼ 1

n
;

hð�cMLE
1 Þ2i

ðc0=TÞ2
¼ 12

n
: (9)

These variances are half the ones obtained from LR (4).
The first result for constant concentrations is that of [8]. As
observed there, the LR estimate weighs bound and un-
bound intervals equally and adds the uncertainties from
both. In contrast, the maximum likelihood estimate relies
only on unbound interval durations since these carry all the
information about the concentration. Furthermore, LR re-
quires finite bound intervals, during which the receptor is
blocked and cannot serve as a detector, while in MLE,
particles can be released instantly.
We now turn to ramp sensing by an entire cell, starting

with the case of an idealized absorbing sphere [Fig. 1(b)].
An ideal observer witnesses a time series of absorption
events, described by the instantaneous current IðtÞ ¼P

n
i¼1 �ðt� tiÞ, where �ðtÞ is the Dirac delta function and

ftig are the absorption times. The average current of mole-
cules impinging on the sphere is given by hIðtÞi ¼
4�DacðtÞ, where D is the diffusivity, a the sphere radius,
and cðtÞ the concentration far from the sphere [4].
Applying the same methods used for the single receptor,
we calculated the uncertainty of ramp sensing for linear
regression of IðtÞ as well as for MLE [9]. We found no
difference between the two strategies, which both yield the
same uncertainties as in (9), with n now the total number of
molecules absorbed during time T: n � 4�Dac0T. For a
monitoring sphere [Fig. 1(c)], molecules are free to diffuse
into and out of the sphere, and the observer records the
number NðtÞ of particles inside the sphere as a function of
time. On average, this number is hNðtÞi ¼ ð4=3Þ�a3cðtÞ.
Performing a linear regression of NðtÞ to N0 þ N1t, one
can estimate the concentration and the ramp rate through
cLR0 :¼ 3N0=4�a

3 and cLR1 :¼ 3N1=4�a
3. Following [4],
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the uncertainty of these estimates can be calculated from
the time autocorrelation of NðtÞ [9], yielding
hð�c0Þ2i

c20
¼ 3

5�Dac0T
;

hð�c1Þ2i
ðc0=TÞ2

¼ 36

5�Dac0T
: (10)

The first result was obtained in [4]. Maximum likelihood is
difficult to implement in the context of the monitoring
sphere because it requires a sum over all possible histories
of particles exiting and returning to the sphere. Thus,
whether the LR result can be improved upon remains an
open question.

Maximum likelihood estimation is in general the opti-
mal way to sense ramps and provides a twofold improve-
ment over simple linear regression in the case of the single
receptor. Could MLE be implemented in biological sys-
tems? To address this question, we now introduce a simple,
deterministic biochemical network (Fig. 2) that can ap-
proach the optimal performance limit set by MLE. The
same network implements either LR or MLE depending on
the receptor signaling mechanism: LR is implemented if
each receptor signals continuously while a particle is
bound; MLE is implemented if each receptor signals with
a fixed-size burst upon binding a particle, and then releases
the particle rapidly. The first case corresponds to integrat-
ing the fraction of time the receptor is bound, while the
second corresponds to counting binding events. Accord-
ingly, we will show that the shot noise (Poisson noise) due
to the stochastic nature of binding and unbinding is twice
as large in the first case as in the second. Let uðtÞ be the
receptor activity: for continuous signaling, this activity is
simply proportional to receptor occupancy: uðtÞ ¼ �sðtÞ,

whereas for burst signaling, uðtÞ is a series of fixed-size
bursts at the times of binding: uðtÞ ¼ �

P
n
i �ðt� tþi Þ.

Without loss of generality, we set � ¼ k� and � ¼ 1 so
that huðtÞi is equal to the mean rate of binding events in
both cases, huðtÞi ¼ k�kþcðtÞ=½k� þ kþcðtÞ�. For averag-
ing times much longer than 1=k� and 1=kþc, we can
approximate the fluctuations of uðtÞ by Gaussian white
noise, uðtÞ ¼ huðtÞi þ �uðtÞ, where h�uðtÞ�uðt0Þi ¼
ghuðtÞi�ðt� t0Þ=½1þ kþcðtÞ=k��2, with g ¼ 2 for con-
tinuous signaling, and g ¼ 1þ ðkþc=k�Þ2 for fixed-size
burst signaling [9]. For rapid unbinding, k� ! þ1, we
recover the same twofold difference as between (4) and (9),
and for the same reason: in the case of continuous signal-
ing, noise from the stochasticity of bound intervals adds to
the noise from random arrivals.
To extract the ramp rate from receptor activity requires a

network that ‘‘takes the derivative’’ of its input signal. An
example is the E. coli chemotaxis system, which relies on
precise adaptation via integral feedback [11]. A minimal
deterministic version of such a network is schematized in
Fig. 2 and described by the following differential equa-
tions:

dx

dt
¼ kx½ufðyÞ � x�; dy

dt
¼ kyðx� 1Þ; (11)

where for simplicity uðtÞ is the activity of a single receptor
and x is the concentration of signaling molecules it pro-
duces. fðyÞ is a monotonically decreasing function regu-
lating the production of x. The role of y is similar to that of
the receptor methylation level in E. coli: y precisely adapts
the production rate of signaling molecules so that the
steady-state value of x does not depend on the external
ligand concentration. This property is illustrated by the
graphs on the right side of Fig. 2, which show how the
network responds to a sudden change in ligand concentra-
tion (solid curves). While the network output x is insensi-
tive to the absolute concentration, it responds to steady
ramps (dotted curves). When the input varies slowly in
time, huðtÞi ¼ u0 þ u1t (with u1 � u0kx, u0ky), the sys-

tem responds by shifting x away from 1 so that the change
in yðtÞ tracks the change in uðtÞ:
hxðtÞi¼1þ�

u1
kyu0

; hyðtÞi¼y0��2 u1
kyu0

��
u1
u0

t; (12)

with u0fðy0Þ ¼ 1 and � ¼ �fðy0Þ=f0ðy0Þ. Thus, y pro-
vides a readout of the absolute concentration to leading
order via u0 ¼ 1=fðyÞ, and x provides a readout of the
ramp rate through u1 ¼ kyu0ðx� 1Þ=�. The accuracy of

these readouts is limited by the ligand binding shot noise
�uðtÞ. The effect of noise can be calculated by expanding
the solution of (11) linearly around its average [9]:

�xðtÞ
�yðtÞ

" #
:¼ xðtÞ � hxðtÞi

yðtÞ � hyðtÞi

" #
¼

Z t

�1
dt0Kðt� t0Þ�uðt0Þ

with KðtÞ ¼ kx
u0

e�kxt=2
coshð!tÞ � kx

2! sinhð!tÞ
ky
! sinhð!tÞ

2
4

3
5;

FIG. 2. Biochemical network for measuring concentration
ramps. Binding of ligand to the receptor increases its activity
u and causes species x to be produced. This production is
downregulated by a feedback factor y which is itself catalyzed
by x. Right: average network response to a step function in the
concentration, cðtÞ ¼ c0 þ�c�ðt� t0Þ (solid curves) and to a
ramp, cðtÞ ¼ c0 þ c1ðt� t0Þ�ðt� t0Þ (dotted curves). In re-
sponse to the step function, the network adapts precisely and x
decays back to its original value after an initial increase. In
response to a ramp, x shifts by an amount proportional to the
ramp rate. The quantitative ability of the network to sense such
ramps depends on whether receptors signal continuously or in a
discrete burst upon ligand binding.
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where !2 ¼ k2x=4� kxky=� (! can be imaginary). From

(12), we deduce the uncertainties of c0 and c1:

hð�c0Þ2i
c20

¼ gky=�

2u0
;

hð�c1Þ2i
ðc0ky=�Þ2

¼ gkx
2u0

: (13)

For a fixed ky, the optimal value of kx is the smallest one

with a nonoscillating response kernel KðtÞ: kx ¼ 4ky=�.

Systems with oscillating kernels are undesirable because
they detect oscillations rather than ramps. For kx ¼ 4ky=�,

our results are consistent with those of Eqs. (4) and (9),
namely, uncertainties inversely proportional to the number
of binding events, if we interpret �=ky ! T as the effective

time of measurement and u0 as the rate of binding events.
The factor g reflects the difference between the two mecha-
nisms of receptor signaling.

Despite its simplicity, our biochemical model may help
analyze features of real biological systems. There are two
separate aspects to the model: on the input side, different
mechanisms of receptor signaling—continuous signaling
(LR) versus burst signaling (MLE)—affect readout accu-
racy; on the output side, integral feedback provides a
natural readout for sensing ramps.

Many receptors, including the well-studied chemotaxis
receptors of E. coli, signal continuously rather than in
bursts, and therefore do not employ MLE. In practice,
how could cells implement MLE? Receptors could signal
continuously following a binding event but with a narrowly
peaked distribution of durations. Our results can easily be
extended to an arbitrary distribution of bound interval
durations �b, yielding g ¼ 1þ hð��bÞ2i=h�bi2 [9]: the
more peaked the distribution of �b, the less noisy the
readout. For equilibrium binding or unbinding, we find
g � 2 [9], with an irreversible binding cycle driven by
energy dissipation required to achieve g < 2. Interest-
ingly, there are examples of such irreversible cycles in
ligand-gated ion channels [12], where ions play the role
of our output signal x. In these ion channels, peaked open-
time distributions are interpreted as evidence that time
reversibility is broken and energy is being consumed
[13]. We speculate that the role of this irreversibility may
be to reduce the variance of bursts, thereby increasing the
accuracy of concentration or ramp sensing. Relatedly, a
multiplicity of irreversible steps in rhodopsin signaling has
been shown to explain the reproducibility of single-photon
responses in rod cells [14].

As for the mechanism of ramp sensing, the integral
feedback system underlying E. coli chemotaxis is similar
to our simple model. However, the receptor methylation
level, which plays the same role as y in our model, adjusts
the binding/unbinding rates kþ=k� so that k� � kþc,
rather than adjusting the production rate kxfðyÞu as in
(11). In E. coli, receptors increase their gain by responding
cooperatively [15], and k� � kþc is required to maximize
this gain, which precludes the limit k� � kþc required for

MLE. Moreover, kþ is physically limited by diffusion and
receptor size, and should optimally be kept near the diffu-
sion limit to maximize the number of binding events. It is
worth noting that in E. coli, the methylation and demeth-
ylation processes responsible for integral feedback are
themselves subject to noise, giving rise to additional,
dominant fluctuations [16]. For a receptor signaling in
bursts, integral feedback could act by adjusting the number
of released molecules upon binding if the receptor stores
molecules, or the mean bound duration h�bi if signaling is
continuous, or the channel conductivity in ligand-gated ion
channels. We hope that our analysis will suggest experi-
ments for testing these scenarios.
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