
Suppression of Density Fluctuations in a Quantum Degenerate Fermi Gas

Christian Sanner, Edward J. Su, Aviv Keshet, Ralf Gommers, Yong-il Shin, Wujie Huang, and Wolfgang Ketterle

MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics,
Massachusetts Institute of Technology, Cambridge Massachusetts 02139, USA

(Received 7 May 2010; published 19 July 2010)

We study density profiles of an ideal Fermi gas and observe Pauli suppression of density fluctuations

(atom shot noise) for cold clouds deep in the quantum degenerate regime. Strong suppression is observed

for probe volumes containing more than 10 000 atoms. Measuring the level of suppression provides

sensitive thermometry at low temperatures. After this method of sensitive noise measurements has been

validated with an ideal Fermi gas, it can now be applied to characterize phase transitions in strongly

correlated many-body systems.
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Systems of fermions obey the Pauli exclusion principle.
Processes that would require two fermions to occupy the
same quantum state are suppressed. In recent years, sev-
eral classic experiments have directly observed manifesta-
tions of Pauli suppression in Fermi gases. Antibunching
and the suppression of noise correlations are a direct con-
sequence of the forbidden double occupancy of a quan-
tum state. Such experiments were carried out for elec-
trons [1–3], neutral atoms [4,5], and neutrons [6]. In
principle, such experiments can be done with fermions
at any temperature, but in practice low temperatures in-
crease the signal. A second class of (two-body) Pauli
suppression effects, the suppression of collisions, requires
a temperature low enough such that the de Broglie wave-
length of the fermions becomes larger than the range of the
interatomic potential and p-wave collisions freeze-out.
Experiments observed the suppression of elastic collisions
[7] and of clock shifts in radio frequency spectroscopy
[8,9].

Here we report on the observation of Pauli suppression
of density fluctuations. This is, like the suppression of
collisions between different kinds of fermions [10], a
many-body phenomenon which occurs only at even lower
temperatures in the quantum degenerate regime, where the
Fermi gas is cooled below the Fermi temperature and the
low lying quantum states are occupied with probabilities
close to 1. In contrast, an ideal Bose gas close to quantum
degeneracy shows enhanced fluctuations [11].

The development of a technique to sensitively measure
density fluctuations was motivated by the connection be-
tween density fluctuations and compressibility through the
fluctuation-dissipation theorem. In this Letter, we validate
our technique for determining the compressibility by ap-
plying it to the ideal Fermi gas. In future work, it could be
extended to interesting many-body phases in optical latti-
ces which are distinguished by their incompressibility [12].
These include the band insulator, Mott insulator, and also
the antiferromagnet for which spin fluctuations, i.e., fluc-
tuations of the difference in density between the two spin
states are suppressed.

Until now, sub-Poissonian number fluctuations of ultra-
cold atoms have been observed only for small clouds of
bosons with typically a few hundred atoms [13–16] and
directly [17,18] or indirectly [19] for the bosonic Mott
insulator in optical lattices. For fermions in optical lattices,
the crossover to an incompressible Mott insulator phase
was inferred from the fraction of double occupations [20]
or the cloud size [21]. Here we report the observation of
density fluctuations in a large cloud of fermions, showing
sub-Poissonian statistics for atom numbers in excess of
10 000 per probe volume.
The basic concept of the experiment is to repeatedly

produce cold gas clouds and then count the number of
atoms in a small probe volume within the extended cloud.
Many iterations allow us to determine the average atom
number N in the probe volume and its variance ð�NÞ2. For
independent particles, one expects Poisson statistics, i.e.,
ð�NÞ2=hNi ¼ 1. This is directly obtained from the
fluctuation-dissipation theorem ð�NÞ2=hNi ¼ nkBT�T ,
where n is the density of the gas, and �T the isothermal
compressibility. For an ideal classical gas �T ¼ 1=ðnkBTÞ,
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FIG. 1. Phase space diagram of ballistic expansion of a har-
monically trapped Fermi gas. Ballistic expansion conserves
phase space density and shears the initially occupied spherical
area into an ellipse. In the center of the cloud, the local Fermi
momentum and the sharpness of the Fermi distribution are scaled
by the same factor, keeping the ratio of local temperature to
Fermi energy constant. The same is true for all points in the
expanded cloud relative to their corresponding unscaled in-trap
points.
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and one retrieves Poissonian statistics. For an ideal Fermi
gas close to zero temperature with Fermi energy EF, �T ¼
3=ð2nEFÞ, and the variance ð�NÞ2 is suppressed below
Poissonian fluctuations by the Pauli suppression factor
3kBT=ð2EFÞ. All number fluctuations are thermal, as in-
dicated by the proportionality of ð�NÞ2 to the temperature
in the fluctuation-dissipation theorem. Only for the ideal
classical gas, where the compressibility diverges as 1=T,
one obtains Poissonian fluctuations even at zero
temperature.

The counting of atoms in a probe volume can be done
with trapped atoms, or after ballistic expansion. Ballistic
expansion maintains the phase space density and therefore
the occupation statistics. Consequently, density fluctua-
tions are exactly rescaled in space by the ballistic expan-
sion factors as shown in Fig. 1 [22,23]. Note that this
rescaling is a unique property of the harmonic oscillator
potential, so future work on density fluctuations in optical
lattices must employ in-trap imaging. For the present work,
we chose ballistic expansion. This choice increases the
number of fully resolved bins due to optical resolution
and depth of field, it allows adjusting the optimum optical
density by choosing an appropriate expansion time, and it
avoids image artifacts at high magnification.

We first present our main results, and then discuss
important aspects of sample preparation, calibration of
absorption cross section, data analysis and corrections for
photon shot noise. Figure 2(a) shows an absorption image
of an expanding cloud of fermionic atoms. The probe
volume, in which the number of atoms is counted, is

chosen to be 26 �m in the transverse directions, and ex-
tends through the entire cloud in the direction of the line of
sight. The large transverse size avoids averaging of fluctu-
ations due to finite optical resolution. From 85 such im-
ages, after careful normalization [24], the variance in the
measured atom number is determined as a function of
position. After subtracting the photon shot noise contribu-
tion, a 2D image of the atom number variance ð�NÞ2 is
obtained. For a Poissonian sample (with no suppression of
fluctuations), this image would be identical to an absorp-
tion image showing the number of atoms per probe vol-
ume. This is close to the situation for the hottest cloud (the
temperature was limited by the trap depth), whereas the
colder clouds show a distinct suppression of the atom
number variance, especially in the center of the cloud
where the local T=TF is smallest.
In Fig. 3, profiles of the variance are compared to

theoretical predictions [25,26]. Density fluctuations at
wave vector q are proportional to the structure factor
Sðq; TÞ. Since our probe volume (transverse size 26 �m)
is much larger than the inverse Fermi wave vector of the
expanded cloud (1=qF ¼ 1:1 �m), Sðq ¼ 0; TÞ has been
integrated along the line of sight for comparison with the
experimental profiles. Within the local density approxima-
tion, Sðq ¼ 0; TÞ at a given position in the trap is the
binomial variance nkð1� nkÞ integrated over all momenta,
where the occupation probability nkðk;�; TÞ is obtained
from the Fermi-Dirac distribution with a local chemical
potential � determined by the shape of the trap. Figure 4
shows the dependence of the atom number variance on
atom number for the hot and cold clouds. A statistical
analysis of the data used in the figure is in [24].
The experiments were carried out with typically 2:5�

106 6Li atoms per spin state confined in a round crossed
dipole trap with radial and axial trap frequencies !r ¼
2�� 160 s�1 and !z ¼ 2�� 230 s�1 corresponding to
an in-trap Fermi energy of EF ¼ kB � 2:15 �K. The sam-

FIG. 2 (color online). Comparison of density images to vari-
ance images. For Poissonian fluctuations, the two images at a
given temperature should be identical. The variance images were
obtained by determining the local density fluctuations from a set
of 85 images taken under identical conditions. (a) Two dimen-
sional image of the optical density of an ideal Fermi gas after
7 ms of ballistic expansion. The noise data were taken by
limiting the field of view to the dashed region of interest,
allowing for faster image acquisition. (b) For the heated sample,
variance and density pictures are almost identical, implying only
modest deviation from Poissonian statistics. (c) Fermi suppres-
sion of density fluctuations deep in the quantum degenerate
regime manifests itself through the difference between density
and variance picture. Especially in the center of the cloud, there
is a large suppression of density fluctuations. The variance
images were smoothed over 6� 6 bins. The width of images
(b) and (c) is 2 mm.
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FIG. 3. Comparison of observed variances (black dots) with a
theoretical model (black line) and the observed atom number
(gray), at three different temperatures (a, b, and c), showing 50,
40, and 15% suppression. Noise thermometry is implemented by
fitting the observed fluctuations, resulting in temperatures T=TF

of 0:23� :01, 0:33� :02, and 0:60� :02. This is in good
agreement with temperatures 0:21� :01, 0:31� :01, and 0:6�
:1 obtained by fitting the shape of the expanded cloud [32]. The
quoted uncertainties correspond to 1 standard deviation and are
purely statistical.
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ple was prepared by laser cooling followed by sympathetic
cooling with 23Na in a magnetic trap. 6Li atoms in the
highest hyperfine state were transferred into the optical
trap, and an equal mixture of atoms in the lowest two hy-
perfine states was produced. The sample was then evapo-
ratively cooled by lowering the optical trapping potential at
a magnetic bias field B ¼ 320� 5 G where a scattering
length of �300 Bohr radii ensured efficient evaporation.
Finally, the magnetic field was increased to B¼520�5G,
near the zero crossing of the scattering length. Absorption
images were taken after 7 ms of ballistic expansion.

We were careful to prepare all samples with similar
cloud sizes and central optical densities to ensure that
they were imaged with the same effective cross section
and resolution. Hotter clouds were prepared by heating the
colder cloud using parametric modulation of the trapping
potential. For the hottest cloud this was done near 520 G to
avoid excessive evaporation losses.

Atomic shot noise dominates over photon shot noise
only if each atom absorbs several photons. As a result,
the absorption images were taken using the cycling tran-
sition to the lowest lying branch of the 2P3=2 manifold.

However, the number of absorbed photons that could be
tolerated was severely limited by the acceleration of the
atoms by the photon recoil, which Doppler shifts the atoms
out of resonance. Consequently, the effective absorption
cross section depends on the probe laser intensity and
duration. To remove the need for nonlinear normalization
procedures, we chose a probe laser intensity corresponding
to an average of only 6 absorbed photons per atom during a
4 �s exposure. At this intensity, about 12% of the 6Li
saturation intensity, the measured optical density was
20% lower than its low-intensity value [24]. For each

bin, the atom number variance ð�NÞ2 is obtained by sub-
tracting the known photon shot noise from the variance in
the optical density ð�ODÞ2 [24]:

�2

A2
ð�NÞ2 ¼ ð�ODÞ2 � 1

hN1i �
1

hN2i (1)

Here, hN1iðhN2iÞ are the average photon numbers per bin of
area A in the image with (without) atoms and � is the
absorption cross section.
The absorption cross section is a crucial quantity in the

conversion factor between the optical density and the
number of detected atoms. For the cycling transition, the
resonant absorption cross section is 2:14� 10�13 m2.
Applying the measured 20% reduction mentioned above
leads to a value of 1:71� 10�13 m2. This is an upper limit
to the cross section due to imperfections in polarization and
residual line broadening. An independent estimate of the
effective cross section of 1:48� 10�13 m2 was obtained by
comparing the integrated optical density to the number of
fermions necessary to fill up the trap to the chemical
potential. The value of the chemical potential was obtained
from fits to the ballistic expansion pictures that allowed
independent determination of the absolute temperature and
the fugacity of the gas. We could not precisely assess the
accuracy of this value of the cross section, since we did not
fully characterize the effect of a weak residual magnetic
field curvature on trapping and on the ballistic expansion.
The most accurate value for the effective cross section was
determined from the observed atom shot noise itself. The
atom shot noise in the wings of the hottest cloud is
Poissonian, and this condition determines the absorption
cross section. Requiring that the slope of variance of the
atom number ð�NÞ2 vs atom numberN is unity (see Fig. 4)
results in a value of ð1:50� 0:12Þ � 10�13 m2 for the
effective cross section in good agreement with the two
above estimates.
The spatial volume for the atom counting needs to be

larger than the optical resolution. For smaller bin sizes (i.e.,
small counting volumes), the noise is reduced since the
finite spatial resolution and depth of field blur the absorp-
tion signal. In our setup, the smallest bin size without
blurring was determined by the depth of field, since the
size of the expanded cloud was larger than the depth of
field associated with the diffraction limit of our optical
system. We determined the effective optical resolution by
binning the absorption data over more and more pixels of
the CCD camera, and determining the normalized central
variance ð�NÞ2=N vs bin size [24]. The normalized vari-
ance increased and saturated for bin sizes larger than
26 �m (in the object plane), and this bin size was used
in the data analysis. We observe the same suppression
ratios for bin sizes as large as 40 �m, corresponding to
more than 10 000 atoms per bin.
For a cold fermion cloud, the zero temperature structure

factor SðqÞ becomes unity for q > 2qF. This reflects the

0

2000

4000

2000 40000

Atom number

A
to

m
 n

um
be

r 
va

ria
nc

e

FIG. 4. Atom number variance vs average atom number. For
each spatial position, the average atom number per bin and its
variance were determined using 85 images. The filled and open
circles in the figure are averages of different spatial bin positions
with similar average atom number. For a hot cloud at T=TF ¼
0:6 (filled circles), the atom number variance is equal to the
average atom number (dotted line, full Poissonian noise) in the
spatial wings where the atom number is low. The deviation from
the linear slope for a cold cloud at T=TF ¼ 0:21 (open circles) is
due to Pauli suppression of density fluctuations. There is also
some suppression at the center of the hot cloud, where the atom
number is high. The solid and dashed lines are quadratic fits for
the hot and cold clouds to guide the eye.
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fact that momentum transfer above 2qF to any particle will
not be Pauli suppressed by occupation of the final state. In
principle, this can be observed by using bin sizes smaller
than the Fermi wavelength, or by Fourier transforming the
spatial noise images. For large values of q, Pauli suppres-
sion of density fluctuations should disappear, and the noise
should be Poissonian. However, our imaging system loses
its contrast before q � 2qF [24].

Observation of density fluctuations, through the
fluctuation-dissipation theorem, determines the product
of temperature and compressibility. It provides an absolute
thermometer, as demonstrated in Fig. 3 if the compressi-
bility is known or is experimentally determined from the
shape of the density profile of the trapped cloud [17,27].
Because variance is proportional to temperature for T �
TF, noise thermometry maintains its sensitivity at very low
temperature, in contrast to the standard technique of fitting
spatial profiles.

Density fluctuations lead to Rayleigh scattering of light.
The differential cross section for scattering light of wave
vector k by an angle � is proportional to the structure factor
SðqÞ, where q ¼ 2k sinð�=2Þ [26]. In this work, we have
directly observed the Pauli suppression of density fluctua-
tions and therefore SðqÞ< 1, implying suppression of light
scattering at small angles (corresponding to values of q
inversely proportional to our bin size). How are the ab-
sorption images affected by this suppression? Since the
photon recoil was larger than the Fermi momentum of the
expanded cloud, large-angle light scattering is not sup-
pressed. For the parameters of our experiment, we estimate
that the absorption cross section at the center of a T ¼ 0
Fermi cloud is reduced by only 0.3% due to Pauli blocking
[28]. Although we have not directly observed Pauli sup-
pression of light scattering, which has been discussed for
over 20 years [28–30], by observing reduced density fluc-
tuations we have seen the underlying mechanism for sup-
pression of light scattering.

In conclusion, we have established a sensitive technique
for determining atomic shot noise and observed the sup-
pression of density fluctuations in a quantum degenerate
ideal Fermi gas. This technique is promising for thermom-
etry of strongly correlated many-body systems and for
observing phase-transitions or cross-overs to incompress-
ible quantum phases.
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Note added in proof.—Results similar to ours are re-
ported in Ref. [31].
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[11] J. Estève et al., Phys. Rev. Lett. 96, 130403 (2006).
[12] Q. Zhou, Y. Kato, N. Kawashima, and N. Trivedi,

arXiv:0901.0606.
[13] C. S. Chuu et al., Phys. Rev. Lett. 95, 260403 (2005).
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